首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human placenta, 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, an enzyme complex found in microsomes and mitochondria, synthesizes progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate. The dehydrogenase and isomerase activities of the mitochondrial enzyme were copurified (733-fold) using sequential cholate solubilization, ion exchange chromatography (DEAE-Toyopearl 650S), and hydroxylapatite chromatography (Bio-Gel HT). Enzyme homogeneity was demonstrated by a single protein band in SDS-polyacrylamide gel electrophoresis (monomeric Mr = 41,000), gel filtration at constant specific enzyme activity (Mr = 77,000), and a single NH2-terminal sequence. Kinetic constants were determined for the oxidation of pregnenolone (Km = 1.6 microM, Vmax = 48.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.4 microM, Vmax = 48.5 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.3 microM, Vmax = 914.2 nmol/min/mg) and 5-androstene-3,17-dione (Km = 27.6 microM, Vmax = 888.4 nmol/min/mg. Mixed substrate studies showed that the dehydrogenase and isomerase activities utilize their respective pregnene and androstene substrates competitively. Dixon analysis demonstrated that the product steroids, progesterone and androstenedione, are competitive inhibitors of the C-21 and C-19 dehydrogenase activities. Enzyme purified from mitochondria and microsomes had similar kinetic profiles with respect to substrate utilization, product inhibition, and cofactor (NAD+) reduction (mean Km +/- SD using C-19 and C-21 dehydrogenase substrates = 26.4 +/- 0.8 microM, mean Vmax = 73.2 +/- 1.3 nmol/min/mg). Pure enzyme from both organelles exhibited identical biophysical properties in terms of molecular weight and subunit composition, pH optima (pH 9.8, dehydrogenase; pH 7.5, isomerase), temperature optimum (37 degrees C), stability in storage and solution, effects of divalent cations, and the single NH2-terminal sequence of 27 amino acids. These results suggest that the mitochondrial and microsomal enzymes are the same protein localized in different organelles.  相似文献   

2.
We have copurified human placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, which synthesize progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate, from microsomes as a homogeneous protein based on electrophoretic and NH2-terminal sequencing data. The affinity alkylator, 2 alpha-bromoacetoxyprogesterone, simultaneously inactivates the pregnene and androstene dehydrogenase activities as well as the C21 and C19 isomerase activities in a time-dependent, irreversible manner following first order kinetics. At four concentrations (50/1-20/1 steroid/enzyme M ratios), the alkylator inactivates the dehydrogenase activity (t1/2 = 1.5-3.7 min) 2-fold faster than the isomerase activity. Pregnenolone and dehydroepiandrosterone protect the dehydrogenase activity, while 5-pregnene-3,20-dione, progesterone, and androstenedione protect isomerase activity from inactivation. The protection studies and competitive kinetics of inhibition demonstrate that the affinity alkylator is active site-directed. Kitz and Wilson analyses show that 2 alpha-bromoacetoxyprogesterone inactivates the dehydrogenase activity by a bimolecular mechanism (k3' = 160.9 l/mol.s), while the alkylator inactivates isomerase by a unimolecular mechanism (Ki = 0.14 mM, k3 = 0.013 s-1). Pregnenolone completely protects the dehydrogenase activity but does not slow the rate of isomerase inactivation by 2 alpha-bromoacetoxyprogesterone at all. NADH completely protects both activities from inactivation by the alkylator, while NAD+ protects neither. From Dixon analysis, NADH competitively inhibits NAD+ reduction by dehydrogenase activity. Mixed cofactor studies show that isomerase binds NAD+ and NADH at a common site. Therefore, NADH must not protect either activity by simply binding at the cofactor site. We postulate that NADH binding as an allosteric activator of isomerase protects both the dehydrogenase and isomerase activities from affinity alkylation by inducing a conformational change in the enzyme protein. The human placental enzyme appears to express the pregnene and androstene dehydrogenase activities at one site and the C21 and C19 isomerase activities at a second site on the same protein.  相似文献   

