首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Novel mutations in sarcomeric protein genes in dilated cardiomyopathy   总被引:11,自引:0,他引:11  
Mutations in sarcomeric protein genes have been reported to cause dilated cardiomyopathy (DCM). In order to detect novel mutations we screened the sarcomeric protein genes beta-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3), troponin T (TNNT2), and alpha-tropomyosin (TPM1) in 46 young patients with DCM. Mutation screening was done using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. The mutations in MYH7 were projected onto the protein data bank-structure (pdb) of myosin of striated muscle. In MYH7 two mutations (Ala223Thr and Ser642Leu) were found in two patients. Ser642Leu is part of the actin-myosin interface. Ala223Thr affects a buried residue near the ATP binding site. In MYBPC3 we found one missense mutation (Asn948Thr) in a male patient. None of the mutations were found in 88 healthy controls and in 136 patients with hypertrophic cardiomyopathy (HCM). Thus mutations in HCM causing genes are not rare in DCM and have potential for functional relevance.  相似文献   

2.
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere‐related genes have been implicated in HCM etiology, those encoding β‐myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fact, these account for around 50% of all cases related to sarcomeric gene mutations, which are collectively responsible for approximately 70% of all HCM cases. Here, we used denaturing high‐performance liquid chromatography followed by bidirectional sequencing to screen the coding regions of MYH7 and MYBPC3 in a cohort (n = 125) of Italian patients presenting with HCM. We found 6 MHY7 mutations in 9/125 patients and 18 MYBPC3 mutations in 19/125 patients. Of the three novel MYH7 mutations found, two were missense, and one was a silent mutation; of the eight novel MYBPC3 mutations, one was a substitution, three were stop codons, and four were missense mutations. Thus, our cohort of Italian HCM patients did not harbor the high frequency of mutations usually found in MYH7 and MYBPC3. This finding, coupled to the clinical diversity of our cohort, emphasizes the complexity of HCM and the need for more inclusive investigative approaches in order to fully understand the pathogenesis of this disease. J. Cell. Physiol. 226: 2894–2900, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
In this part of a series on cardiogenetic founder mutations in the Netherlands, we review the Dutch founder mutations in hypertrophic cardiomyopathy (HCM) patients. HCM is a common autosomal dominant genetic disease affecting at least one in 500 persons in the general population. Worldwide, most mutations in HCM patients are identified in genes encoding sarcomeric proteins, mainly in the myosin-binding protein C gene (MYBPC3, OMIM #600958) and the beta myosin heavy chain gene (MYH7, OMIM #160760). In the Netherlands, the great majority of mutations occur in the MYBPC3, involving mainly three Dutch founder mutations in the MYBPC3 gene, the c.2373_2374insG, the c.2864_2865delCT and the c.2827C>T mutation. In this review, we describe the genetics of HCM, the genotype-phenotype relation of Dutch founder MYBPC3 gene mutations, the prevalence and the geographic distribution of the Dutch founder mutations, and the consequences for genetic counselling and testing. (Neth Heart J 2010;18:248-54.)  相似文献   

4.
为研究中国人家族性肥厚型心肌病(HCM)的致病基因突变位点, 分析基因型与临床表型的相互关系, 文章在1个中国汉族HCM家系中进行心脏肌钙蛋白T (TNNT2) 基因、心脏肌球蛋白结合蛋白C (MYBPC3) 基因和心脏β-肌球蛋白重链 (MYH7) 基因的突变筛查, 聚合酶链式反应(PCR)扩增基因功能区外显子片段并对PCR产物进行测序分析。结果表明: 在该家系接受调查的7名成员中有4名成员携带MYH7基因c.1273G>A杂合突变, 该突变位点位于MYH7基因的14号外显子并使425位的甘氨酸(Gly)转换为精氨酸(Arg)。该突变首次在国内HCM家系中发现, 突变携带者的临床表型在家系内部呈现明显的异质性。该家系成员TNNT2及MYBPC3基因未发现突变且正常对照组相同位置未发现异常。MYH7基因是我国家族性 HCM的致病基因之一, 携带c.1273G>A突变的肥厚型心肌病患者临床表型差异明显, 提示可能有其它因素参与了肥厚型心肌病的发展过程。  相似文献   

