首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Intraperitoneal administration to rats of D- or DL-alpha-hydrazinoimidazolylpropionic acid was found to produce a substantial inactivation of hepatic histidine ammonia-lyase (EC 4.3.1.3) in vivo. Proportional to this loss in enzyme activity was an impairment of the ability of treated rats to oxidize L-[ring-2-14C] histidine to 14CO2. Rats in which hepatic histidine ammonia-lyase activity was either depressed by DL-hydrazinoimidazolylproprionic acid injection or elevated by feeding a high protein diet displayed proportionately altered rates of 3H2O release into plasma water following L-[3-3H] histidine administration. Plasma L-histidine clearance following loading with this amino acid was similarly affected by these treatments. Administration of DL-alphal-hydrazinoimisazolylproprionic acid to rats was also found to inactivate non-specifically pyridoxal 5-phosphate enzymes in vivo; pyridoxine injection was found to reverse the DL-alpha-hydrazinoimidazolylproprionic acid-induced inactivation of hepatic aspartate aminotransferase (EC 2.6.1.1) in vivo, but not that of hepatic histidine ammonia-lyase. These findings demonstrate that histidine ammonia-lyase is the rate-limiting factor in L-histidine degradation in the rat. The potential usefulness of DL-hydrazinoimidazolylproprionic acid in the production of an animal model for histidinemia (hereditary histidine ammonia-lyase deficiency) is discussed.  相似文献   

2.
Administration of methionine sulfoximine (MSO) to rats and mice significantly decreased cerebral levels ofS-adenosyl-l-homocysteine (AdoHcy). Concurrent administration of methionine prevented this decrease and, when methionine was given alone, significantly elevated AdoHcy levels resulted in both species. Regionally, AdoHcy levels varied from 20 nmol/g in rat cerebellum and spinal cord to about 60 nmol/g in hypothalamus and midbrain. MSO decreased AdoHcy in all regions tested except striatum, midbrain, and spinal cord. AdoMet/AdoHcy ratios (methylation index) varied from 0.48 in hypothalamus to 2.4 in cerebellum, and MSO administration decreased these ratios in all regions except hypothalamus. AdoHcy hydrolase activity was lowest in hypothalamus, highest in brainstem and, generally, varied inversely with regional AdoHcy levels. MSO decreased AdoHcy hydrolase activity in all regions except hypothalamus and spinal cord. Cycloleucine administration resulted in significantly decreased levels of mouse brain AdoHcy, whereas the administration of dihydroxyphenylalanine (DOPA) failed to affect AdoHcy levels. It is concluded that (a) cerebral AdoHcy levels are more tightly regulated than are those of AdoMet after MSO administration, (b) slight fluctuations of AdoHcy levels may be important in regulating AdoHcy hydrolase activity and hence AdoHcy catabolism in vivo, (c) the AdoMet/AdoHcy ratio reflects the absolute AdoMet concentration rather than the transmethylation flux, (d) the decreased AdoMet levels in midbrain, cortex, and striatum after MSO with no corresponding decrease in AdoHcy suggest an enhanced AdoMet utilization, hence an increased transmethylation in the MSO preconvulsant state.Supported by USPHS, NINCDS grant NS-06294.  相似文献   

3.
The effects of thiouracil in correcting defects in folic acid function produced by B12 deficiency were studied. Addition of the thyroid inhibitor, thiouracil, to a low methionine diet containing B12, increased the oxidation of [2-14C]histidine to carbon dioxide, and increased liver folate levels. Addition of 10% pectin to the diet accentuated B12 deficiency as evidenced by a greatly decreased rate of histidine oxidation (0.19%) and an increased excretion of methylmalonic acid. Addition of thiouracil to the diet restored folate function as measured by increased histidine oxidation and increased liver folate levels similar to that produced by addition of methionine to a B12-deficient diet. Thiouracil decreased methylmalonate excretion, and increased hepatic levels of B12 in animals on both B12-deficient and -supplemented diets. Hepatic methionine synthase was increased by thiouracil, which may be the result of the elevated B12 levels. S-Adenosylmethionine and the enzyme methionine adenosyltransferase were also increased by thiouracil. Thus it is possible that the effect of thiouracil in increasing folate function consists both in the effect of thiouracil in decreasing levels of methylenetetrahydrofolate reductase, and also in its action in increasing S-adenosylmethionine which exerts a feedback inhibition of this enzyme.  相似文献   