3.
The effect of epostane [(2 alpha,4 alpha,5 alpha,17 beta)-4,5-epoxy-17-hydroxy-4,17-dimethyl-3-oxo- androstane-2-carbonitrile] on the conversion of pregnenolone to progesterone and of dehydroepiandrosterone (DHA) to androstenedione was studied in human term placental microsomes and in comparison with human ovarian and adrenal microsomes. Using pregnenolone as substrate, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity in the three tissues had a similar Km (3-6 microM) but Vmax ranged from 1.3 nmol/mg protein per min in ovary to 10 nmol/mg protein per min in placenta. Epostane inhibited 3 beta-HSD activity in all three tissues with the characteristics of a pure competitive inhibitor: mean Ki values were 1.7 microM for placenta, 0.5 microM for adrenal and 0.1 microM for ovary. Moreover, in placental microsomes epostane inhibited the conversion of DHA to androstenedione with a Ki of 0.6 microM. The mechanism of action of epostane explains its effectiveness in blocking progesterone synthesis during the luteal phase and in pregnancy in women, and its strong anti-steroidogenic effect in other endocrine tissues in vitro.  相似文献   

4.
Activity of delta 5-3 beta-hydroxysteroid dehydrogenase coupled with steroid-delta 5-4-isomerase was demonstrated for the first time in the pancreas. The enzyme complex was assayed by measuring the conversion of pregnenolone to progesterone as well as of dehydroepiandrosterone to androstenedione and found to be localized primarily in the mitochondrial fraction of dog pancreas homogenates. The delta 5-3 beta-hydroxysteroid dehydrogenase used either NAD+ or NADP+ as co-substrates, although maximal activity was observed with NAD+. In phosphate buffer, pH 7.0 and 37 degrees C, the apparent Km values of the dehydrogenase were 6.54 +/- 0.7 microM for pregnenolone and 9.61 +/- 0.8 microM for NAD+. The apparent Vmax was determined as 0.82 +/- 0.02 nmol min-1 mg-1. Under the same conditions the Km values for dehydroepiandrosterone and NAD+ were 3.3 +/- 0.2 microM and 9.63 +/- 1.6 microM, respectively, and the apparent Vmax was 0.62 +/- 0.01 nmol min-1 mg-1.  相似文献   

5.
Isolated rat Leydig cells were incubated for 2 h in sealed polycarbonate tubes under O2/CO2 atmosphere with 10 mIU/ml human chorionic gonadotropin. 20 mmol/l ethanol reduced the concentration of testosterone (16%, P less than 0.025); raised the concentrations of pregnenolone (60%, P less than 0.001), androstenedione (86%, P less than 0.001) and dehydroepiandrosterone (81%, P less than 0.001); but did not change concentrations of progesterone and 17 alpha-hydroxyprogesterone in the incubation medium. Ethanol also raised the lactate/pyruvate ratio in the Leydig cell suspension. 4-Methylpyrazole (0.5 mmol/l) abolished the ethanol-induced changes. The present results suggest that ethanol inhibits testosterone synthesis in isolated rat Leydig cells at the pregnenolone-to-testosterone pathway by inhibiting 3 beta-hydroxy-5-ene-steroid dehydrogenase/5-ene-4-ene-isomerase catalyzed reactions and the conversion of androstenedione to testosterone. These inhibitions are caused by consequences of ethanol metabolism. A likely mechanism for the former inhibition is that the increase in the NADH/NAD+ ratio in Leydig cells leads to inhibition of reactions catalyzed by 3 beta-hydroxy-5-ene-steroid dehydrogenase/5-ene-4-ene isomerase, but the inhibition mechanism operating at the androstenedione-to-testosterone step remains to be characterized.  相似文献   

