首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Parasitism is a life strategy that has repeatedly evolved within the Florideophyceae. Historically, the terms adelphoparasite and alloparasite have been used to distinguish parasites based on the relative phylogenetic relationship of host and parasite. However, analyses using molecular phylogenetics indicate that nearly all red algal parasites infect within their taxonomic family, and a range of relationships exist between host and parasite. To date, all investigated adelphoparasites have lost their plastid, and instead, incorporate a host‐derived plastid when packaging spores. In contrast, a highly reduced plastid lacking photosynthesis genes was sequenced from the alloparasite Choreocolax polysiphoniae. Here we present the complete Harveyella mirabilis plastid genome, which has also lost genes involved in photosynthesis, and a partial plastid genome from Leachiella pacifica. The H. mirabilis plastid shares more synteny with free‐living red algal plastids than that of C. polysiphoniae. Phylogenetic analysis demonstrates that C. polysiphoniae, H. mirabilis, and L. pacifica form a robustly supported clade of parasites, which retain their own plastid genomes, within the Rhodomelaceae. We therefore transfer all three genera from the exclusively parasitic family, Choreocolacaceae, to the Rhodomelaceae. Additionally, we recommend applying the terms archaeplastic parasites (formerly alloparasites), and neoplastic parasites (formerly adelphoparasites) to distinguish red algal parasites using a biological framework rather than taxonomic affiliation with their hosts.  相似文献   

2.
Goff LJ  Coleman AW 《The Plant cell》1995,7(11):1899-1911
The transfer of a nucleus into a cytoplasm of a genetically foreign cell and its subsequent multiplication in the cytoplasm of this cell characterize most parasitic red algal species and their interactions with specific red algal hosts. Nuclei enter the host's cytoplasm upon cell fusion of parasite and host cell; here, they replicate, are spread to contiguous host cells, and ultimately are packaged into spores that reinfect other host thalli. In this study, we examined whether the proplastids and mitochondria that occur in these red algal adelphoparasites are acquired from their host or whether they are unique to the parasite and are brought into the host along with the parasite nucleus. To establish their origins and fates, plastid and mitochondrial restriction fragment length polymorphisms (RFLPs) of parasite cells were compared with those of their host plastid and mitochondrial DNA in three host and parasite pairs. For plastids, no RFLP differences were found between hosts and parasites, supporting an earlier conclusion, based on microscopic studies, that the proplastids of parasites are acquired from their hosts. For mitochondria, characteristic RFLP differences were detected between host and parasite for two of the pairs of species but not for the third. Evidence of the evolutionary difference between hosts and their parasites was shown by RFLP differences between nuclear ribosomal repeat regions.  相似文献   

3.
Parasitic red algae are an interesting system for investigating the genetic changes that occur in parasites. These parasites have evolved independently multiple times within the red algae. The functional loss of plastid genomes can be investigated in these multiple independent examples, and fine-scale patterns may be discerned. The only plastid genomes from red algal parasites known so far are highly reduced and missing almost all photosynthetic genes. Our study assembled and annotated plastid genomes from the parasites Janczewskia tasmanica and its two Laurencia host species (Laurencia elata and one unidentified Laurencia sp. A25) from Australia and Janczewskia verruciformis, its host species (Laurencia catarinensis), and the closest known free-living relative (Laurencia obtusa) from the Canary Islands (Spain). For the first time we show parasitic red algal plastid genomes that are similar in size and gene content to free-living host species without any gene loss or genome reduction. The only exception was two pseudogenes (moeB and ycf46) found in the plastid genome of both isolates of J. tasmanica, indicating potential for future loss of these genes. Further comparative analyses with the three highly reduced plastid genomes showed possible gene loss patterns, in which photosynthetic gene categories were lost followed by other gene categories. Phylogenetic analyses did not confirm monophyly of Janczewskia, and the genus was subsumed into Laurencia. Further investigations will determine if any convergent small-scale patterns of gene loss exist in parasitic red algae and how these are applicable to other parasitic systems.  相似文献   