4.
Intraperitoneal administration to rats of D- or DL-α-hydrazunoimidazolylpropionic acid was found to produce a substantial inactivation of hepatic histidine ammonia-lysase (EC 4.3.1.3) in vivo. Proportional to this loss in enzyme activity was an impairment of the ability of treated rats to oxidize l-[ring-2-14C] histidine to 14CO2. Rats in which hepatic histadine ammonia-lyase activity was either depressed by dl-hydrazunoimidazolylproprionic acid injection or elevated by feeding a high protein diet displayed proportionately altered rates of 3H2O release into plasma water following l-[3-H]histidine administration. Plasma l-histidine clearance following loading with this amino acid was similarly affected by these treatments. Administration of dl-α-hydrazinoimisazolyl-proprionic acid to rats was also found to inactivate non-specifically pyridoxal 5-phosphate enzymes in vivo; pyridoxine injection was found to reverse the dl-α-hydrazinoimidazolylproprionic acid-induced inactivation of hepatic aspartate aminotransferase (EC 2.6.1.1) in vivo, but not that of hepatic histidine ammonia-lyase. These findings demonstrate that histidine ammonia-lyase is the rate-limiting factor in l-histidine degradation in the rat. The potential usefulness of dl-hydrazinoimidazolylproprionic acid in the production of an animal model for histidinemia (hereditary histidine ammonia-lyase deficiency) is discussed.  相似文献   

5.
Formate is oxidized to CO2 in the rat by folate-dependent reactions. Nitrous oxide treatment inhibited hepatic methionine synthetase activity, reduced hepatic S-adenosyl-l-methionine (Ado-Met) and tetrahydrofolate (H4 folate) concentrations and decreased the rate of formate oxidation in the rat. The administration of methionine to nitrous oxide-treated rats increased hepatic Ado-Met concentrations and restored hepatic H4folate levels and formate oxidation to control values but did not reverse the inhibition of methionine synthetase. Positive correlations were observed between hepatic Ado-Met levels and H4folate concentrations and between hepatic H4folate concentrations and formate oxidation. These results suggest that alterations in hepatic H4folate concentrations may profoundly influence the oxidation of one-carbon compounds. They confirm the importance of the methionine synthetase reaction as a major source of regeneration of H4folate. These findings also indicate that methionine acts at a site other than the methionine synthetase reaction to restore hepatic H4folate concentrations and formate oxidation to control values in nitrous oxide-treated rats.  相似文献   

6.
Choline and C1 metabolism pathways intersect at the formation of methionine from homocysteine. Hepatic S-adenosylmethionine (AdoMet) concentrations are decreased in animals ingesting diets deficient in choline, and it has been suggested that this occurs because the availability of methionine limits AdoMet synthesis. If the above hypothesis is correct, changes in hepatic AdoMet concentrations should relate in some consistent manner to changes in hepatic methionine concentrations. Rats were fed on a choline-deficient or control diet for 1-42 days. Hepatic choline concentrations in control animals were 105 nmol/g, and decreased to 50% of control after the first 7 days on the choline-deficient diet. Hepatic methionine concentrations decreased by less than 20%, with most of this decrease occurring between days 3 and 7 of choline deficiency. Hepatic AdoMet concentrations decreased by 25% during the first week, and continued to decrease (in total, by over 60%) during each subsequent week during which animals consumed a choline-deficient diet. Hepatic S-adenosylhomocysteine (AdoHcy) concentrations increased by 50% when animals consumed a choline-deficient diet. AdoHcy is formed when AdoMet is utilized as a methyl donor. In summary, choline deficiency can deplete hepatic stores of AdoMet under dietary conditions that only minimally decrease the availability of methionine within liver. Thus decreased availability of methionine may not have been the only mechanism whereby choline deficiency lowers hepatic AdoMet concentrations. We suggest that increased utilization of AdoMet might also have occurred.  相似文献   