6.
Human type I placental 3β-hydroxy-5-ene-steroid dehydrogenase/steroid 5→4-ene-isomerase (3β-HSD/isomerase) synthesizes androstenedione from fetal dehydroepiandrosterone and progesterone from pregnenolone. The full length cDNA that encodes type I 3β-HSD/isomerase was inserted into the baculovirus, Autographa californica multiple nucleocapsid polyhedrosis virus, and expressed in Spodoptera fungiperda (Sf-9) insect cells. Western blots showed that the baculovirus-infected Sf-9 cells produced an immunoreactive protein that co-migrated with purified placental 3β-HSD/isomerase. Ultracentrifugation localized the expressed enzyme activities in all the membrane-associated organelles of the Sf-9 cell (nuclear, mitochondrial and microsomal). Kinetic studies showed that the expressed enzyme has 3β-HSD and isomerase activities. The Michaelis-Menton constant is very similar for the 3β-HSD substrate, 5-androstan-3β-o1-17-one, in the Sf-9 cell homogenate (Km = 17.9 μM) and placental microsomes (Km = 16.7 μM). The 3β-HSD activity (Vmax = 14.5 nmol/min/mg) is 1.6-fold higher in the Sf-9 cell homogenate compared to placental microsomes (Vmax = 9.1 nmol/min/mg). The Km values are almost identical for the isomerase substrate, 5-androstene-3,17-dione, in the Sf-9 cell homogenate (Km = 14.7 μM) and placental microsomes (Km = 14.4 μM). The specific isomerase activity is 1.5-fold higher in the Sf-9 cells (Vmax = 25.7 nmol/min/mg) relative to placenta (Vmax = 17.2 nmol/min/mg). These studies show that our recombinant baculovirus system over-expresses fully active enzyme that is kinetically identical to native 3β-HSD/isomerase in human placenta.  相似文献   

7.
3 beta-Hydroxysteroid isomerase dehydrogenase, capable of acting on C21- and C19-3 beta-hydroxy-5-ene-steroids has been found in guinea-pig kidney at equivalent levels to those in guinea pig testes. Of the 3 beta-hydroxy-5-ene-steroids present in guinea pig serum, 21-hydroxypregnenolone occurs in highest concentration (17 nM) followed by pregnenolone (10 nM), whereas 17 alpha-hydroxy-pregnenolone and dehydroepiandrosterone occur in very low concentrations (less than 0.5 nM). Furthermore, the concentration of 21-hydroxypregnenolone relative to 11-deoxycorticosterone (the mineralocorticoid of the guinea pig), is 10:1 (Nishikawa and Strott, Steroids 41 (1983) 105-120). The apparent Km value for 21-hydroxypregnenolone, for the reaction yielding 11-deoxycorticosterone as catalysed by guinea pig kidney microsomes, was 85 nM and the Vmax 33 pmol/min per mg protein. Pregnenolone was a competitive inhibitor (apparent Ki = 5 microM) in the above reaction. A sex difference in the level of the enzyme in the kidney was found (activity in the female was one-third of that in the male) which may indicate that the enzyme is under partial androgen control. 3 beta-Hydroxysteroid isomerase dehydrogenase activity was also detected in guinea pig liver and again it was lower in the female. Whilst the exact role of 3 beta-hydroxysteroid isomerase dehydrogenase in guinea-pig kidney remains uncertain, the data suggest that it may utilise blood-borne 21-hydroxypregnenolone, the later then playing the role of a prohormone.  相似文献   

8.
Microsomes isolated from complete hydatidiform moles (CHM) were able to convert [3H]pregnenolone to [3H]progesterone which indicates the presence of 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD) activity. The kinetic parameters found (Km = 0.63 microM and Vmax = 1-3.05 nmol/min/mg of protein) were like those observed in microsomes from normal early placenta (NEP) of similar gestational age (herein) and term placenta suggesting that the enzymes from the three sources are kinetically similar. Testosterone, progesterone and estradiol in a dose range of 0.05-5 mumol/l inhibited differently the in vitro conversion of [3H]pregnenolone to [3H]progesterone in a dose-dependent manner. The steroid concentrations necessary to inhibit the conversion of pregnenolone to progesterone by 50% (ID50) in CHM were 0.1 microM for testosterone, 0.6 microM for progesterone and 3 microM for estradiol, whereas in NEP they were 2.5, 1 and 5 microM respectively. The Ki values calculated from these ID50 in CHM together with the reported levels of endogenous steroids indicate that the accumulation of testosterone and progesterone inside the molar vesicle could physiologically regulate the rate of further conversion of pregnenolone to progesterone. The present findings could provide an explanation for the low level of progesterone in patients with CHM in the second trimester of pregnancy which in turn may directly or indirectly affect the spontaneous expulsion of this aberrant tissue.  相似文献   

