首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In systems where individuals provide material resources to their mates or offspring, mate choice based on traits that are phenotypically correlated with the quality of resources provided is expected to be adaptive. Several models have explored the evolution of mating preference where there are direct benefits to choice, but few have addressed how a phenotypic correlation can be established between a male indicator trait and the degree of parental investment. We present a model with three quantitative traits: male and female parental investment and a potential male indicator trait. In our model, the expression of the "indicator" trait in offspring is affected by parental investment. These effects are referred to as maternal or paternal effects, or as "indirect genetic effects" when parental investment is heritable. With genetic variation for degree of parental investment, offspring harbor genes for parental investment that are unexpressed before mating but will affect the investment that they provide when expressed. Because the investment received from the parents affects the expression of the indicator trait, there will be a correlation between the genes for parental investment inherited and the degree of expression of the indicator trait in the offspring. The indicator trait is thus an "honest" signal for the degree of paternal investment.  相似文献   

2.
Parents should differentially invest in sons or daughters depending on the sex‐specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin‐based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce ‘sexy sons’ and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds.  相似文献   

3.
Parental care and sexual selection are highly interrelated. Understanding the evolution of sex‐specific patterns of parental care and sexual selection is a major focus of current evolutionary ecology research and requires empirical studies that simultaneously quantify components of both parental care and sexual selection in a single species. In this study, we quantify the dynamics of paternal care and sexual selection in the giant water bug Belostoma lutarium. Specifically, we examined (1) which sex potentially experiences sexual selection, (2) which traits, if any, are associated with attaining a mate by males and/or females (i.e. which traits are potentially under selection), and (3) which male and female traits, if any, relate to paternal care and offspring survival. Our findings suggest that (1) males are likely the choosier sex and that heavier females are more likely to mate than smaller females, (2) that female body weight is under selection if female weight is a trait that is stable within a given individual and (3) body size is sexually dimorphic, with females being the larger sex in this species. There was no evidence of male or female traits being linked to offspring survival in this species, although this is potentially due to the lack of egg predators in our study. We discuss our findings in relation to the evolution of sex roles and future avenues of research in this species.  相似文献   

4.
Knowledge of how genetic effects arising from parental care influence the evolution of offspring traits comes almost exclusively from studies of maternal care. However, males provide care in some taxa, and often this care differs from females in quality or quantity. If variation in paternal care is genetically based then, like maternal care and maternal effects, paternal effects may have important consequences for the evolution of offspring traits via indirect genetic effects (IGEs). IGEs and direct–indirect genetic covariances associated with parental care can contribute substantially to total heritability and influence predictions about how traits respond to selection. It is unknown, however, if the magnitude and sign of parental effects arising from fathers are the same as those arising from mothers. We used a reciprocal cross‐fostering experiment to quantify environmental and genetic effects of paternal care on offspring performance in the burying beetle, Nicrophorus vespilloides. We found that IGEs were substantial and direct–indirect genetic covariances were negative. Combined, these patterns led to low total heritabilities for offspring performance traits. Thus, under paternal care, offspring performance traits are unlikely to evolve in response to selection, and variation in these traits will be maintained in the population despite potentially strong selection on these traits. These patterns are similar to those generated by maternal care, indicating that the genetic effects of care on offspring performance are independent of the caregiver's sex.  相似文献   

5.
Females often prefer males with elaborate traits, even when they receive no direct benefits from their choice. In such situations, mate discrimination presumably has genetic advantages; selective females will produce offspring of higher genetic quality. Over time, persistent female preferences for elaborate secondary-sexual traits in males should erode genetic variance in these traits, eventually eliminating any benefit to the preferences. Yet, strong female preferences persist in many taxa. This puzzle is called the lek paradox and raises two primary questions: do females obtain genetic benefits for offspring by selecting males with elaborate secondary-sexual characteristics and, if so, how is the genetic variation in these male traits maintained? We suggest that indirect genetic effects may help to resolve the lek paradox. Maternal phenotypes, such as habitat selection behaviours and offspring provisioning, often influence the condition and the expression of secondary-sexual traits in sons. These maternal influences are commonly genetic based (i.e. they are indirect genetic effects). Females choosing mates with elaborate traits may receive ‘good genes’ for daughters in the form of effective maternal characteristics. Recognizing the significance of indirect genetic effects may be important to our understanding of the process and consequences of sexual selection.  相似文献   