7.
This study deals with the effects of thyroidectomy and feeding thyroid powder on histidine and folic acid metabolism. Normal rats maintained on a soy protein diet, low in methionine but supplemented with vitamin B-12, oxidize approx. 10% of an injected dose of [2-14C]histidine in 3 h and excrete low levels of formiminoglutamic acid. Addition of methionine increases histidine oxidation to approx. 20%. The feeding of thyroid powder or the injection of high levels of thyroxine decreases histidine oxidation and increases formiminoglutamic acid excretion. Surgical thyroidectomy at weaning increases histidine oxidation to approx. 45% and, thus, resembles the effect of methionine in promoting histidine oxidation and decreasing formiminoglutamic acid excretion. The feeding of methionine to the thyroidectomized animal further increases histidine oxidation to 65%. The distribution of folate forms in the liver was determined by column chromatography following administration of a dose of tritiated folic acid. In the normal animal, tetrahydrofolate accounts for 38% of the total folate present. The feeding of methionine increases this to 48%, which is consistent with the observed increase in histidine metabolism. Thyroidectomy increases the percentage of tetrahydrofolate to 63% and the feeding of methionine further increases it to 68%. The percentage of tetrahydrofolate relative to total folate is in proportion to the observed rate of histidine metabolism. The action of thyroidectomy in increasing histidine oxidation may be accounted for by its effect in increasing the proportion of tetrahydrofolate.  相似文献   

8.
Four methionine analog inhibitors of methionine adenosyltransferase, the enzyme which catalyzes S-adenosylmethionine biosynthesis, were tested in cultured L1210 cells for their effects on cell growth, leucine incorporation, S-adenosylmethionine (AdoMet) formation and polyamine biosynthesis. The IC50 values were as follows: selenomethionine, 0.13 mM; L-2-amino-4-methoxy-cis-but-3-enoic acid (L-cis-AMB), 0.4 mM; cycloleucine, 5 mM and 2-aminobicyclo[2.1.1]hexane-2-carboxylic acid, 5 mM. At IC50 levels, the analogs significantly reduced AdoMet pools by approximately 50% while not similarly affecting leucine incorporation or polyamine biosynthesis. In combination with inhibitors of polyamine biosynthesis, growth inhibition was greatly increased with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase, but only slightly increased with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase. Overall, the data indicate that the methionine analogs, and particularly L-cis-AMB, seem to inhibit cell growth by interference with AdoMet biosynthesis. Since polyamine biosynthesis is not affected, the antiproliferative effect may be mediated through perturbations of certain transmethylation reactions.  相似文献   

