首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Altering the glycosylation pattern of bioactive compounds   总被引:9,自引:0,他引:9  
Many bioactive natural products are glycosylated compounds in which the sugars are important or essential for biological activity. The isolation of several sugar biosynthesis gene clusters and glycosyltransferases from different antibiotic-producing organisms, and the increasing knowledge about these biosynthetic pathways opens up the possibility of generating novel bioactive compounds through combinatorial biosynthesis in the near future. Recent advances in this area indicate that antibiotic glycosyltransferases show some substrate flexibility that might allow us to alter the types of sugar transferred to the different aglycons or, less frequently, to change the position of its attachment.  相似文献   

2.
Many bioactive natural products synthesized by actinomycetes are glycosylated compounds in which the appended sugars contribute to specific interactions with their biological target. Most of these sugars are 6-deoxyhexoses, of which more than 70 different forms have been identified, and an increasing number of gene clusters involved in 6-deoxyhexoses biosynthesis are being characterized from antibiotic-producing actinomycetes. Novel glycosylated compounds have been generated by modifying natural deoxysugar biosynthesis pathways in the producer organisms, and/or the simultaneous expression in these strains of selected deoxysugar biosynthesis genes from other strains. Non-producing strains endowed with the capacity to synthesize novel deoxysugars through the expression of engineered deoxysugar biosynthesis clusters can also be used as alternative hosts. Transfer of these deoxysugars to a multiplicity of aglycones relies upon the existence of glycosyltransferases with an inherent degree of 'relaxed substrate specificity'. In this review, we analyze how the knowledge coming out from isolation and characterization of deoxysugar biosynthesis pathways from actinomycetes is being used to produce novel glycosylated derivatives of natural products.  相似文献   

3.
The bioactivity of many natural products produced by microorganisms can be attributed to their sugar substituents. These substituents are transferred as nucleotide-activated sugars to an aglycon by glycosyltransferases. Engineering these enzymes can broaden their substrate specificity and can therefore have an impact on the bioactivity of the secondary metabolites.In this review we present the generation of a glycosyltransferase gene toolbox which contains more than 70 bacterial glycosyltransferases to date. Investigations of the function, specificity and structure of these glycosyltransferases help to understand the great potential of these enzymes for natural product biosynthesis.  相似文献   

4.
The bioactivity of many natural products including valuable antibiotics and anticancer therapeutics depends on their sugar moieties. Changes in the structures of these sugars can deeply influence the biological activity, specificity and pharmacological properties of the parent compounds. The chemical synthesis of such sugar ligands is exceedingly difficult to carry out and therefore impractical to establish on a large scale. Therefore, glycosyltransferases are essential tools for chemoenzymatic and in vivo approaches for the development of complex glycosylated natural products. In the last 10 years, several examples of successful alteration and diversification of natural product glycosylation patterns via metabolic pathway engineering and enzymatic glycodiversification have been described. Due to the relaxed substrate specificity of many sugar biosynthetic enzymes and glycosyltransferases involved in natural product biosynthesis, it is possible to obtain novel glycosylated compounds using different methods. In this review, we would like to provide an overview of recent advances in diversification of the glycosylated natural products and glycosyltransferase engineering.  相似文献   

5.
Fungi are well known for their ability to produce a multitude of natural products. On the one hand their potential to provide beneficial antibiotics and immunosuppressants has been maximized by the pharmaceutical industry to service the market with cost-efficient drugs. On the other hand identification of trace amounts of known mycotoxins in food and feed samples is of major importance to ensure consumer health and safety. Although several fungal natural products, their biosynthesis and regulation are known today, recent genome sequences of hundreds of fungal species illustrate that the secondary metabolite potential of fungi has been substantially underestimated. Since expression of genes and subsequent production of the encoded metabolites are frequently cryptic or silent under standard laboratory conditions, strategies for activating these hidden new compounds are essential. This review will cover the latest advances in fungal genome mining undertaken to unlock novel products.  相似文献   

6.
徐飞  邓子新  林双君 《微生物学通报》2013,40(10):1796-1809
氨基酸作为生物体内组成生命物质的小分子化合物, 在天然产物生物合成中扮演了非常重要的作用。色氨酸含有一个独特的吲哚环, 相对复杂的吲哚环平面结构使得色氨酸相比其他氨基酸具有更多的修饰空间。在微生物天然产物生物合成研究中, 色氨酸及其衍生物经常作为组成模块参与到天然产物的生物合成中, 本文概述了色氨酸几种不同的生物修饰方式, 包括烷基化修饰、卤化修饰、羟基化修饰、以及吲哚环的开环重排反应等。分析并总结色氨酸在天然产物生物合成中的作用可以增加我们对天然产物结构多样性的认识和推动天然产物生物合成机制的研究。  相似文献   

