首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diaphragm capillarity and oxidative capacity during postnatal development.   总被引:1,自引:0,他引:1  
In the cat diaphragm, fiber capillarity, cross-sectional area, and succinate dehydrogenase (SDH) activity were measured across the first 6 wk of postnatal development. Fibers were classified as type I, IIa, IIb, or IIc on the basis of staining for myofibrillar adenosinetriphosphatase (ATPase). Capillaries were identified in sections stained for ATPase at pH 4.2. Fiber cross-sectional areas and SDH activities were quantified using an image-processing system. During postnatal development, the proportions of type I fibers increased while type II fibers decreased. At birth, all type II fibers were IIc. From the 1st to the 2nd postnatal wk, the proportion of type IIc fibers decreased while the numbers of IIa and IIb increased. Thereafter the proportion of type IIb fibers continued to increase while the number of IIa steadily declined. At birth, capillarity, cross-sectional areas, and SDH activities of type I and II fibers were low compared with other postnatal age groups. Fiber cross-sectional areas increased progressively with age. The number of capillaries surrounding type I and II fibers increased markedly by the 2nd wk and then continued to increase at a slower rate. The number of capillaries per fiber area reached a peak by the 2nd wk and then declined as fiber cross-sectional area increased. Postnatal changes in capillarity depended on fiber type, being greatest in IIb. SDH activities of type I and II fibers were initially low during the first 2 postnatal wk and then peaked by the 3rd wk. After the 6th wk, fiber SDH activities decreased to adult values. Among the type II fibers, IIb showed the greatest change in SDH activity during early postnatal development.  相似文献   

2.
Adult skeletal muscle undergoes adaptation in response to endurance exercise, including fast-to-slow fiber type transformation and enhanced angiogenesis. The purpose of this study was to determine the temporal and spatial changes in fiber type composition and capillary density in a mouse model of endurance training. Long-term voluntary running (4 wk) in C57BL/6 mice resulted in an approximately twofold increase in capillary density and capillary-to-fiber ratio in plantaris muscle as measured by indirect immunofluorescence with an antibody against the endothelial cell marker CD31 (466 ± 16 capillaries/mm2 and 0.95 ± 0.04 capillaries/fiber in sedentary control mice vs. 909 ± 55 capillaries/mm2 and 1.70 ± 0.04 capillaries/fiber in trained mice, respectively; P < 0.001). A significant increase in capillary-to-fiber ratio was present at day 7 with increased concentration of vascular endothelial growth factor (VEGF) in the muscle, before a significant increase in percentage of type IIa myofibers, suggesting that exercise-induced angiogenesis occurs first, followed by fiber type transformation. Further analysis with simultaneous staining of endothelial cells and isoforms of myosin heavy chains (MHCs) showed that the increase in capillary contact manifested transiently in type IIb + IId/x fibers at the time (day 7) of significant increase in total capillary density. These findings suggest that endurance training induces angiogenesis in a subpopulation of type IIb + IId/x fibers before switching to type IIa fibers. adaptation; capillary density; endothelial cells; fiber type transformation; vascular endothelial growth factor  相似文献   

3.
4.
Six women who had participated in a previous 20-wk strength training study for the lower limb detrained for 30-32 wk and subsequently retrained for 6 wk. Seven untrained women also participated in the 6-wk "retraining" phase. In addition, four women from each group volunteered to continue training an additional 7 wk. The initial 20-wk training program caused an increase in maximal dynamic strength, hypertrophy of all three major fiber types, and a decrease in the percentage of type IIb fibers. Detraining had relatively little effect on fiber cross-sectional area but resulted in an increased percentage of type IIb fibers with a concomitant decrease in IIa fibers. Maximal dynamic strength decreased but not to pretraining levels. Retraining for 6 wk resulted in significant increases in the cross-sectional areas of both fast fiber types (IIa and IIab + IIb) compared with detraining values and a decrease in the percentage of type IIb fibers. The 7-wk extension accentuated these trends such that cross-sectional areas continued to increase (nonsignificant) and no IIb fibers could be found. Similar results were found for the nonpreviously trained women. These data suggest that rapid muscular adaptations occur as a result of strength training in previously trained as well as non-previously trained women. Some adaptations (fiber area and maximal dynamic strength) may be retained for long periods during detraining and may contribute to a rapid return to "competitive" form.  相似文献   