9.
Because S-adenosylmethionine (AdoMet) is required by Pneumocystis carinii in vitro, Pneumocystis infection depletes plasma AdoMet of rats and humans, nicotine reduces AdoMet of guinea pig lungs, and smoking correlates with reduced episodes of Pneumocystis pneumonia (PCP) in AIDS patients, we tested the effect of nicotine treatment on PCP using a rat model. Intraperitoneal infusion of 400 microg of R-(+) nicotine kg(-1) h(-1) intraperitoneal for 21 days caused a 15-fold reduction in lung AdoMet although neither plasma nor liver were changed. Infusion of 4 and 400 microg kg(-1) h(-1) into immunosuppressed rats, beginning when rats were inoculated with P. carinii, caused 85 and 99.88% reductions, respectively, in P. carinii cysts at sacrifice 21 days later; P. carinii nuclei were reduced by 91.2 and >99.99%, respectively. This effect was reversed by concomitant administration of AdoMet with nicotine. Treatment with AdoMet alone increased infection intensity. We conclude that AdoMet is a critical and limiting nutrient for Pneumocystis thus can serve as a therapeutic target for PCP. Regarding the mechanism, nicotine treatment caused no change in rat lung activity of AdoMet synthesizing methionine ATP transferase activity nor was there any evidence of increased AdoMet utilization for methylation reactions. Except of a doubling of putrescine, nicotine treatment also did not change lung polyamine content. However, key polyamine anabolic and catabolic enzymes were upregulated, and there were corresponding changes in polyamine metabolic intermediates. We conclude that chronic nicotine treatment increases lung polyamine catabolic/anabolic cycling and/or excretion leading to increased AdoMet-consuming polyamine biosynthesis and depletion of lung AdoMet.  相似文献   

10.
The effects of severe vitamin A deficiency (liver retinol less than 2 micrograms/g) on hepatic folate metabolism in rats were studied. The oxidation of a [ring-2-14C] histidine load or a [14C]formate load to 14CO2 was significantly depressed in vitamin A-deficient rats and those given histidine also excreted more urinary formiminoglutamic acid (FiGlu) than pair-fed controls. The increase in FiGlu excretion was not due to augmented production from histidine, implicating an impairment of FiGlu catabolism. FiGlu formiminotransferase activity was unaltered in vitamin A-deficient rats, but hepatic tetrahydrofolic acid (THF) concentration was decreased by 58% in vitamin A-deficient rats given a histidine load while 5-methyl-THF concentration was increased by 39%. Formyl-THF and total folate levels were similar to controls. A redistribution of folate coenzymes was not found in vitamin A-deficient rats not force fed histidine. A 43% decrease in 10-formyl-THF dehydrogenase activity, which generates both THF and the 14CO2 from the labeled substrates, and an 81% increase in 5,10-methylene-THF reductase activity, which generates 5-methyl-THF, were found in vitamin A-deficient rats. It appears that the production of severe vitamin A deficiency results in selective changes in the activities of hepatic folate-dependent enzymes, so that when a load of a one-carbon donor is given, THF concentration decreases and metabolism of the load is impaired.  相似文献   

11.
Evidence is given that phenothiazines depress hepatic peroxisomal fatty acid oxidation in vivo. After oral administration to rats thioridazine and chlorpromazine inhibit peroxisomal beta-oxidation, evaluated by H2O2 production, during 2 weeks. In mice, this effect could not be demonstrated. However, in both species VLCFA are increased after short and long term drug administration. Electron microscopy reveals the presence of membranous structures in liver cytoplasm or lysosomes. The inhibition by thioridazine of peroxisomal beta-oxidation does not lead to hepatic peroxisome proliferation. The activities of enzymes related to fatty acid breakdown are not increased and liver peroxisomes are microscopically normal.  相似文献   

12.
The effect of methionine supplementation on glycine and serine metabolism was studied in vitamin B-12-deficient rats which received only 0.2% methionine in the diet. In the perfused liver, incorporation of the C-2 of glycine to the C-3 of serine was increased by addition of methionine to the perfusate. The oxidation of [1-14C]glycine to 14CO2 was however depressed. Unlike methionine, glycine did not have any significant effect on the liver folate coenzyme distribution. Oxidation of [3-14C]serine to 14CO2 both in vivo and in perfused liver was increased by methionine. A major portion of the C-3 radioactivity however was recovered in glucose. Data presented indicate that the rate of oxidation of [2-14C]histidine to 14CO2 is a more sensitive indicator of folate deficiency than the rate of oxidation of [3-14C]serine to 14CO2 although both are presumably tetrahydrofolate dependent.  相似文献   