5.
The aim of the current study was to determine the frequency of mutations in the beta-myosin heavy chain gene (MYH7) in a cohort of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) and their families, and to investigate correlations between genotype and phenotype. About 130 consecutive patients diagnosed with HCM or DCM (69 with HCM and 61 with DCM) attending the cardiology clinic of Post Graduate Institute of Medical Education and Research were screened for mutations in the MYH7 gene. The control group for genetic studies consisted of 100 healthy subjects. We report 14 mutations in 6 probands (5 probands in HCM and 1 proband in DCM) and their family members. Out of these 6 mutations, 3 are new and are being reported for the first time. One known mutation (p.Gly716Arg) was found to be "de novo" which resulted in severe asymmetric septal hypertrophy (31 mm) and resulted in the sudden cardiac death (SCD) of the proband at the age of 21 years. Further, a DCM causing novel mutation p.Gly377Ser was identified which resulted in the milder phenotype. The present study shows that there is genetic and phenotypic heterogeneity of cardiomyopathies in Indian population. Further, the location and type of mutation in a given sarcomeric gene determines the severity and phenotypic plasticity in cardiomyopathies.  相似文献   

6.
Familial hypertrophic cardiomyopathy (HCM) is a primary myocardial disease with a prevalence of 1 in 500 in human beings. Causative mutations have been identified in several sarcomeric genes, including the cardiac myosin binding protein C (MYBPC3) gene. Heritable HCM also exists in a large-animal model, the cat, and we have previously reported a mutation in the MYBPC3 gene in the Maine coon breed. We now report a separate mutation in the MYBPC3 gene in ragdoll cats with HCM. The mutation changes a conserved arginine to tryptophan and appears to alter the protein structure. The ragdoll is not related to the Maine coon and the mutation identified is in a domain different from that of the previously identified feline mutation. The identification of two separate mutations within this gene in unrelated breeds suggests that these mutations occurred independently rather than being passed on from a common founder.  相似文献   

7.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are caused by mutations in 14 and 15 different disease genes, respectively, in a part of the patients and the disease genes for cardiomyopathy overlap in part with that for limb-girdle muscular dystrophy (LGMD). In this study, we examined an LGMD gene encoding caveolin-3 (CAV3) for mutation in the patients with HCM or DCM. A Thr63Ser mutation was identified in a sibling case of HCM. Because the mutation was found at the residue that is involved in the LGMD-causing mutations, we investigate the functional change due to the Thr63Ser mutation as compared with the LGMD mutations by examining the distribution of GFP-tagged CAV3 proteins. It was observed that the Thr63Ser mutation reduced the cell surface expression of caveolin-3, albeit the change was mild as compared with the LGMD mutations. These observations suggest that HCM is a clinical spectrum of CAV3 mutations.  相似文献   

8.
L Pezzoli  ME Sana  P Ferrazzi  M Iascone 《Gene》2012,507(2):165-169
We describe a male patient affected by hypertrophic cardiomyopathy (HCM) with no point mutations in the eight sarcomeric genes most commonly involved in the disease. By multiple ligation-dependent probe amplification (MLPA) we have identified a multi-exons C-terminus deletion in the cardiac myosin binding protein C (MYBPC3) gene. The rearrangement has been confirmed by long PCR and breakpoints have been defined by sequencing. The 3.5kb terminal deletion is mediated by Alu-repeat elements and is predicted to result in haploinsufficiency of MYBPC3. To exclude the presence of other rare pathogenic variants in additional HCM genes, we performed targeted next-generation sequencing (NGS) of 88 cardiomyopathy-associated genes but we did not identify any further mutation. Interestingly, the MYBPC3 multi-exons deletion was detectable by NGS. This finding broadens the range of mutational spectrum observed in HCM, contributing to understanding the genetic basis of the most common inherited cardiovascular disease. Moreover, our data suggest that NGS may represent a new tool to achieve a deeper insight into molecular basis of complex diseases, allowing to detect in a single experiment both point mutations and gene rearrangements.  相似文献   

9.
Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n = 8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (> 10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM.  相似文献   