4.
Over 100 species of red algae have been described as parasites on other red algae, but the majority show some degree of pigmentation. This raises the question of their parasitic status, especially their abilities to photosynthesize and their dependence on their host for fixed carbon. Are they considered parasites only based on morphological characters, for example, reduced size and secondary pit connection to the host? Translocation of nutrients from host to parasite have been shown for very few red algal parasites, and these were mostly unpigmented. This study investigated three pigmented red algal parasites (Rhodophyllis parasitica, Vertebrata aterrimophila and Pterocladiophila hemisphaerica) from New Zealand. We quantified their chlorophyll a content and also measured their PSII capacity using PAM fluorometry. All three parasites contained chlorophyll a. The parasites Rhodophyllis parasitica and Vertebrata aterrimophila were not able to photosynthesize and must therefore be fully nutritional dependent on their host. The parasite Pterocladiophila hemisphaerica was able to photosynthesize independently, but based on molecular characteristics we suggest that it relies on the host plastid to do photosynthesis. Our results support the parasitic status of all three species and highlights the necessity of more studies investigating the differences in host dependency in red algal parasites.  相似文献   

5.
In several groups of parasites including insect, flowering plant, fungal, and red algal parasites, morphological similarities of the parasites and their specific hosts have led to hypotheses that these parasites evolved from their hosts. But these conclusions have been criticized because the morphological features shared by parasite and host may be the result of convergent evolution. In this study, we examine the hypothesis, originally put forth by Setchell, that adelphoparasitic red algae, that is, parasitic red algae that are morphologically very similar to their hosts, evolved from their specific red algal hosts. Rather than comparing morphological features of parasites and hosts, small-subunit 18S nuclear ribosomal DNA and the internal transcribed spacer regions (ITSs) of the nuclear ribosomal repeat are compared for five parasites, their hosts, and related nonhosts from four red algal orders. These comparisons reveal that each of these adelphoparasites has evolved either directly from the host on which it is currently found, or it evolved from some other taxon that is closely related to the modern host. The parasites Gardneriella tuberifera, Rhodymeniocolax botryoides, and probably Gracilariophila oryzoides evolved from their respective hosts Sarcodiotheca gaudichaudii, Rhodymenia pacifica, and Gracilariopsis lemaneiformis, respectively. The parasite Faucheocolax attenuata evolved from either Fauchea laciniata or Fauchea fryeana and subsequently radiated onto the other host species. Presently this parasite is found on both hosts. Lastly, some parasitic genera such as Plocamiocolax are polyphyletic in their origins. A species of Plocamiocolax from an Antarctic Plocamium cartilagineum appears to have evolved from its host whereas the common Plocamiocolax pulvinata that occurs along the west coast of North America likely evolved from Plocamium violaceum and radiated secondarily onto its present day host, Plocamium cartilagineum.  相似文献   

6.

Background  

Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle.  相似文献   

7.
Secondary pit connections are common between cells of hosts and parasites in the widespread phenomenon of red algal parasitism. The DNA-specific fluorochrome 4′,-6-diamidino-2-phenylindole (DAPI) reveals that in host-parasite secondary pit connection (SPC) formation between the parasitic red alga Choreocolax polysiphoniae and its host Polysiphonia confusa, a nucleus and other cytoplasmic components of the parasite are delivered into the cytoplasm of a host cell. Host cells receive large numbers of parasite nuclei and these, apparently arrested in G1, are maintained intact in host cells for periods of several weeks. Within these enlarged, differentiated cells, starch accumulates and cytoplasmic organelles proliferate as the central vacuole decreases in size. Host nuclear DNA synthesis is stimulated in the infected host cell, resulting in an increase in the number of host nuclei, or an increase in DNA in each of the existing host nuclei (i.e. somatic polyploidy). Occasionally, infected host cells will recommence division and engender a new host branch. Microspectrofluorometry of nuclear DNA quantitatively confirms not only the identity and transfer of parasite nuclei to host cells, but also the transfer of parasite nuclei to other parasite cells. Measurements also reveal that the single nucleus of Choreocolax becomes progressively more polyploid as cells become larger and more highly differentiated. Secondary pit connection formation between Choreocolax and Polysiphonia provides the mechanism for the transfer of parasite genetic information (via the parasite nucleus and cytoplasm) into the host. The parasite nuclei may thereby control and redirect the physiology of the host for the benefit of the parasite.  相似文献   