7.
甲基转移酶(Methyltransferases,MTs)普遍存在于所有生物有机体中,通常以S-腺苷甲硫氨酸作为甲基供体催化底物的甲基化反应,在基因的表达调控和许多天然化合物的合成中起着至关重要的作用。近年来,在微生物中异源表达MTs以实现一些重要天然产物的生物合成取得了巨大的进步,但迄今为止这方面的研究还没有得到详细和全面的总结。文中综述了MTs在微生物合成苯丙烷类化合物、香料类化合物、激素和抗生素等重要天然产物的最新研究进展,重点阐述了应用代谢工程策略高效合成这些甲基化的天然产物,以及利用MTs拓展天然产物分子多样性的研究进展。最后,探讨了MTs应用于微生物合成天然产物所面临的挑战,并对利用MTs进一步高效生产结构和生物活性多样化的天然产物进行了展望。  相似文献   

8.
组合生物合成是公认的产生大量"非天然"的天然产物的一种有效方法,也是近年来药物创新与应用的研究热点和重要手段之一。目前,组合生物合成在聚酮类抗生素等生物活性物质的开发应用研究中已经取得了显著的成果。结合文献中的例子,回顾了运用组合生物合成在天然产物的基础上产生更多结构及功能多样性的聚酮类抗生素的方法和思路,并对某些方法所存在的问题与不足进行了讨论。  相似文献   

9.
The Sugar Model: Autocatalytic Activity of the Triose–Ammonia Reaction   总被引:1,自引:0,他引:1  
Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose–ammonia reaction product on the kinetics of a second identical triose–ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.  相似文献   

10.
天然产物结构复杂、活性多样,是新药开发的重要来源,对天然产物生物合成途径的研究,有利于探索酶催化的合成机制,促进复杂天然产物的应用。天然产物的生物合成由其对应的基因簇调控,其中大量天然产物生物合成基因簇(biosynthetic gene clusters,BGCs)在野生型菌株中无法表达或表达量低。对这些基因簇的研究,需要进行克隆表达,而如何克隆大片段基因簇并使其表达,从而发现新型天然产物是一个具有挑战性的问题。其中构建基因组文库、转化关联重组(transformation-associated recombination,TAR)、Red/ET重组等是克隆大片段基因簇的重要技术。本文从克隆技术的策略和应用两个方面,总结了这3种克隆技术目前的研究进展,讨论了目前大片段基因簇克隆技术面临的挑战,为研究大片段基因簇提供方法学借鉴。  相似文献   

11.
Adult Vanessa indica and Argyreus hyperbius frequently forage on flower nectar, but the former also utilizes tree sap and rotting fruits. Compared to flower nectar, these rotting foods are characterized by low sugar concentrations and the presence of fermentation products (ethanol and acetic acid). We suspected that gustatory responses by the receptors on the proboscis might differ in these species. Among the three sugars tested, sucrose elicited the greatest probing (behavioral) responses and was followed by fructose and glucose. A. hyperbius showed higher sugar sensitivity than V. indica in probing responsiveness. In electrophysiological responses of the proboscis sensilla, V. indica was slightly more sensitive than A. hyperbius to glucose and lower concentrations of the other sugars. The sugar reception in A. hyperbius was strongly inhibited by fermentation products, particularly acetic acid at natural concentrations. In contrast, V. indica was noticeably less susceptible to them than A. hyperbius, and its behavioral and sensory responses to sucrose were enhanced by 5-20% (w/v) ethanol. Thus, V. indica not only possesses tolerance to fermentation products but may perceive them as synergists for sugar reception. To utilize rotting foods, such tolerance might be more necessary than high sugar sensitivity.  相似文献   

12.
The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non‐ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge‐symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis.  相似文献   

13.
Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering.  相似文献   

14.
Xavier NM  Rauter AP 《Carbohydrate research》2008,343(10-11):1523-1539
The alpha,beta-unsaturated carbonyl function occurs in a wide variety of bioactive natural products. It is usually associated with the bioactivities of these compounds and acts as Michael acceptors for the addition of protein nucleophilic groups. The design and synthesis of sugars containing this functionality has provided a wide range of compounds, which can serve as building blocks of high synthetic versatility. This review deals with the chemistry of sugar-based molecules bearing singly linked or fused unsaturated lactones and ketones along with that of pyranoid enones and enonolactones. Examples are given of their syntheses and transformations into a variety of complex sugar derivatives such as branched-chain sugars, C-nucleosides, C-glycosyl derivatives, and various natural products, including selected analogues.  相似文献   