5.
Five Standardbred trotters were trained on a treadmill 3 times/wk for 12 wk by intervals of draft-loaded exercise. The draft load was 34 kp and the velocity approximately 7 m/s. Muscle biopsies were taken from the gluteus medius and longissimus muscles before training and after 2, 4, 8, and 12 wk of training and from the brachiocephalicus muscle before and after training. Both the percentage and the area of type IIa fibers increased and the percentage of type IIb fibers decreased in the gluteus medius muscle during the first 2 wk of training, and then no further significant difference was noted. The percentage of type I fibers increased in the brachiocephalicus muscle, and the area of type IIb fibers increased in the longissimus muscle. The citrate synthase activity increased in the gluteus muscle only, and the increase was seen during the first 2 wk. No significant differences were seen in 3-hydroxy-acyl-CoA dehydrogenase and lactate dehydrogenase activities in the muscles during the entire training period. Less glycogen was utilized in the gluteus muscle and less blood lactate accumulated when the horses performed an unloaded submaximal exercise test after compared with before training. It can be concluded that rapid changes are induced in the gluteus medius muscle when horses are trained pulling a light-draft resistance at a submaximal trotting speed.  相似文献   

6.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Increases in aerobic capacity in both young and senescent rats consequent to endurance exercise training are now known to occur not only in locomotor skeletal muscle but also in diaphragm. In the current study the effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Exercise training [treadmill running at 75% maximal oxygen consumption (1 h/day, 5 day/wk, x 10 wk)] resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23 mo) trained animals (P < 0.05). Computerized densitometric image analysis of fast and slow MHC bands revealed the ratio of fast to slow MHC to be significantly higher (P < 0.005) in the crural compared with costal diaphragm region in both age groups. In addition, a significant age-related increase (P < 0.05) in percentage of slow MHC was observed in both diaphragm regions. However, exercise training failed to change the relative proportion of slow MHC in either the costal or crural region.  相似文献   

8.
Zhan, Wen-Zhi, Hirofumi Miyata, Y. S. Prakash, and Gary C. Sieck. Metabolic and phenotypic adaptations of diaphragm musclefibers with inactivation. J. Appl.Physiol. 82(4):1145-1153, 1997.We hypothesizedthat metabolic adaptations to muscle inactivity are most pronouncedwhen neurotrophic influence is disrupted. In ratdiaphragm muscle(Diam), 2 wk ofunilateral denervation or tetrodotoxin nerve blockade resulted in areduction in succinate dehydrogenase (SDH) activity of type I, IIa, andIIx fibers (~50, 70, and 24%, respectively) and a decrease in SDHvariability among fibers (~63%). In contrast, inactivity induced byspinal cord hemisection at C2 (ST)resulted in much less change in SDH activity of type I and IIa fibers(~27 and 24%, respectively) and only an ~30% reduction in SDHvariability among fibers. Actomyosin adenosinetriphosphatase (ATPase)activities of type I, IIx, and IIb fibers in denervated andtetrodotoxin-treated Diam werereduced by ~20, 45, and 60%, respectively, and actomyosin ATPasevariability among fibers was ~60% lower. In contrast, onlyactomyosin ATPase activity of type IIb fibers was reduced (~20%) inST Diam. These results suggestthat disruption of neurotrophic influence has a greater impact onmuscle fiber metabolic properties than inactivity per se.