8.
In response to a comment in this issue on our proposal of new terminology to distinguish red algal parasites, we clarify a few key issues. The terms adelphoparasite and alloparasite were previously used to identify parasites that infected close or distant relatives. However, most red algal parasites have only been studied morphologically, and molecular tools have shown that these binary terms do a poor job at representing the range of parasite–host relationships. We recognize the need to clarify inferred misconceptions that appear to be drawing from historical terminology to contaminate our new definitions. We did not intend to replace the term adelphoparasite with neoplastic parasites and the term alloparasites with archaeplastic parasites. Rather, we seek to establish new terms for discussing red algal parasites, based on the retention of a native plastid, a binary biological trait that is relatively easy to identify using modern methods and has biological implications for the interactions between a parasite and its host. The new terminology can better account for the spectrum of relationships and developmental patterns found among the many independently evolved red algal parasites, and it is intended to inspire new research, particularly the role of plastids in the survival and evolution of red algal parasites.  相似文献   

9.
We sequenced to completion the circular plastid genome of the red alga Gracilaria tenuistipitata var. liui. This is the first plastid genome sequence from the subclass Florideophycidae (Rhodophyta). The genome is composed of 183,883 bp and contains 238 predicted genes, including a single copy of the ribosomal RNA operon. Comparisons with the plastid genome of Porphyra pupurea reveal strong conservation of gene content and order, but we found major genomic rearrangements and the presence of coding regions that are specific to Gracilaria. Phylogenetic analysis of a data set of 41 concatenated proteins from 23 plastid and two cyanobacterial genomes support red algal plastid monophyly and a specific evolutionary relationship between the Florideophycidae and the Bangiales. Gracilaria maintains a surprisingly ancient gene content in its plastid genome and, together with other Rhodophyta, contains the most complete repertoire of plastid genes known in photosynthetic eukaryotes.Supplementary material () is available for this article.[Reviewing Editor: Dr. W. Ford Doolittle]  相似文献   

10.

Background  

Malaria kills more people worldwide than all inherited human genetic disorders combined. To characterize how the parasites causing this disease adapt to different host environments, we compared the evolutionary genomics of two distinct groups of malaria pathogens in order to identify critical properties associated with infection of different hosts: those parasites infecting hominids (Plasmodium falciparum and P. reichenowi) versus parasites infecting rodent hosts (P. yoelii yoelii, P. berghei, and P. chabaudi). Adaptation by the parasite to its host is likely highly critical to the evolution of these species.  相似文献   

11.
Within‐host interactions between co‐infecting parasites can significantly influence the evolution of key parasite traits, such as virulence (pathogenicity of infection). The type of interaction is expected to predict the direction of selection, with antagonistic interactions favouring more virulent genotypes and synergistic interactions less virulent genotypes. Recently, it has been suggested that virulence can further be affected by the genetic identity of co‐infecting partners (G × G interactions), complicating predictions on disease dynamics. Here, we used a natural host–parasite system including a fish host and a trematode parasite to study the effects of G × G interactions on infection virulence. We exposed rainbow trout (Oncorhynchus mykiss) either to single genotypes or to mixtures of two genotypes of the eye fluke Diplostomum pseudospathaceum and estimated parasite infectivity (linearly related to pathogenicity of infection, measured as coverage of eye cataracts) and relative cataract coverage (controlled for infectivity). We found that both traits were associated with complex G × G interactions, including both increases and decreases from single infection to co‐infection, depending on the genotype combination. In particular, combinations where both genotypes had low average infectivity and relative cataract coverage in single infections benefited from co‐infection, while the pattern was opposite for genotypes with higher performance. Together, our results show that infection outcomes vary considerably between single and co‐infections and with the genetic identity of the co‐infecting parasites. This can result in variation in parasite fitness and consequently impact evolutionary dynamics of host–parasite interactions.  相似文献   

12.
Parasitic red algae grow only on other red algae and have over 120 described species. Developmental studies in red algal parasites are few, although they have shown that secondary pit connections formed between parasite and host and proposed that this was an important process in successful parasitism. Furthermore, it was recorded that the transfer of parasite nuclei by these secondary pit connections led to different host cell effects. We used developmental studies to reconstruct early stages and any host cell effects of a parasite on Vertebrata aterrima. A mitochondrial marker (cox1) and morphological observations (light and fluorescence microscopy) were used to describe this new red algal parasite as Vertebrata aterrimophila sp. nov. Early developmental stages show that a parasite spore connects via secondary pit connections with a pericentral host cell after cuticle penetration. Developmental observations revealed a unique connection cell that grows into a ‘trunk-like’ structure. Host cell transformation after infection by the parasite included apparent increases in both carbohydrate concentrations and nuclear size, as well as structural changes. Analyses of molecular phylogenies and reproductive structures indicated that the closest relative of V. aterrimophila is its host, V. aterrima. Our study shows a novel developmental parasite stage (‘trunk-like’ cell) and highlights the need for further developmental studies to investigate the range of developmental patterns and host effects in parasitic red algae.  相似文献   

