首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Catechol occurs as an intermediate in the metabolism of both benzoate and phenol by strains of Pseudomonas putida. During growth at the expense of benzoate, catechol is cleaved ortho (1,2-oxygenase) and metabolized via the beta-ketoadipate pathway; during growth at the expense of phenol or cresols, the catechol or substituted catechols formed are metabolized by a separate pathway following meta (2,3-oxygenase) cleavage of the aromatic ring of catechol. It is possible to explain the mutually exclusive occurrence of the meta and ortho pathway enzymes in phenol- and benzoate-grown cells of P. putida on the basis of differences in the mode of regulation of these two pathways. By use of both nonmetabolizable inducers and blocked mutants, gratuitous synthesis of some of the meta pathway enzymes was obtained. All four enzymes of the meta pathway are induced by the primary substrate, cresol or phenol, or its analogue. Three enzymes of the ortho pathway that catalyze the conversion of catechol to beta-ketoadipate enol-lactone are induced by cis,cis-muconate, produced from catechol by 1,2-oxygenase-mediated cleavage. Observations on the differences in specificity of induction and function of the two pathways suggest that they are not really either tangential or redundant. The meta pathway serves as a general mechanism for catabolism of various alkyl derivatives of catechol derived from substituted phenolic compounds. The ortho pathway is more specific and serves primarily in the catabolism of precursors of catechol and catechol itself.  相似文献   

2.
Most of the known naphthalene biodegradation plasmids determine the process of naphthalene degradation via salicylate and catechol using the meta pathway of catechol degradation. However, Pseudomonas putida strains with plasmids pBS2, pBS216, pBS217 and NPL-1 exert no activity of the enzymes involved in the meta pathway of catechol degradation. When 2-methylnaphthalene was added to the medium as a sole carbon source, mutants growing on this compound were isolated in the strains with the studied plasmids. Plasmid localization of the mutations was established using conjugation transfer as well as by obtaining spontaneous variants that had lost the ability to grow on 2-methylnaphthalene; the respective plasmid mutants were referred to as pBS101, pBS102, pBS103 and pBS105. The strains with the mutant plasmids were tested for the activity of the key enzymes involved in naphthalene catabolism and the activity of catechol-2,3-dioxygenase was found. The data allow one to arrive at the conclusion that plasmids pBS2, pBS216, pBS217 and NPL-1 contain silent genes for the meta pathway of catechol degradation, which are activated by the respective mutations.  相似文献   

3.
Pseudomonas putida NCIB 10015 metabolizes phenol and the cresols (methylphenols) by the meta pathway and metabolizes benzoate by the ortho pathway. Growth on catechol, an intermediate in the metabolism of both phenol and benzoate, induces both ortho and meta pathways; growth on 3- or 4-methylcatechols, intermediates in the metabolism of the cresols, induces only the meta pathway to a very limited degree. Addition of catechol at a growth-limiting rate induces virtually no meta pathway enzymes, but high levels of ortho pathway enzymes. The role of catechol and the methylcatechols as inducers is discussed. A method is described for assaying low levels of catechol 1,2-oxygenase in the presence of high levels of catechol 2,3-oxygenase and vice versa.  相似文献   

4.
Pseudomonas putida PMD-1 dissimilates naphthalene (Nah), salicylate (Sal), and benzoate (Ben) via catechol which is metabolized through the meta (or alpha-keto acid) pathway. The ability to utilize salicylate but not naphthalene was transferred from P. putida PMD-1 to several Pseudomonas species. Agarose gel electrophoresis of deoxyribonucleic acid (DNA) from PMD-1 and Sal+ exconjugants indicated that a plasmid (pMWD-1) of 110 megadaltons is correlated with the Sal+ phenotype; restriction enzyme analysis of DNA from Sal+ exconjugants indicated that plasmid pMWD-1 was transmitted intact. Enzyme analysis of Sal+ exconjugants demonstrated that the enzymes required to oxidize naphthalene to salicylate are absent, but salicylate hydroxylase and enzymes of the meta pathway are present. Thus, naphthalene conversion to salicylate requires chromosomal genes, whereas salicylate degradation is plasmid encoded. Comparison of restriction digests of plasmid pMWD-1 indicated that it differs considerably from the naphthalene and salicylate degradative plasmids previously described in P. putida.  相似文献   