13.
1. The content of decarboxylated S-adenosylmethionine (AdoMet) in transformed mouse fibroblasts (SV-3T3 cells) was increased 500-fold to about 0.4fmol/cell when ornithine decarboxylase was inhibited by α-difluoromethylornithine. This increase was due to the absence of putrescine and spermidine, which serve as substrates for aminopropyltransferases with decarboxylated AdoMet as an aminopropyl donor, and to the enhanced activity of AdoMet decarboxylase brought about by depletion of spermidine. The increase in decarboxylated AdoMet content was abolished by addition of putrescine, but not by 1,3-diaminopropane. 2. 5′-Methylthiotubercidin also increased decarboxylated AdoMet content, presumably by direct inhibition of aminopropyl-transferase activities, but the increase in its content and the decline in spermidine content were much less than those produced by α-difluoromethylornithine. 3. Decarboxylated AdoMet content of regenerating rat liver was measured in rats treated with inhibitors of ornithine decarboxylase. The content was increased by 60% 32h after partial hepatectomy in control rats, by 90% when α-difluoromethylornithine was given to the partially hepatectomized rats, and by 330% when 1,3-diaminopropane was used to inhibit putrescine and spermidine synthesis. After 48h of exposure to 1,3-diaminopropane, which completely prevented the increase in spermidine after partial hepatectomy, there was a 5-fold rise in hepatic decarboxylated AdoMet concentration. These increases were prevented by treatment with putrescine or with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase. 4. These results show that changes in AdoMet metabolism result from the administration of specific inhibitors of polyamine synthesis. The possible consequences of the accumulation of decarboxylated AdoMet, which could, for example, interfere with normal cellular methylation or lead to depletion of cellular adenine nucleotides, should be considered in the interpretation of results obtained with such inhibitors.  相似文献   

14.
Rats were exposed to nitrous oxide, which inactivates cob(I)alamin (Cbl). As in air-breathing rats methionine administration led to the conversion of hepatic 5-methyltetrahydrofolate (MeH4 folate) into formyltetrahydrofolate. The recovery of MeH4 folate levels in liver after its oxidation initiated by methionine was noted and the rate compared with that for air-breathing rats. Oxidation of MeH4 folate was less complete and occurred more slowly in Cbl-inactivated rats as compared with controls. However, recovery of MeH4 folate levels was more rapid in Cbl inactivation. S-Adenosylmethionine did not produce a significant change in MeH4 folate levels in Cbl-inactivated rats, whereas it did so in air-breathing animals.  相似文献   

15.
Weanling rats were fed a casein-based diet supplemented to give dietary methionine (Met) concentrations of 0.41, 0.61, and 1.50%. After 2 weeks of feeding, the rats received intraperitoneally 800 nCi of 2-14C-labeled and/or methyl-3H-labeled L-Met. The animals were killed 20 min, 1 hr, or 2 hr after the isotope injection and the specific radioactivity of adenosylmethionine (AdoMet) as well as the total acid-soluble radioactivity was analyzed in the liver and skeletal muscle. Met concentrations of the liver and skeletal muscle were increased 20-fold by the diet containing 1.50% of Met. In the liver, but not in skeletal muscle, accumulation of AdoMet closely followed changes in Met concentration. Within 2 hr after intraperitoneal injection, the rate of disappearance of 3H label from the acid-soluble fraction was slow in both tissues; increasing in the liver and decreasing in skeletal muscle with increasing dietary Met concentration. At the same time, disappearance of 14C label was slow in both tissues in the rats fed the toxic Met diet, and also in the liver of the rats fed the Met-deficient diet. Decline of the specific radioactivity of the AdoMet pool with respect to 3H label was similar to that of 14C label in the skeletal muscle at all dietary Met concentrations. In the liver, the rate of disappearance of 14C label from the AdoMet pool was markedly increased and that of the 3H label slightly decreased with increasing dietary Met supply. Met deprivation resulted in rapid disappearance of 3H label from the hepatic AdoMet pool, whereas the disappearance of the 14C label was very slow. The results indicate that hepatic Met recycling is very effective with deficient or adequate dietary Met concentrations. In skeletal muscle, the capacity to catabolize extra Met is very limited and continuous flow of Met to liver takes place. Unlike in the liver, in skeletal muscle the transsulfuration route is not adaptable to changes in Met supply and plays a minor role in Met catabolism. The approach used to determine the efficacy and adaptation of methionine salvage pathways by following simultaneously the decline of the specific radioactivities of the methyl group and the methionyl carbon chain of AdoMet following intraperitoneal injection of double-labeled Met has several advantages over that used in literature reports. It offers a reliable means of observing these metabolic pathways in whole animals without disruption of metabolite fluxes.  相似文献   