10.
Genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM) has been challenging because of the genetic and clinical heterogeneity. To determine the mutation profile of Chinese patients with HCM and to correlate genotypes with phenotypes, we performed a systematic mutation screening of the eight most commonly mutated genes encoding sarcomere proteins in 200 unrelated Chinese adult patients using direct DNA sequencing. A total of 98 mutations were identified in 102 mutation carriers. The frequency of mutations in MYH7, MYBPC3, TNNT2 and TNNI3 was 26.0, 18.0, 4.0 and 3.5 % respectively. Among the 200 genotyped HCM patients, 83 harbored a single mutation, and 19 (9.5 %) harbored multiple mutations. The number of mutations was positively correlated with the maximum wall thickness. We found that neither particular gene nor specific mutation was correlated to clinical phenotype. In summary, the frequency of multiple mutations was greater in Chinese HCM patients than in the Caucasian population. Multiple mutations in sarcomere protein may be a risk factor for left ventricular wall thickness.  相似文献   

11.

BACKGROUND:

Cardiomyopathies are a heterogeneous group of heart muscle disorders and are classified as 1) Hypertrophic Cardiomyopathy (HCM) 2) Dilated cardiomyopathy (DCM) 3) Restrictive cardiomyopathy (RCM) and 4) Arrhythmogenic right ventricular dysplasia (ARVD) as per WHO classification, of which HCM and DCM are common. HCM is a complex but relatively common form of inherited heart muscle disease with prevalence of 1 in 500 individuals and is commonly associated with sarcomeric gene mutations. Cardiac muscle troponin I (TNNI-3) is one such sarcomeric protein and is a subunit of the thin filament-associated troponin-tropomyosin complex involved in calcium regulation of skeletal and cardiac muscle contraction. Mutations in this gene were found to be associated with a history of sudden cardiac death in HCM patients.

AIM:

Therefore the present study aims to identify for mutations associated with troponin I gene in a set of HCM patients from Indian population.

MATERIALS AND METHODS:

Mutational analyses of 92 HCM cases were carried out following PCR based SSCP analysis.

RESULTS:

The study revealed band pattern variation in 3 cases from a group of 92 HCM patients. This band pattern variation, on sequencing revealed base changes, one at nt 2560 with G>T transversion in exon-5 region with a wobble and others at nt 2479 and nt 2478 with G>C and C>G transversions in the intronic region upstream of the exon 5 on sequencing. Further analysis showed that one of the probands showed apical form of hypertrophy, two others showing asymmetric septal hypertrophy. Two of these probands showed family history of the condition.

CONCLUSIONS:

Hence, the study supports earlier reports of involvement of TNNI-3 in the causation of apical and asymmetrical forms of hypertrophy.  相似文献   

12.
Familial hypertrophic cardiomyopathy (HCM) displays autosomal dominant inheritance with incomplete penetration of defective genes. Data concerning the familial occurrence of ventricular preexcitation, i.e. Wolff-Parkinson-White (WPW) syndrome, also indicate autosomal dominant inheritance. In the literature, only a gene mutation on chromosome 7q3 has been described in familial HCM coexisting with WPW syndrome to date. The present paper describes the case of a 7-year-old boy with HCM and coexisting WPW syndrome. On his chromosome 14, molecular diagnostics revealed a C 9123 mutation (arginine changed into cysteine in position 453) in exon 14 in a copy of the gene for beta-myosin heavy chain (MYH7). It is the first known case of mutation of the MYH7 gene in a child with both HCM and WPW. Since no linkage between MYH7 mutation and HCM with WPW syndrome has been reported to date, we cannot conclude whether the observed mutation is a common cause for both diseases, or this patient presents an incidental co-occurrence of HCM (caused by MYH7 mutation) and WPW syndrome.  相似文献   

13.
肥厚型和扩张型心肌病中,基因缺陷分别占发病的50%和35%,其病理生理机制,主要包括肌小节蛋白基因突变引起的收缩力产生缺陷,细胞骨架蛋白基因突变引起的收缩力传递缺陷等。心肌肌钙蛋白T将肌钙蛋白C和肌钙蛋白I连接到肌动蛋白和原肌球蛋白上,在心肌细胞收缩和舒张过程中发挥重要作用。在肥厚型和扩张型心肌病中发现了多种心肌肌钙蛋白T的基因突变,围绕心肌肌钙蛋白T的研究有助于阐明心肌病的发病机制。本文总结了心肌肌钙蛋白T基因突变在心肌病发病机制中的研究情况。  相似文献   