15.
Natural products represent an important source of drugs in a number of therapeutic fields, e.g. antiinfectives and cancer therapy. Natural products are considered as biologically validated lead structures, and evolution of compounds with novel or enhanced biological properties is expected from the generation of structural diversity in natural product libraries. However, natural products are often structurally complex, thus precluding reasonable synthetic access for further structure-activity relationship studies. As a consequence, natural product research involves semisynthetic or biotechnological approaches. Among the latter are mutasynthesis (also known as mutational biosynthesis) and precursor-directed biosynthesis, which are based on the cellular uptake and incorporation into complex antibiotics of relatively simple biosynthetic building blocks. This appealing idea, which has been applied almost exclusively to bacteria and fungi as producing organisms, elegantly circumvents labourious total chemical synthesis approaches and exploits the biosynthetic machinery of the microorganism. The recent revitalization of mutasynthesis is based on advancements in both chemical syntheses and molecular biology, which have provided a broader available substrate range combined with the generation of directed biosynthesis mutants. As an important tool in supporting combinatorial biosynthesis, mutasynthesis will further impact the future development of novel secondary metabolite structures.  相似文献   

16.
张博  戈惠明 《微生物学通报》2021,48(7):2407-2419
微生物天然产物是天然药物的重要组成部分,而天然产物的良好生物活性很大程度上取决于发挥药效的结构基团。这些特殊药效基团的生物合成,通常是利用小分子羧酸、氨基酸等结构简单的初级代谢产物,经过复杂的生物化学过程,最终合成结构复杂活性多样的天然产物。戊二酰亚胺类天然产物是一类重要的细菌来源天然产物,它们具有良好的生物活性,是潜在的先导化合物,部分化合物已被开发成分子探针。本文综述了近年来微生物来源的戊二酰亚胺类天然产物及其生物合成研究,包括Iso-Migrastatin、Lactimidomyin、Cycloheximide、Streptimidone、Gladiostatin、Sesbanimide等,对戊二酰亚胺类天然产物的生物合成研究,将有效促进通过基因组挖掘策略寻找新型戊二酰亚胺类天然产物。  相似文献   

17.
放线菌可以产生结构多样的天然产物, 其中包括很多重要的抗菌和抗肿瘤药物。糖基化修饰在天然产物中广泛存在, 糖基侧链的变化往往会影响天然产物的生物活性。本文综述了放线菌来源天然产物糖基化改造的研究进展。糖基侧链改造的方法主要分为体内基因工程和体外酶学法。运用这两种方法已经成功对多种天然产物进行了糖基侧链改造, 获得了大量带有新糖基修饰的天然产物, 其中有些生物活性得以提高。天然产物糖基侧链改造为新药开发提供了一个重要的途径。  相似文献   

18.
Toshima K 《Carbohydrate research》2006,341(10):1282-1297
In this short review article, several glycosylation methods that were developed in our laboratories, including stereocontrolled glycosylation using 2,6-anhydro-2,6-dideoxy-2,6-dithio sugars for obtaining 2,6-dideoxy glycosides, C-glycosylation employing unprotected sugars, environmentally benign glycosylation utilizing heterogeneous solid acids and ionic liquids, are recounted. In addition, representative and significant applications of these methods to the synthesis of complex natural products are described.  相似文献   

19.
Inhibition of Glycosylation of the Influenza Virus Hemagglutinin   总被引:24,自引:16,他引:8       下载免费PDF全文
d-Glucosamine and 2-deoxy-d-glucose interfere with the biosynthesis of the hemagglutinin glycoproteins. With increasing inhibitor concentrations a progressive decrease in size of the precursor HA and the cleavage products, HA(1) and HA(2) can be observed. The shift in molecular weight is paralleled by a decrease of the carbohydrate content. This was shown by labeling studies with radioactive sugars which revealed that the inhibitors block the incorporation into glycoproteins, whereas they have no or only slight effects on the uptake and activation of sugars. Under conditions of maximal inhibition, the hemagglutinin proteins lack all or most of their carbohydrates. These findings indicate that the inhibitory effect of d-glucosamine and 2-deoxy-d-glucose is due to an impairment of glycosylation. When glycosylation is inhibited, the precursor polypeptide is synthesized at normal rates. Its cleavage products, however, are very heterogeneous. This suggests that carbohydrate protects the hemagglutinin from proteolytic degradation.  相似文献   

20.
Racemic natural products are rarely produced in plants and microorganisms and are thought to be the result of nonenzymatic, spontaneous reactions. These compounds are often highly complex with multiple contiguous chiral centers that present a challenge to organic synthesis. Formation of these racemates often occurs by cyclization reactions that can generate multiple stereocenters from achiral precursors. Biomimetic synthesis of these racemic natural products provides support for their proposed nonenzymatic spontaneous biosynthesis. These elegant syntheses also provide scalable and efficient routes to these complex natural products. Although the number of reported racemic natural products is relatively low, an isolated natural product that has a very small optical rotation has been shown to be a true racemate. Thus, the occurrence of racemic natural products could be more common than thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号