13.
Identification of the origin of parasites of nonindigenous species (NIS) can be complex. NIS may introduce parasites from their native range and acquire parasites from within their invaded range. Determination of whether parasites are non‐native or native can be complicated when parasite genera occur within both the NIS’ native range and its introduced range. We explored potential for spillover and spillback of lung parasites infecting Burmese pythons (Python bivittatus) in their invasive range (Florida). We collected 498 indigenous snakes of 26 species and 805 Burmese pythons during 2004–2016 and examined them for lung parasites. We used morphology to identify three genera of pentastome parasites, Raillietiella, a cosmopolitan form, and Porocephalus and Kiricephalus, both New World forms. We sequenced these parasites at one mitochondrial and one nuclear locus and showed that each genus is represented by a single species, R. orientalis, P. crotali, and K. coarctatus. Pythons are host to R. orientalis and P. crotali, but not K. coarctatus; native snakes are host to all three species. Sequence data show that pythons introduced R. orientalis to North America, where this parasite now infects native snakes. Additionally, our data suggest that pythons are competent hosts to P. crotali, a widespread parasite native to North and South America that was previously hypothesized to infect only viperid snakes. Our results indicate invasive Burmese pythons have affected parasite‐host dynamics of native snakes in ways that are consistent with parasite spillover and demonstrate the potential for indirect effects during invasions. Additionally, we show that pythons have acquired a parasite native to their introduced range, which is the initial condition necessary for parasite spillback.  相似文献   

14.
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase – a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.  相似文献   

15.
Morphological similarities of many parasites and their hosts have led to speculation that some groups of plant, animal, fungal, and algal parasites may have evolved directly from their hosts. These parasites, which have been termed adelphoparasites in the botanical literature, and more recently, agastoparasites in the insect literature, may evolve monophyletically from one host and radiate secondarily to other hosts or, these parasites may arise polyphyletically, each arising from its own host. In this study we compare the internal transcribed spacer regions of the nuclear ribosomal repeats of species and formae specialis (host races) included in the red algal parasite genus Asterocolax with its hosts, which all belong to the Phycodrys group of the Delesseriaceae and with closely related nonhost taxa of the Delesseriaceae. These analyses reveal that species of Asterocolax have evolved polyphyletically. Asterocolax erythroglossi from the North Atlantic host Erythroglossum laciniatum appears to have evolved from its host, whereas taxa included in the north Pacific species Asterocolax gardneri have had two independent origins. Asterocolax gardneri from the host Polyneura latissima probably arose directly from this host. In contrast, all other A. gardneri formae specialis appear to have originated from either Phycodrys setchellii or P. isabelliae and radiated secondarily onto other closely related taxa of the Phycodrys group, including Nienburgia andersoniana and Anisocladella pacifica. Gamete crossing experiments confirm that A. gardneri from each host is genetically isolated from both its host, and from other A. gardneri and their hosts. Cross-infection experiments reveal that A. gardneri develops normally only on its natural host, although some abberrant growth may occur on alternate hosts. The ability of red algal parasites to radiate secondarily to other red algal taxa, where they may become isolated genetically and speciate, suggests that this process of speciation is not a “genetic dead end” but one that may give rise to related clusters of parasite species.  相似文献   

16.

Background  

Loss of photosynthesis has occurred independently in several plant and algal lineages, and represents a major metabolic shift with potential consequences for the content and structure of plastid genomes. To investigate such changes, we sequenced the complete plastid genome of the parasitic, non-photosynthetic green alga, Helicosporidium.  相似文献   