5.
Catechol oxygenases of Pseudomonas putida mutant strains.   总被引:4,自引:4,他引:0       下载免费PDF全文
Investigation of a mutant strain of Pseudomonas putida NCIB 10015, strain PsU-E1, showed that it had lost the ability to produce catechol 1,2-oxygenase after growth with catechol. Additional mutants of both wild-type and mutant strains PsU-E1 have been isolated that grow on catechol, but not on benzoate, yet still form a catechol 1,2-oxygenase when exposed to benzoate. These findings indicate that either there are separately induced catechol 1,2-oxygenase enzymes, or that there are two separate inducers for the one catechol 1,2-oxygenase enzyme. Comparisons of the physical properties of the catechol 1,2-oxygenases formed in response to the two different inducers show no significant differences, so it is more probable that the two proteins are the product of the same gene. Sufficient enzymes of the ortho-fission pathway are induced in the wild-type strain by the initial substrate benzoate (or an early intermediate) to commit that substrate to metabolism by ortho fission exclusively. A mechanism exists that permits metabolism of catechol by meta fission if the ortho-fission enzymes are unable to prevent its intracellular accumulation.  相似文献   

6.
New Planococcus sp. strain S5 able to grow on salicylate or benzoate as sole carbon source was isolated from activated sludge adapted to sodium salicylate degradation. S5 was determined to be a strictly aerobic, gram-positive, catalase positive, oxidase negative, non-motile, non-spore forming coccus. The strain harboured a plasmid, named pLS5. The S5 strain when grown on salicylate expressed both catechol 1,2-dioxygenase and catechol 2,3-dioxygenase activities and degraded this substrate by both the ortho and meta pathways while grown on benzoate expressed only catechol 1,2-dioxygenase activity. Curing of the plasmid from the strain showed that plasmid pLS5 was involved in salicylate degradation by the meta pathway.  相似文献   

7.
The enzymes of naphthalene metabolism are induced in Pseudomonas putida ATCC 17484, PpG7, NCIB 9816, and PG and in Pseudomonas sp. ATCC 17483 during growth on naphthalene or salicylate; 2-aminobenzoate is a gratuitous inducer of these enzymes. The meta-pathway enzymes of catechol metabolism are induced in ATCC 17483 and PPG7 during growth on naphthalene or salicylate or during growth in the presence of 2-aminobenzoate, but in ATCC 17484 and NCIB 9816 the ortho-pathway enzymes of catechol metabolism are induced during growth on naphthalene or salicylate. 2-Aminobenzoate does not induce any enzymes of catechol metabolism in the latter two organisms. In Pseudomonas PG the meta-pathway enzymes are present at high levels under all conditions of growth, but this organism and PpG7 can induce ortho-pathway enzymes during naphthalene or salicylate metabolism. Salicylate appears to be the inducer of the enzymes of naphthalene metabolism in all of the organisms studied and, where they are inducible, of the meta-pathway enzymes, but the properties of Pseudomonas PG suggest that separate, regulatory systems may exist.  相似文献   

8.
The regulation of naphthalene metabolism in pseudomonads   总被引:20,自引:0,他引:20  
The activities of three enzymes specifically involved in naphthalene metabolism have been measured in Pseudomonas NCIB 9816 after induction with salicylate or 2-hydroxybenzyl alcohol. The results indicate that naphthalene oxygenase, 1,2-dihydroxynaphthalene oxygenase and salicylaldehyde dehydrogenase are induced coordinately and it is suggested that all of the enzymes converting naphthalene to salicylate are regulated coordinately.  相似文献   

9.
A strain of Pseudomonas paucimobilis (strain Q1) capable of utilizing biphenyl was isolated from soil. This strain grew not only on substituted biphenyls, but also on salicylate, xylene or toluene or both (xylene/toluene), and substituted benzoates. Evidence is presented that the catabolism of biphenyl, xylene/toluene, and salicylate is regulated by a common unit in this strain. The catabolism of biphenyl, xylene/toluene, and salicylate is interrelated, since benzoate and toluate are common metabolic intermediates of biphenyl and xylene/toluene, and salicylate is produced from 2-hydroxybiphenyl (o-phenylphenol). All the oxidative enzymes of the biphenyl, xylene/toluene, and salicylate degradative pathways were induced when the cells were grown on either biphenyl, xylene/toluene or salicylate. The P. paucimobilis Q1 cells showed induction of the meta-cleavage enzymes of both 2,3-dihydroxybiphenyl and catechol. Biphenyl-negative derivatives of strain Q1 were simultaneously rendered xylene/toluene and salicylate negative, whereas reversion to the biphenyl-positive character of such derivatives invariably led to a xylene/toluene- and salicylate-positive phenotype. Growth of the P. paucimobilis Q1 cells with benzoate as a sole carbon source allowed the induction of only the ortho pathway enzymes, suggesting that biphenyl, xylene/toluene, or salicylate specifically induced the meta pathway enzymes for the oxidative degradation of these compounds.  相似文献   