9.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

10.
We have investigated the effects of two 4-ene-steroid 5 alpha-reductase inhibitors, diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA) and (4R)-5,10-seco-19-norpregna-4, 5-diene-3,10,20-trione (SECO), on testicular and epididymal androgen biosynthesis. Kinetic analyses revealed that both compounds inhibited epididymal DHT biosynthesis. 4-MA was a competitive inhibitor of epididymal nuclear and microsomal 4-ene-steroid 5 alpha-reductases (3-oxo-5 alpha-steroid: NADP 4-ene-oxidoreductase EC 1.3.1.22) with Kiapp values of 12.8 and 15.1 nmol/l compared to the respective Kmapp values of 185 and 240 nmol/l. Values for the Vmaxapp were always within 70-130% of the control. SECO at 1.0 mumol/l, also inhibited epididymal nuclear and microsomal 4-ene-steroid-5 alpha-reductases, causing respectively 2.9 and 5.2-fold increases in Kmapp. The Vmaxapp values were unchanged. However, SECO concentrations of 5 and 25 mumol/l abolished 4-ene-steroid 5 alpha-reductase activity at all testosterone concentrations. To examine the specificity of these compounds, we investigated their effects on the enzymes that convert pregnenolone to testosterone. Rat testis microsomes converted pregnenolone to testosterone via the 4-ene-3-oxo pathway, with the major metabolites being progesterone, 17-hydroxyprogesterone, 4-androstenedione and testosterone; some 17-hydroxypregnenolone was also formed. Very small amounts of dehydroepiandrosterone (DHA) and 5-androstenediol were detected. SECO, at a concentration that completely inhibited epididymal 4-ene-steroid 5 alpha-reductase activity, did not alter the metabolic profile of pregnenolone metabolism. However, 4-MA prevented the appearance of 4-ene steroids, and large quantities of 17-hydroxypregnenolone and DHA accumulated, suggesting that inhibition of the 3 beta-hydroxysteroid: NAD(P)+ oxidoreductase (EC 1.1.1.51) and 3-oxosteroid 5-ene-4-ene-isomerase (EC 5.3.3.1) [3 beta-hydroxysteroid dehydrogenase-isomerase] was occurring. Optimal conditions for the microsomal conversion of DHA to 4-androstenedione were determined; kinetic analyses of the 3 beta-hydroxysteroid dehydrogenase-isomerase activity revealed that 4-MA inhibited this reaction non-competitively, reducing Vmaxapp values to 25% of the control. The Kiapp determined from the intercept replot, was 121 nmol/l, and the Kmapp was always between 90 and 130% of the control value. It is concluded that SECO is more specific than 4-MA in its effects on androgen biosynthesis in the testis and epididymis and that both these drugs should provide useful tools in assessments of the relative contributions of 5 alpha-reduced androgens to androgen dependent processes.  相似文献   