  相似文献   

9.
The purpose of this investigation was to determine whether heavy-resistance exercise training alters the skeletal muscle fiber composition of young rats. Ten male Long Evans rats (3 wk old) were trained to lift progressively heavier weights, which were secured to the rats' tails, while they ascended a 40-cm 90 degree mesh incline 20 times/day 5 days/wk for a food reward. After 8 wk of training, they lifted 406 +/- 19 (SD) g in addition to their body weight (261 +/- 9 g). Compared with 10 sedentary pair-fed rats, no hypertrophy of forelimb muscles (biceps brachii and brachialis) was observed, but rectus femoris wet and dry weights were greater (P less than 0.01) in the trained group. In the deep region of the rectus femoris, type I fiber area was similar between groups, but the trained rats had both a lower (P less than 0.05) percentage of type I fibers and a smaller (P less than 0.05) portion of the total area occupied by type I fibers. The percentage of type IIb fibers in the deep region of the rectus femoris was also similar between groups, but the portion of the deep area composed of type IIb fibers was greater (P less than 0.05) in the trained rats. In the superficial region of the rectus femoris, the trained rats' type IIb fibers were larger (P less than 0.01) and occupied a greater (P less than 0.05) portion of the superficial muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Muscle fiber type composition and capillary supply in rat diaphragm were investigated after 14 weeks of endurance training: body weight and muscle fiber area were significantly decreased, the muscle fiber type composition, capillary to fiber ratio and number of capillaries around each fiber type were unchanged, and the capillary density and number of capillaries around each fiber relative to fiber type areas were significantly increased. These small fiber areas and increased capillary supplies in the trained rats would facilitate oxygen transport to all parts of the muscle fiber during exercise. It is concluded that the changes observed in the trained rat diaphragm appear to enhance the capacity for oxidative metabolism.  相似文献   

11.
Extreme endurance training and fiber type adaptation in rat diaphragm   总被引:1,自引:0,他引:1  
Extreme endurance training was used to investigate the adaptability of the rat diaphragm muscle fibers. During the final phase of the 14-wk training program, the animals were running for 240 min/day at an estimated requirement of 80% of pretraining maximal O2 consumption. Analysis of a sample of the costal diaphragm indicated that training resulted in a 34% reduction (P less than 0.05) in the percent distribution of type IIa fibers [27.7 +/- 1.1 vs. 18.3 +/- 2.6 (SE)] and a 15% increase (P less than 0.05) in the percent of type IIb fibers (40.0 +/- 1.2 vs. 46.1 +/- 2.4). No change (P greater than 0.05) was found in the distribution of the type I fibers (32.3 +/- 1.2 vs. 35.7 +/- 1.3). Oxidative potential as assessed with NADH-tetrazolium reductase and measured microphotometrically increased (P less than 0.05) by 19% in type I fibers but did not change in either the type IIa or type IIb fibers. No effect of training was found when a different oxidative marker, succinic dehydrogenase, was employed. Similarly glycolytic potential based on the activity of alpha-glycerophosphate dehydrogenase was not affected by training. Glycogen concentration was elevated by 60% (P less than 0.01) in type I fibers and 77% (P less than 0.01) in type IIb fibers with training but was not altered (P greater than 0.05) in type IIa fibers. Reductions (P less than 0.05) in fiber area ranging from 11 to 20% were observed in all fiber types as a result of training, whereas the number of capillaries per fiber remained static.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Exercise has been shown to be effective in preventing glucocorticoid-induced atrophy in muscles containing high proportions of type II or fast-twitch fibers. This investigation was undertaken to further evaluate this response in type IIa and IIb fibers, determined by histochemical staining for myofibrillar adenosinetriphosphatase with alkaline and acid preincubation. Steroid [cortisol acetate (CA), 100 mg/kg body wt] and exercise (running 90 min/day, 29 m/min) treatments were initiated simultaneously for 11 consecutive days in female rats. Fiber distribution and area measurements were performed in a deep and superficial region of plantaris muscle. The exercise regimen spared approximately 40% of the CA-induced plantaris muscle atrophy. In the deep region, the fiber population, which contained approximately 13% type I (slow-twitch), 24% type IIa, and 63% IIb fibers, was not affected by either treatment. In the superficial section, which consisted solely of type II fibers, the proportion of type IIa fibers was higher (27 vs. 9%, P less than 0.01) in the steroid- than in the vehicle-treated groups. Within each region, type IIa fibers were less susceptible to atrophy than type IIb fibers, and within each fiber type, the deep region had less atrophy than the superficial region. Type I fibers were unchanged by steroid treatment. For type IIa fibers, exercise prevented 100% of the atrophy in the deep region and 50% in the superficial region. For type IIb fibers, the activity spared 67 and 40% of the atrophy in these same regions, respectively. These results show that glucocorticoids are capable of changing the myosin phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