10.
Three naphthalene-degrading strains were isolated from compost, characterized by morphological and physiological properties and differentiated by 16S rDNA RFLP. During growth on naphthalene, Pseudomonas aeruginosa 2NR produced ortho catechol pathway intermediates and gentisic acid. The ability to accumulate and degrade gentisic acid shows that Ps. aeruginosa 2NR has a different salicylate pathway to that of the intensely studied Ps. putida NCIB 9816. Molecular analysis showed the presence both of genes of the upper naphthalene pathway and genes of the ortho and meta catechol pathways. The insertion of nagH and nagG, coding for salicylate 5-hydroxylase in Pseudomonas sp. U2, was absent in Ps. aeruginosa 2NR, as in Ps. putida NCIMB 9816.  相似文献   

11.
Pseudomonas sp. strains C4, C5, and C6 utilize carbaryl as the sole source of carbon and energy. Identification of 1-naphthol, salicylate, and gentisate in the spent media; whole-cell O2 uptake on 1-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate, and gentisate; and detection of key enzymes, viz, carbaryl hydrolase, 1-naphthol hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, and gentisate dioxygenase, in the cell extract suggest that carbaryl is metabolized via 1-naphthol, 1,2-dihydroxynaphthalene, and gentisate. Here, we demonstrate 1-naphthol hydroxylase and 1,2-dihydroxynaphthalene dioxygenase activities in the cell extracts of carbaryl-grown cells. 1-Naphthol hydroxylase is present in the membrane-free cytosolic fraction, requires NAD(P)H and flavin adenine dinucleotide, and has optimum activity in the pH range 7.5 to 8.0. Carbaryl-degrading enzymes are inducible, and maximum induction was observed with carbaryl. Based on these results, the proposed metabolic pathway is carbaryl --> 1-naphthol --> 1,2-dihydroxynaphthalene --> salicylaldehyde --> salicylate --> gentisate --> maleylpyruvate.  相似文献   

12.
Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is, acenaphthylene → naphthalene-1,8-dicarboxylic acid → 1-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol → cis,cis-muconic acid.  相似文献   

13.
E Grund  C Knorr    R Eichenlaub 《Applied microbiology》1990,56(5):1459-1464
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

14.
Pseudomonas sp. strain PP2 isolated in our laboratory efficiently metabolizes phenanthrene at 0.3% concentration as the sole source of carbon and energy. The metabolic pathways for the degradation of phenanthrene, benzoate and p-hydroxybenzoate were elucidated by identifying metabolites, biotransformation studies, oxygen uptake by whole cells on probable metabolic intermediates, and monitoring enzyme activities in cell-free extracts. The results obtained suggest that phenanthrene degradation is initiated by double hydroxylation resulting in the formation of 3,4-dihydroxyphenanthrene. The diol was finally oxidized to 2-hydroxymuconic semialdehyde. Detection of 1-hydroxy-2-naphthoic acid, alpha-naphthol, 1,2-dihydroxy naphthalene, and salicylate in the spent medium by thin layer chromatography; the presence of 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-2,3-dioxygenase activity in the extract; O(2) uptake by cells on alpha-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate and catechol; and no O(2) uptake on o-phthalate and 3,4-dihydroxybenzoate supports the novel route of metabolism of phenanthrene via 1-hydroxy-2-naphthoic acid --> [alpha-naphthol] --> 1,2-dihydroxy naphthalene --> salicylate --> catechol. The strain degrades benzoate via catechol and cis,cis-muconic acid, and p-hydroxybenzoate via 3,4-dihydroxybenzoate and 3-carboxy- cis,cis-muconic acid. Interestingly, the culture failed to grow on naphthalene. When grown on either hydrocarbon or dextrose, the culture showed good extracellular biosurfactant production. Growth-dependent changes in the cell surface hydrophobicity, and emulsification activity experiments suggest that: (1) production of biosurfactant was constitutive and growth-associated, (2) production was higher when cells were grown on phenanthrene as compared to dextrose and benzoate, (3) hydrocarbon-grown cells were more hydrophobic and showed higher affinity towards both aromatic and aliphatic hydrocarbons compared to dextrose-grown cells, and (4) mid-log-phase cells were significantly (2-fold) more hydrophobic than stationary phase cells. Based on these results, we hypothesize that growth-associated extracellular biosurfactant production and modulation of cell surface hydrophobicity plays an important role in hydrocarbon assimilation/uptake in Pseudomonas sp. strain PP2.  相似文献   