14.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Variants in MYBPC3, the gene encoding cardiac myosin-binding protein C (cMyBP-C), are the leading cause of HCM. However, the pathogenicity status of hundreds of MYBPC3 variants found in patients remains unknown, as a consequence of our incomplete understanding of the pathomechanisms triggered by HCM-causing variants. Here, we examined 44 nontruncating MYBPC3 variants that we classified as HCM-linked or nonpathogenic according to cosegregation and population genetics criteria. We found that around half of the HCM-linked variants showed alterations in RNA splicing or protein stability, both of which can lead to cMyBP-C haploinsufficiency. These protein haploinsufficiency drivers associated with HCM pathogenicity with 100% and 94% specificity, respectively. Furthermore, we uncovered that 11% of nontruncating MYBPC3 variants currently classified as of uncertain significance in ClinVar induced one of these molecular phenotypes. Our strategy, which can be applied to other conditions induced by protein loss of function, supports the idea that cMyBP-C haploinsufficiency is a fundamental pathomechanism in HCM.  相似文献   

15.
Role of troponin T in disease   总被引:5,自引:0,他引:5  
Several striated muscle myopathies have been directly linked to mutations in contractile and associated proteins. Troponin T (TnT) is one of the three subunits that form troponin (Tn) which together with tropomyosin is responsible for the regulation of striated muscle contraction. All three subunits of cardiac Tn as well as tropomyosin have been associated with hypertrophic cardiomyopathy (HCM). However, TnT accounts for most of the mutations that cause HCM in these regulatory proteins. To date 30 mutations have been identified in the cardiac TnT (CTnT) gene that results in familial HCM (FHC). The CTnT gene has also been associated with familial dilated cardiomyopathy (DCM). CTnT deficiency is lethal due to impaired cardiac development. A recessive nonsense mutation in the gene encoding slow skeletal TnT has been associated with an unusual, severe form of nemaline myopathy among the Old Order Amish. How each mutation leads to the diverse clinical symptoms associated with FHC, DCM or nemaline myopathy is unclear. However, the use of animal model systems, in particular transgenic mice, has significantly increased our knowledge of normal and myopathic muscle physiology. In this review, we focus on the role of TnT in muscle physiology and disease. (Mol Cell Biochem 263: 115–129, 2004)  相似文献   

16.
The R975W mutation, in the alternatively spliced exon 19 of vinculin (VCL) which yields the isoform metavinculin, was associated previously with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), and shown to alter in vivo organization of intercalated discs. We tested the hypothesis that alterations in the ubiquitously expressed, VCL-encoded protein, vinculin, may provide a pathogenic substrate for HCM. Comprehensive mutational analysis of VCL's 22 translated exons was performed in a cohort of 228 unrelated patients with genotype negative HCM, having no identifiable mutations in 12 HCM-associated myofilament/Z-disc-encoding genes. A novel missense mutation, L277M-VCL, involving a conserved residue was identified in a patient with severely obstructive, mid-ventricular hypertrophy. This mutation was not detected in 400 reference alleles. Immunohistochemical analysis of the proband's myectomy specimen demonstrated markedly reduced vinculin levels in the intercalated discs. We provide the first report of a cardiomyopathy associated mutation in vinculin. Despite its ubiquitous expression, the HCM-associated VCL mutation clinically yielded a cardiac-specific phenotype.  相似文献   

17.

Introduction

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant heart disease mostly due to mutations in genes encoding sarcomeric proteins. HCM is characterised by asymmetric hypertrophy of the left ventricle (LV) in the absence of another cardiac or systemic disease. At present it lacks specific treatment to prevent or reverse cardiac dysfunction and hypertrophy in mutation carriers and HCM patients. Previous studies have indicated that sarcomere mutations increase energetic costs of cardiac contraction and cause myocardial dysfunction and hypertrophy. By using a translational approach, we aim to determine to what extent disturbances of myocardial energy metabolism underlie disease progression in HCM.