14.
Oxidative capacity and capillary density of diaphragm motor units   总被引:2,自引:0,他引:2  
Motor units in the cat diaphragm (DIA) were isolated in situ by microdissection and stimulation of C5 ventral root filaments. Motor units were classified based on their isometric contractile force responses and fatigue indexes (FI). The muscle fibers belonging to individual units (i.e., the muscle unit) were identified using the glycogen-depletion method. Fibers were classified as type I or II based on histochemical staining for myofibrillar adenosine triphosphatase (ATPase) after alkaline preincubation. The rate of succinate dehydrogenase (SDH) activity of each fiber was determined using a microphotometric procedure. The location of capillaries was determined from muscle cross sections stained for ATPase after acid (pH = 4.2) preincubation. The capillarity of muscle unit fibers was determined by counting the number of capillaries surrounding fibers and by calculating the number of capillaries per fiber area. A significant correlation was found between the fatigue resistance of DIA units and the mean SDH activity of muscle unit fibers. A significant correlation was also observed between DIA unit fatigue resistance and both indexes of muscle unit fiber capillarity. The mean SDH activity and mean capillary density of muscle unit fibers were also correlated. We conclude that DIA motor unit fatigue resistance depends, at least in part, on the oxidative capacity and capillary density of muscle unit fibers.  相似文献   

15.
To assess the effect of severe chronic obstructive pulmonary disease (COPD) on the ability of human diaphragmatic myofibers to aerobically generate ATP relative to ATP utilization, we obtained biopsy specimens of the costal diaphragm from seven patients with severe COPD (mean +/- SE; age 56 +/- 1 yr; forced expiratory volume in 1 s 23 +/- 2% predicted; residual volume 267 +/- 30% predicted) and seven age-matched control subjects. We categorized all fibers in these biopsies by using standard techniques, and we carried out the following quantitative histochemical measurements by microdensitometry: 1) succinate dehydrogenase (SDH) activity as an indicator of mitochondrial oxidative capacity and 2) calcium-activated myosin ATPase (mATPase) activity, the ATPase that represents a major portion of ATP consumption by contracting muscle. We noted the following: 1) COPD diaphragms had a larger proportion of type I fibers, a lesser proportion of type IIax fibers, and the same proportion of type IIa fibers as controls. 2) SDH activities of each of the fiber types were higher in COPD than control diaphragms (P < 0.0001); the mean increases (expressed as percent of control values) in types I, IIa, and IIax were 84, 114, and 130%, respectively. 3) COPD elicited no change in mATPase activity of type I and IIa fibers, but mATPase decreased in type IIax fibers (P = 0.02). 4) Mitochondrial oxidative capacity relative to ATP demand (i.e., SDH/mATPase) was higher (P = 0.03) in each of the fiber types in COPD diaphragms than in controls. These results demonstrate that severe COPD elicits an increase in aerobic ATP generating capacity relative to ATP utilization in all diaphragmatic fiber types as well as the previously described fast-to-slow fiber type transformation (Levine S, Kaiser L, Leferovich J, and Tikunov B, N Engl J Med 337: 1799-1806, 1997).  相似文献   

16.
To determine whether the increase in oxidative capacity after respiratory muscle training with chronic inspiratory loads in sheep is specific to a particular fiber type, we measured cytochrome c oxidase (COX) activity in type I and type II fibers. COX activity in individual fibers was examined histochemically and measured as relative optical density by use of an image processing system. Fiber types were differentiated by the myosin adenosine-triphosphatase reaction. We found that COX activity was higher in both fiber types in the trained diaphragms than in the control diaphragms (P less than 0.01). The increase with training was greater in type II (39%) than in type I fibers (21%), resulting in relatively homogeneous COX activity in all diaphragmatic fibers. The proportion of type I fibers increased from 43.4 +/- 5.4% in the control diaphragm to 53.1 +/- 2.9% in the trained diaphragm, whereas the proportion of type II fibers decreased (P less than 0.001). We conclude that respiratory muscle training activates oxidative enzyme activity in both diaphragmatic fiber types; this activation is differentially more in type II fibers, which also decrease in proportion, and less in type I fibers, which increase in proportion.  相似文献   