15.
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

16.
Pseudomonas sp. strains C4, C5, and C6 utilize carbaryl as the sole source of carbon and energy. Identification of 1-naphthol, salicylate, and gentisate in the spent media; whole-cell O2 uptake on 1-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate, and gentisate; and detection of key enzymes, viz, carbaryl hydrolase, 1-naphthol hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, and gentisate dioxygenase, in the cell extract suggest that carbaryl is metabolized via 1-naphthol, 1,2-dihydroxynaphthalene, and gentisate. Here, we demonstrate 1-naphthol hydroxylase and 1,2-dihydroxynaphthalene dioxygenase activities in the cell extracts of carbaryl-grown cells. 1-Naphthol hydroxylase is present in the membrane-free cytosolic fraction, requires NAD(P)H and flavin adenine dinucleotide, and has optimum activity in the pH range 7.5 to 8.0. Carbaryl-degrading enzymes are inducible, and maximum induction was observed with carbaryl. Based on these results, the proposed metabolic pathway is carbaryl → 1-naphthol → 1,2-dihydroxynaphthalene → salicylaldehyde → salicylate → gentisate → maleylpyruvate.  相似文献   

17.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C120) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C230) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.  相似文献   

18.
The growth of Pseudomonas fluorescens 16N2 on naphthalene was accompanied with accumulation of salicylate in the culture medium and induction of gentisate 1,2-dioxygenase and catechol 1,2-dioxygenase. The transformation of anthracene by the cells growing on hexadecane led to the formation of 3-hydroxy-2-naphthoate and salicylate. Pathways for naphthalene and anthracene degradation are proposed.  相似文献   

19.
The capacity of Pseudomonas putida PpG7 (ATCC 17,485) to grow on naphthalene, phenotype Nah(+), is lost spontaneously, and the frequency is increased by treatment with mitomycin C. The Nah(+) growth character can be transferred to cured or heterologous fluorescent pseudomonads lacking this capacity by conjugation, or between phage pf16-sensitive strains by transduction. After mutagenesis, strains can be selected with increased donor capacity in conjugation. Clones which use naphthalene grow on salicylate and carry catechol 2,3-oxygenase, the initial enzyme of the aromatic alpha-keto acid pathway, whereas cured strains grow neither on salicylate nor naphthalene and lack catechol 2,3-oxygenase, but retain catechol 1,2-oxygenase and the aromatic beta-keto adipate pathway enzymes.  相似文献   

20.
Bacterial strain M213 was isolated from a fuel oil-contaminated soil in Idaho, USA, by growth on naphthalene as a sole source of carbon, and was identified as Rhodococcus opacus M213 by 16S rDNA sequence analysis and growth on substrates characteristic of this species. M213 was screened for growth on a variety of aromatic hydrocarbons, and growth was observed only on simple 1 and 2 ring compounds. No growth or poor growth was observed with chlorinated aromatic compounds such as 2,4-dichlorophenol and chlorobenzoates. No growth was observed by M213 on salicylate, and M213 resting cells grown on naphthalene did not attack salicylate. In addition, no salicylate hydroxylase activity was detected in cell free lysates, suggesting a pathway for naphthalene catabolism that does not pass through salicylate. Enzyme assays indicated induction of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase on different substrates. Total DNA from M213 was screened for hybridization with a variety of genes encoding catechol dioxygenases, but hybridization was observed only with catA (encoding catechol 1,2-dioxygenase) from R. opacus 1CP and edoD (encoding catechol 2,3-dioxygenase) from Rhodococcus sp. I1. Plasmid analysis indicated the presence of two plasmids (pNUO1 and pNUO2). edoD hybridized to pNUO1, a very large (approximately 750 kb) linear plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号