11.
Pregnenolone and dehydroepiandrosterone accumulate in brain as sulfate and fatty acid esters and unconjugated steroids. The steroid fatty acid ester-synthesizing activity was investigated in rat brain microsomes. Endogenous fatty acids in the microsomal fraction were used for the esterification of steroids. The enzyme system had a pH optimum of 4.5 in acetate buffer with [3H]dehydroepiandrosterone as substrate. The apparent Km was 9.2 +/- 3.1 x 10(-5) M and Vmax was 18.6 +/- 3.4 nmol/h/mg protein (mean +/- SEM). The inhibition constants of pregnenolone and testosterone were 123 and 64 microM, respectively. Results were compatible with a competitive type of inhibition. A high level of synthetic activity was found in the brain of 1- to 3-week-old male rats, which rapidly decreased with aging. Saponification of purified [3H]pregnenolone esters yielded pregnenolone and a mixture of palmitate, oleate, linoleate, stearate, and myristate as the predominant fatty acids. Contrasting with the high rates of esterification of several radioactive delta 5-3 beta-hydroxysteroids or 17 beta-hydroxysteroids, no fatty acid esters of either cholesterol, epitestosterone (with a hydroxyl group at position C-17 alpha), or corticosterone (with hydroxyl groups at C-21 and C-11 beta) were formed in the same incubation conditions.  相似文献   

12.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

13.
The nuclear conversion of testosterone (T) to dihydrotestosterone (DHT) and androstenedione (delta 4A) to androstanedione (5 alpha-Adione) was compared in the separated stromal and epithelial fractions of hyperplastic (n = 6) and malignant (n = 3) prostatic tissues. Assay conditions were linear with respect to time and protein concentration and were optimal for NADPH concentration. The apparent Km values for the stromal enzymes were 0.2 and 0.02 microM for hyperplasia and carcinoma, respectively, using T as substrate. The apparent Km values, using delta 4A as substrate, were 0.03 and 0.02 microM, respectively. Apparent Vmax values for the stromal formation of DHT were 16.5 +/- 5.4 and 1.97 +/- 0.45 pmol/mg protein/30 min incubation, respectively, for the hyperplastic and malignant tissues. The apparent Vmax values for the formation of 5 alpha-Adione were 2.8 +/- 1.3 and 6.5 +/- 1.2 pmol/mg/protein/30 min incubation. The apparent Km values for the epithelial enzyme, for hyperplastic and malignant tissue were 0.04 and 0.04 microM, for T, and 0.05 and 0.03 microM for delta 4A. The respective apparent Vmax values were 4.6 +/- 0.93 and 0.65 +/- 0.07 for DHT and 2.0 +/- 0.86 and 6.4 +/- 0.45 pmol/mg protein/30 min incubation for 5 alpha-Adione. delta 4A was a competitive inhibitor of T 5 alpha-reduction. These results provide further evidence that different rates of 5 alpha-reduction at least partially explain the differences in androgen levels seen in the hyperplastic and the malignant prostate.  相似文献   

14.
The presence of 3 beta-hydroxysteroid dehydrogenase in the maturing rabbit ovary was demonstrated biochemically and histochemically. Enzyme activity was negligible to absent in ovaries from rabbits less than 44 days old. The greatest activity was located in the microsomal fraction of ovaries from mature rabbits. The enzyme characteristics were: Vmax = 33.1 +/- 9.6 nmol/min/mg protein and Km = 2.16 +/- 0.28 microM. Ovaries from pregnant hyperglycemic rabbits had enzyme which showed a Vmax of 51.4 +/- 8.2 nmol/min/mg protein and Km = 2.41 +/- 0.31 microM. These results indicate that rabbit ovarian tissue becomes steroidogenically active at a time when gonadotropin levels are elevated.  相似文献   

15.
3β,20α-羟基甾体脱氢酶(3β,20α-Hydroxysteroid dehydrogenase,3β,20α-HSD)是从胎羊血中分离得到的。分子量为35kD。该酶以NADPH为辅酶,有两种底物。以孕酮为底物时,Km=30.8μmol/L,Vmax=0.7nmol min~(-1)(nmol enzyme)~(-1);以5α-二氢睾酮(5α-Dihydrotestosterone,5α-DHT)为底物时,Km=74μmol/L,Vmax=1.3nmol min~(-1)(nmol enzyme)~(-1)。5α-DHT竞争性抑制20α-还原活性,Ki=102μmol/L。16α-溴代乙酰氧基(16α-Bromo acetoxyprogesterone,16α-BAP)是3β,20α-HSD不可逆竞争性抑制剂,t_(1/2)=75min。对3β和20α还原活性的抑制常数Ki分别为23μmol/L和58μmol/L。  相似文献   