17.
Histochemical (M-ATPase) fiber typing was done on extensor digitorum longus, (EDL), soleus (SOL), and diaphragm (DIA) muscles of barrier-reared Fisher 344 rats obtained at four different ages (3, 9, 28, and 30 months) from the colonies of the National Institute of Aging. In the EDL there are no differences in the percent of type I fibers among the four age groups. The percent of type IIa and IIb fibers also showed no difference between the 3 and 30 month age groups. There was no apparent trend for an increase or decrease in the percent of type IIa or IIb fibers between the four age groups. In both the SOL and DIA muscles the percent of type I fibers was greater in the aged than in the young groups. The percent of type IIa fibers was lower in the 30 month group than in the younger groups for both muscles. The percent of type IIb (DIA) and IIc (SOL) fibers did not change between groups. Total fiber number per cross section of muscle showed no change in the EDL over this age range or in the SOL after 9 months of age. These findings bring into question published results that imply that decreasing fiber number and preferential loss of type II (a and b) fibers are typical aging phenomena.  相似文献   

18.
The influence of prolonged nutritional deprivation on the succinate dehydrogenase (SDH) activity and cross-sectional areas of individual fibers in the rat diaphragm and deep portion of the medial gastrocnemius (MGr) muscles was determined. Fatigue resistance of the diaphragm was measured by means of an in vitro nerve-muscle strip preparation. Fiber SDH activity and cross-sectional area were quantified by means of an image processing system. Diaphragm fatigue resistance was significantly improved in the nutritionally deprived (ND) group. In both muscles, nutritional deprivation resulted in a significant decrease in fiber cross-sectional area (both type I and II), type II fibers showing greater atrophy. The SDH activities of type I and II fibers in the diaphragm were not affected by nutritional deprivation. This contrasted with a significant decrease in the SDH activity of both type I and II fibers in the MGr of ND animals. An assessment of the interrelationships between fiber atrophy and fiber SDH activity revealed a greater effect of malnutrition on those diaphragm type II fibers that had the lowest relative SDH activities and the largest cross-sectional areas. By comparison, the effect of malnutrition on type I and II fibers in the MGr was nonselective with regard to fiber SDH activity. We conclude that the enhanced diaphragm fatigue resistance in the ND animals does not result from an increase in the oxidative capacity of muscle fibers and is best explained by the pattern of diaphragm muscle fiber atrophy.  相似文献   

19.
We studied muscle fibers by quantitative biochemistry to determine whether metabolic capacity varied among fibers of a given type as a function of their anatomic location. Muscles were selected from both contiguous and diverse anatomic regions within the rats studied. The individual fibers, classified into myosin ATPase fiber types by histochemical means, were assessed for fiber diameters and analyzed for the activities of enzymes representing major energy pathways: malate dehydrogenase (MDH, oxidative), lactate dehydrogenase (LDH, glycolytic), and adenylokinase (AK, high-energy phosphate metabolism). We found that neither the average activities of each of the three enzymes nor the fiber diameters varied in Type I or Type IIa fibers selected from superficial to deep portions of the triceps surae of the hindlimb. However, the IIb fibers in the deep region of this muscle group had significantly greater oxidative capacity, less glycolytic capacity, and smaller diameters than the superficially situated IIb fibers. Type IIa fibers in lateral gastrocnemius, extensor digitorum longus, psoas, diaphragm, biceps brachii, superficial masseter, and superior rectus muscles were highly variable in both diameter and enzyme profiles, with a correlation between MDH activity and fiber diameter. Therefore, our results show that both intermuscular and intramuscular metabolic variations exist in muscle fibers of a given type.  相似文献   

20.
The oxidative capacity and cross-sectional area of muscle fibers were compared between the costal and crural regions of the cat diaphragm and across the abdominal-thoracic extent of the muscle. Succinate dehydrogenase (SDH) activity of individual fibers was quantified using a microphotometric procedure implemented on an image-processing system. In both costal and crural regions, population distributions of SDH activities were unimodal for both type I and II fibers. The continuous distribution of SDH activities for type II fibers indicated that no clear threshold exists for the subclassification of fibers based on differences in oxidative capacity (e.g., the classification of fast-twitch glycolytic and fast-twitch oxidative glycolytic fiber types). No differences in either SDH activity or cross-sectional area were noted between fiber populations of the costal and crural regions. Differences in SDH activity and cross-sectional area were noted, however, between fiber populations located on the abdominal and thoracic sides of the costal region. Both type I and II fibers on the abdominal side of the costal diaphragm were larger and more oxidative than comparable fibers on the thoracic side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号