Methods

Hypertrophic obstructive cardiomyopathy (HOCM) patients and aortic valve stenosis (AVS) patients will undergo a positron emission tomography (PET) with acetate and cardiovascular magnetic resonance imaging (CMR) with tissue tagging before and 4 months after myectomy surgery or aortic valve replacement + septal biopsy. Myectomy tissue or septal biopsy will be used to determine efficiency of sarcomere contraction in-vitro, and results will be compared with in-vivo cardiac performance. Healthy subjects and non-hypertrophic HCM mutation carriers will serve as a control group.

Endpoints

Our study will reveal whether perturbations in cardiac energetics deteriorate during disease progression in HCM and whether these changes are attributed to cardiac remodelling or the presence of a sarcomere mutation per se. In-vitro studies in hypertrophied cardiac muscle from HOCM and AVS patients will establish whether sarcomere mutations increase ATP consumption of sarcomeres in human myocardium. Our follow-up imaging study in HOCM and AVS patients will reveal whether impaired cardiac energetics are restored by cardiac surgery.  相似文献   

18.
19.
Mutations in genes for sarcomeric proteins such as titin/connectin are known to cause dilated cardiomyopathy (DCM). However, disease-causing mutations can be identified only in a small proportion of the patients even in the familial cases, suggesting that there remains yet unidentified disease-causing gene(s) for DCM. To explore the novel disease gene for DCM, we examined CRYAB encoding alphaB-crystallin for mutation in the patients with DCM, since alphaB-crystallin was recently reported to associate with the heart-specific N2B domain and adjacent I26/I27 domain of titin/connectin, and we previously reported a N2B mutation, Gln4053ter, in DCM. A missense mutation of CRYAB, Arg157His, was found in a familial DCM patient and the mutation affected the evolutionary conserved amino acid residue among alpha-crystallins. Functional analysis revealed that the mutation decreased the binding to titin/connectin heart-specific N2B domain without affecting distribution of the mutant crystallin protein in cardiomyocytes. In contrast, another CRYAB mutation, Arg120Gly, reported in desmin-related myopathy decreased the binding to both N2B and striated muscle-specific I26/27 domains and showed intracellular aggregates of the mutant protein. These observations suggest that the Arg157His mutation may be involved in the pathogenesis of DCM via impaired accommodation to the heart-specific N2B domain of titin/connectin and its disease-causing mechanism is different from the mutation found in desmin-related myopathy.  相似文献   

20.
The ubiquitin-proteasome system is responsible for the disappearance of truncated cardiac myosin-binding protein C, and the suppression of its activity contributes to cardiac dysfunction. This study investigated whether missense cardiac myosin-binding protein C gene (MYBPC3) mutation in hypertrophic cardiomyopathy (HCM) leads to destabilization of its protein, causes UPS impairment, and is associated with cardiac dysfunction. Mutations were identified in Japanese HCM patients using denaturing HPLC and sequencing. Heterologous expression was investigated in COS-7 cells as well as neonatal rat cardiac myocytes to examine protein stability and proteasome activity. The cardiac function was measured using echocardiography. Five novel MYBPC3 mutations—E344K, ΔK814, Δ2864-2865GC, Q998E, and T1046M—were identified in this study. Compared with the wild type and other mutations, the E334K protein level was significantly lower, it was degraded faster, it had a higher level of polyubiquination, and increased in cells pretreated with the proteasome inhibitor MG132 (50 μM, 6 h). The electrical charge of its amino acid at position 334 influenced its stability, but E334K did not affect its phosphorylation. The E334K protein reduced cellular 20 S proteasome activity, increased the proapoptotic/antiapoptotic protein ratio, and enhanced apoptosis in transfected Cos-7 cells and neonatal rat cardiac myocytes. Patients carrying the E334K mutation presented significant left ventricular dysfunction and dilation. The conclusion is the missense MYBPC3 mutation E334K destabilizes its protein through UPS and may contribute to cardiac dysfunction in HCM through impairment of the ubiquitin-proteasome system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号