17.
This review offers a snapshot of our current understanding of the origin, biology, and metabolic significance of the non-photosynthetic plastid organelle found in apicomplexan parasites. These protists are of considerable medical and veterinary importance world-wide, Plasmodium spp., the causative agent of malaria being foremost in terms of human disease. It has been estimated that approximately 8% of the genes currently recognized by the malarial genome sequencing project (now nearing completion) are of bacterial/plastid origin. The bipartite presequences directing the products of these genes back to the plastid have provided fresh evidence that secondary endosymbiosis accounts for this organelle's presence in these parasites. Mounting phylogenetic evidence has strengthened the likelihood that the plastid originated from a red algal cell. Most importantly, we now have a broad understanding of several bacterial metabolic systems confined within the boundaries of the parasite plastid. The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis. Some aspects of heme biosynthesis also might take place there. Retention of the plastid's relict genome and its still ill-defined capacity to participate in protein synthesis might be linked to an important house-keeping process, i.e. guarding the type II fatty acid biosynthetic pathway from oxidative damage. Fascinating observations have shown the parasite plastid does not divide by constriction as in typical plants, and that plastid-less parasites fail to thrive after invading a new cell. The modes of plastid DNA replication within the phylum also have provided surprises. Besides indicating the potential of the parasite plastid for therapeutic intervention, this review exposes many gaps remaining in our knowledge of this intriguing organelle. The rapid progress being made shows no sign of slackening.  相似文献   

18.
The determinants of host specificity, which are poorly understood in red algal parasites, were studied in the red algal parasites Bostrychiocolax australis Zuccarello et West and Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita. Culture studies were performed to determine host range, sites of host resistance, and genetics of transmission of resistance. Both species parasitize Bostrychia radicans (Montagne) Montagne, whereas Bostrychiocolax australis also parasitizes Bostrychia moritziana (Sonder ex Kützing) J. Agardh and Stictosiphonia kelanensis (Grunow ex Post) R. J. King et Puttock. Isolates of B. radicans resistant to both parasites were found worldwide, often within the same population as susceptible isolates. On resistant Bostrychia species and isolates, specificity was manifested at three stages: 1) host penetration, in which the spore germ peg failed to penetrate the host cuticle/wall; 2) parasite–host cell fusion, in which the fusion cell died and the parasite died; and 3) growth, in which parasites grew but soon died; parasites rarely reproduced and infections did not continue in culture. Resistance to parasite infection was usually transmitted as a dominant trait and did not segregate as a single locus during meiosis. In certain crosses, transmission of resistance was non-mendelian.  相似文献   

19.
The plastid genome of Trifolium subterraneum is 144,763 bp, about 20 kb longer than those of closely related legumes, which also lost one copy of the large inverted repeat (IR). The genome has undergone extensive genomic reconfiguration, including the loss of six genes (accD, infA, rpl22, rps16, rps18, and ycf1) and two introns (clpP and rps12) and numerous gene order changes, attributable to 14–18 inversions. All endpoints of rearranged gene clusters are flanked by repeated sequences, tRNAs, or pseudogenes. One unusual feature of the Trifolium subterraneum genome is the large number of dispersed repeats, which comprise 19.5% (ca. 28 kb) of the genome (versus about 4% for other angiosperms) and account for part of the increase in genome size. Nine genes (psbT, rbcL, clpP, rps3, rpl23, atpB, psbN, trnI-cau, and ycf3) have also been duplicated either partially or completely. rpl23 is the most highly duplicated gene, with portions of this gene duplicated six times. Comparisons of the Trifolium plastid genome with the Plant Repeat Database and searches for flanking inverted repeats suggest that the high incidence of dispersed repeats and rearrangements is not likely the result of transposition. Trifolium has 19.5 kb of unique DNA distributed among 160 fragments ranging in size from 30 to 494 bp, greatly surpassing the other five sequenced legume plastid genomes in novel DNA content. At least some of this unique DNA may represent horizontal transfer from bacterial genomes. These unusual features provide direction for the development of more complex models of plastid genome evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Apicomplexan parasites commonly contain a unique, non-photosynthetic plastid-like organelle termed the apicoplast. Previous analyses of other plastid-containing organisms suggest that apicoplasts were derived from a red algal ancestor. In this report, we present an extensive phylogenetic study of apicoplast origins using multiple previously reported apicoplast sequences as well as several sequences recently reported. Phylogenetic analysis of amino acid sequences was used to determine the evolutionary origin of the organelle. A total of nine plastid genes from 37 species were incorporated in our study. The data strongly support a green algal origin for apicoplasts and Euglenozoan plastids. Further, the nearest green algae lineage to the Apicomplexans is the parasite Helicosporidium, suggesting that apicoplasts may have originated by lateral transfer from green algal parasite lineages. The results also substantiate earlier findings that plastids found in Heterokonts such as Odontella and Thalassiosira were derived from a separate secondary endosymbiotic event likely originating from a red algal lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号