16.
3 beta,20 alpha-Hydroxysteroid oxidoreductase was purified to homogeneity from fetal lamb erythrocytes. The Mr 35,000 enzyme utilizes NADPH and reduces progesterone to 4-pregnen-20 alpha-ol-3-one [Km = 30.8 microM and Vmax = 0.7 nmol min-1 (nmol of enzyme)-1] and 5 alpha-dihydrotestosterone to 5 alpha-androstane-3 beta, 17 beta-diol [Km = 74 microM and Vmax = 1.3 nmol min-1 (nmol of enzyme)-1]. 5 alpha-Dihydrotestosterone competitively inhibits (Ki = 102 microM) 20 alpha-reductase activity, suggesting that both substrates may be reduced at the same active site. 16 alpha-(Bromoacetoxy)progesterone competitively inhibits 3 beta- and 20 alpha-reductase activities and also causes time-dependent and irreversible losses of both 3 beta-reductase and 20 alpha-reductase activities with the same pseudo-first order kinetic t1/2 value of 75 min. Progesterone and 5 alpha-dihydrotestosterone protect the enzyme against loss of the two reductase activities presumably by competing with the affinity alkylating steroid for the active site of 3 beta,20 alpha-hydroxysteroid oxidoreductase. 16 alpha-(Bromo[2'-14C]acetoxy) progesterone radiolabels the active site of 3 beta,20 alpha-hydroxysteroid oxidoreductase wherein 1 mol of steroid completely inactivates 1 mol of enzyme with complete loss of both reductase activities. Hydrolysis of the 14C-labeled enzyme with 6 N HCl at 110 degrees C and analysis of the amino acid hydrolysate identified predominantly N pi-(carboxy[2'-14C]methyl)histidine [His(pi-CM)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In earlier studies, two distinct molecules, 20 alpha-HSD-I and 20 alpha-HSD-II, responsible for 20 alpha-HSD activity of pig adrenal cytosol were purified to homogeneity and characterized [S. Nakajin et al., J. Steroid Biochem. 33 (1989) 1181-1189]. We report here that the purified 20 alpha-HSD-I, which mainly catalyzes the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 alpha-dihydroxy-4-pregnen-3-one, catalyzes 3 alpha-hydroxysteroid oxidoreductase activity for 5 alpha (or 5 beta)-androstanes (C19), 5 alpha (or 5 beta)-pregnanes (C21) in the presence of NADPH as the preferred cofactor. The purified enzyme has a preference for the 5 alpha (or 5 beta)-androstane substrates rather than 5 alpha (or 5 beta)-pregnane substrates, and the 5 beta-isomers rather than 5 alpha-isomers, respectively. Kinetic constants in the reduction for 5 alpha-androstanedione (Km; 3.3 microM, Vmax; 69.7 nmol/min/mg) and 5 beta-androstanedione (Km; 7.7 microM, Vmax; 135.7 nmol/min/mg) were demonstrated for comparison with those for 17 alpha-hydroxyprogesterone (Km; 26.2 microM, Vmax; 1.3 nmol/min/mg) which is a substrate for 20 alpha-HSD activity. Regarding oxidation, the apparent Km and Vmax values for 3 alpha-hydroxy-5 alpha-androstan-17-one were 1.7 microM and 43.2 nmol/min/mg, and 1.2 microM and 32.1 nmol/min/mg for 3 alpha-hydroxy-5 beta-androstan-17-one, respectively. 20 alpha-HSD activity in the reduction of 17 alpha-hydroxyprogesterone catalyzed by the purified enzyme was inhibited competitively by addition of 5 alpha-DHT with a Ki value of 2.0 microM. Furthermore, 17 alpha-hydroxyprogesterone inhibited competitively 3 alpha-HSD activity with a Ki value of 150 microM.  相似文献   