16.
We propose a simple mathematical model of liver S -adenosylmethionine (AdoMet) metabolism. Analysis of the model has shown that AdoMet metabolism can operate under two different modes. The first, with low metabolic rate and low AdoMet concentration, serves predominantly to supply the cell with AdoMet, the substrate for various cellular methylation reactions. The second, with high metabolic rate and high AdoMet concentration, provides an avenue for cleavage of excess methionine and can serve as a source of cysteine when its increased synthesis is necessary. The switch that triggers interconversion between the "low" and "high" modes is methionine concentration. Under a certain set of parameters both modes may coexist. This behavior results from the kinetic properties of (i) the two isoenzymes of AdoMet synthetase, MATI and MATIII, that catalyse AdoMet production; one is inhibited by AdoMet, whereas the other is activated by it, and (ii) glycine- N -methyltransferase that displays highly cooperative kinetics that is different from that of other AdoMet-dependent methyltransferases. Thus, the model provides an explanation for how different cellular needs are met by regulation of this pathway. The model also correctly identifies a critical role for glycine N -methyltransferase in depleting excess methionine in the high mode, thus avoiding the toxicity associated with elevated levels of this essential amino acid.  相似文献   

17.
An elevated plasma level of homocysteine is a risk factor for the development of cardiovascular disease. The purpose of this study was to investigate the effect of glucagon on homocysteine metabolism in the rat. Male Sprague-Dawley rats were treated with 4 mg/kg/day (3 injections per day) glucagon for 2 days while control rats received vehicle injections. Glucagon treatment resulted in a 30% decrease in total plasma homocysteine and increased hepatic activities of glycine N-methyltransferase, cystathionine beta-synthase, and cystathionine gamma-lyase. Enzyme activities of the remethylation pathway were unaffected. The 90% elevation in activity of cystathionine beta-synthase was accompanied by a 2-fold increase in its mRNA level. Hepatocytes prepared from glucagon-injected rats exported less homocysteine, when incubated with methionine, than did hepatocytes of saline-treated rats. Flux through cystathionine beta-synthase was increased 5-fold in hepatocytes isolated from glucagon-treated rats as determined by production of (14)CO(2) and alpha-[1-(14)C]ketobutyrate from l-[1-(14)C]methionine. Methionine transport was elevated 2-fold in hepatocytes isolated from glucagon-treated rats resulting in increased hepatic methionine levels. Hepatic concentrations of S-adenosylmethionine and S-adenosylhomocysteine, allosteric activators of cystathionine beta-synthase, were also increased following glucagon treatment. These results indicate that glucagon can regulate plasma homocysteine through its effects on the hepatic transsulfuration pathway.  相似文献   