18.
Q X Chen  C D Nancarrow  F Sweet 《Steroids》1987,49(6):477-496
3 beta,20 alpha-Hydroxysteroid oxidoreductase has been isolated from ovine fetal blood by a 2,370-fold purification scheme of ammonium sulfate fractionation, calcium phosphate gel adsorption, affinity chromatography, and fast performance liquid chromatography. A new high performance liquid chromatography-based assay for measuring 20 alpha-reductase activity is described. The enzyme is a monomer with a molecular weight of 35,000 and uses NADPH as a cofactor for reductase activity. It reduces progesterone to 4-pregnen-20 alpha-ol-3-one or 5 alpha-dihydrotestosterone to 5 alpha-androstan-3 beta,17 beta-diol with kinetic characteristics of Km = 30.8 microM and Vmax = 0.7 nmol min-1 (nmol of enzyme)-1 or Km = 74 microM and Vmax = 1.3 nmol min-1 (nmol of enzyme)-1, respectively. 5 alpha-Dihydrotestosterone competitively inhibits 20 alpha-reductase activity with a Ki value of 102 microM.  相似文献   

19.
The substrate 16-methylene estra-1,3,5(10)-triene-3,17 beta-diol (16-methylene estradiol-17 beta) and its enzyme-generated alkylating product, 3-hydroxy-16-methylene estra-1,3,5(10)-triene-17-one (16-methylene estrone), were synthesized to study the 17 beta- and 20 alpha-hydroxysteroid dehydrogenase activities which coexist in homogeneous enzyme purified from human placental cytosol. 16-Methylene estradiol, an excellent substrate (Km = 8.0 microM; Vmax = 2.8 mumol/mg/min) when enzymatically oxidized to 16-methylene estrone in the presence of NAD+ (256 microM), inactivates simultaneously the 17 beta- and 20 alpha-activities in a time-dependent and irreversible manner following pseudo-first order kinetics (t1/2 = 1.0 h, 100 microM, pH 9.2). 16-Methylene estradiol does not inactivate the enzyme in the absence of NAD+. 16-Methylene estrone (Km = 2.7 microM; Vmax = 2.9 mumol/mg/min) is an affinity alkylator (biomolecular rate constant k'3 = 63.3 liters/mol-s, pH 9.2; KI = 261 microM; k3 = 8.0 X 10(-4) S-1, pH 7.0) which also simultaneously inhibits both activities in an irreversible time-dependent manner (at 25 microM; t1/2 = 7.2 min, pH 9.2; t1/2 = 2.7 h, pH 7.0). Substrates (estradiol-17 beta, estrone, and progesterone) protect against inhibition of enzyme activity by 16-methylene estrone and 16-methylene estradiol. Affinity radioalkylation studies using 16-methylene [6,7-3H]estrone demonstrate that 1 mol of alkylator binds per mol of inactivated enzyme dimer. Thus, 16-methylene estradiol functions as a unique substrate for the enzymatic generation of a powerful affinity alkylator of 17 beta,20 alpha-hydroxysteroid dehydrogenase and should be a useful pharmacological tool.  相似文献   

20.
17 beta-hydroxysteroid dehydrogenase activity in canine pancreas   总被引:2,自引:0,他引:2  
The mitochondrial fraction of the dog pancreas showed NAD(H)-dependent enzyme activity of 17 beta-hydroxysteroid dehydrogenase. The enzyme catalyzes oxidoreduction between androstenedione and testosterone. The apparent Km value of the enzyme for androstenedione was 9.5 +/- 0.9 microM, the apparent Vmax was determined as 0.4 nmol mg-1 min-1, and the optimal pH was 6.5. In phosphate buffer, pH 7.0, maximal rate of androstenedione reduction was observed at 37 degrees C. The oxidation of testosterone by the enzyme proceeded at the same rate as the reduction of the androstenedione at a pH of 6.8-7.0. The apparent Km value and the optimal pH of the enzyme for testosterone were 3.5 +/- 0.5 microM and 7.5, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号