18.
alpha 2-Macroglobulin (alpha 2M)-methylamine that had been allowed to react with cis-dichlorodiammineplatinum(II) (cis-DDP) bound with greatly reduced affinity to specific alpha 2M receptors, as determined by macrophage binding studies in vitro and plasma-clearance experiments in vivo. Subsequent reaction with diethyl dithiocarbamate completely restored receptor recognition function. The optimal effect was obtained when the diethyl dithiocarbamate concentration was twice the total platinum concentration. alpha 2M-methylamine that was allowed to react with H2O2 competed less effectively for specific cell-surface binding sites, as demonstrated by studies both in vivo and in vitro. The apparent dissociation constant was increased nearly 7-fold by a 15 min exposure to H2O2. alpha 2M-methylamine was affected significantly less by the H2O2 exposure after pretreatment with cis-DDP. Amino acid analysis indicated that H2O2 treatment of alpha 2M modified 19 of the 25 methionine residues per alpha 2M subunit. Pretreatment with cis-DDP protected two to four of these methionine residues. The only other residue altered by H2O2 treatment of alpha 2M was histidine. A net decrease of two histidine residues per subunit was observed, but cis-DDP pretreatment did not alter this result. In order to rule out the slight possibility that histidine modification might account for the observed H2O2-induced loss in receptor recognition, diethyl pyrocarbonate was employed as a histidine-modifying reagent. This treatment modified 53 histidine residues in both native and fast-form alpha 2M. Fast-form alpha 2M was still recognized by the alpha 2M receptor, as determined by studies both in vivo and in vitro; however, a fraction of the modified protein now cleared via the acyl-low-density-lipoprotein receptor as well. Reaction of diethyl pyrocarbonate-treated alpha 2M with hydroxylamine reversed derivatization of 43 of the 53 histidine residues. Moreover, this treatment also resulted in an alpha 2M fast-form preparation that was recognized only by the alpha 2M receptor. It is concluded that cis-DDP and H2O2 modify a critical methionine residue in the primary sequence of the alpha 2M-receptor recognition site.  相似文献   

19.
To study the effect of zinc deficiency on folate metabolism, three groups of male Sprague-Dawley rats (zinc deficient (ZD), restricted-fed (RF + Zn), and ad libitum-fed control (control] were given a semipurified 25% egg white protein diet. The ZD group received less than 10.3 nmol zinc/g of diet, while the RF + Zn and control groups were given 1620 nmol zinc/g of diet. After 6-7 weeks of feeding, severe zinc deficiency developed in ZD rats. Hepatic methionine synthetase activity was increased in the ZD group compared to both the RF + Zn and control groups, but hepatic 5,10-CH2-H4folate reductase activity was similar in all groups. This increased methionine synthetase activity found in zinc-deficient rats might induce secondary alterations in folate metabolism. These changes include significantly lowered plasma folate levels, decreased 5-CH3-H4folate in liver, and increased rates of histidine and formate oxidation. The latter two findings suggest that the available non-5-CH3-H4folate is increased in zinc deficiency.  相似文献   

20.
S-Adenosylmethionine (AdoMet) is metabolized through three main pathways, i.e. (a) transfer of its methyl group to a variety of methyl acceptors, (b) decarboxylation followed by aminopropylation leading to polyamine synthesis, and (c) cleavage of the bond between the sulfur atom and carbon 4 of the amino acid chain, resulting in formation of methylthioadenosine and homoserine thiolactone. In this study the metabolism of AdoMet through these pathways was studied after intravenous administration to rats of [1-14C]-, [3,4-14C]-, [methyl-14C]-, and [35S]AdoMet at various doses. The relative utilization of AdoMet and methionine was also investigated. The results show that intravenously administered AdoMet is efficiently metabolized in vivo up to the highest tested dose (250 mumol X kg-1 body weight), about two-thirds of the metabolized compound being utilized via transmethylation and cleavage to methylthioadenosine and one-third via decarboxylation. The efficient incorporation of the methyl group of AdoMet into muscle creatine indicates unambiguously that the compound is taken up and metabolized by the liver. Moreover, intravenously administered AdoMet is shown to be a better precursor than methionine both in creatine formation and in the utilization of the sulfur atom in transsulfuration reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号