6.
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward — females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term ‘good gene’ be used exclusively to refer to additive genetic variation in fitness, ‘compatible gene’ be used to refer to nonadditive genetic variation in fitness, and ‘genetic quality’ be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.  相似文献   

7.
The evolution of conspicuous sexually selected traits, such as horns or antlers, has fascinated biologists for more than a century. Elaborate traits can only evolve if they substantially increase reproduction, because they probably incur survival costs to the bearer. Total selection on these traits, however, includes sexual selection on sires and viability selection on offspring and can be influenced by changes in each of these components. Non-random associations between paternal phenotype and offspring viability may thus affect total selection on sexually selected traits. Long-term data on wild bighorn sheep (Ovis canadensis) provide the first evidence in nature that association between paternal phenotype and lamb viability strengthens total selection on horn size of adult rams, a sexually selected trait. The association of paternal horn length and offspring viability was sexually antagonistic: long-horned males sired sons with high viability but daughters of low viability. These results shed new light on the evolutionary dynamics of an iconic sexually selected trait and have important implications for sustainable wildlife management.  相似文献   

8.
Female mating preferences are often flexible, reflecting the social environment in which they are expressed. Associated indirect genetic effects (IGEs) can affect the rate and direction of evolutionary change, but sexual selection models do not capture these dynamics. We incorporate IGEs into quantitative genetic models to explore how variation in social environments and mate choice flexibility influence Fisherian sexual selection. The importance of IGEs is that runaway sexual selection can occur in the absence of a genetic correlation between male traits and female preferences. Social influences can facilitate the initiation of the runaway process and increase the rate of trait elaboration. Incorporating costs to choice do not alter the main findings. Our model provides testable predictions: (1) genetic covariances between male traits and female preferences may not exist, (2) social flexibility in female choice will be common in populations experiencing strong sexual selection, (3) variation in social environments should be associated with rapid sexual trait divergence, and (4) secondary sexual traits will be more elaborate than previously predicted. Allowing feedback from the social environment resolves discrepancies between theoretical predictions and empirical data, such as why indirect selection on female preferences, theoretically weak, might be sufficient for preferences to become elaborated.  相似文献   

9.
Mothers can non-genetically influence offspring phenotype in response to environmental conditions, including mate attractiveness. If such 'maternal effects' influence the offspring's reproduction and F2 generation, there is a mechanism for non-genetic trans-generational effects on phenotype, including epigenetic phenomena, with implications for evolution and population dynamics. We demonstrate in the zebra finch Taeniopygia guttata such non-genetic effects on offspring fecundity and the size of early stage F2 (eggs) in response to experimentally manipulated father's attractiveness. Our experimental design allowed us to deduce that the mechanism for this non-genetic paternal effect was via maternal investment in eggs. This affected female offspring size and, consequently, fecundity and F2 (egg) size. This demonstrates that female perception of mate attractiveness can have non-genetic, trans-generational fitness consequences and this may have important implications for the evolution of sexually selected traits and population dynamics.  相似文献   

10.
Quality differences between offspring sired by the social and by an extra-pair partner are usually assumed to have a genetic basis, reflecting genetic benefits of female extra-pair mate choice. In the zebra finch (Taeniopygia guttata), we identified a colour ornament that is under sexual selection and appears to have a heritable basis. Hence, by engaging in extra-pair copulations with highly ornamented males, females could, in theory, obtain genes for increased offspring attractiveness. Indeed, sons sired by extra-pair partners had larger ornaments, seemingly supporting the genetic benefit hypothesis. Yet, when comparing ornament size of the social and extra-pair partners, there was no difference. Hence, the observed differences most likely had an environmental basis, mediated, for example, via differential maternal investment of resources into the eggs fertilized by extra-pair and social partners. Such maternal effects may (at least partly) be mediated by egg size, which we found to be associated with mean ornament expression in sons. Our results are consistent with the idea that maternal effects can shape sexual selection by altering the genotype-phenotype relationship for ornamentation. They also caution against automatically attributing greater offspring attractiveness or viability to an extra-pair mate's superior genetic quality, as without controlling for differential maternal investment we may significantly overestimate the role of genetic benefits in the evolution of extra-pair mating behaviour.  相似文献   

11.
Males of many species use multiple sexual ornaments in their courtship display. We investigate the evolution of female sexual preferences for more than a single male trait by the handicap process. The handicap process assumes that ornaments are indicators of male quality, and a female benefits from mate choice by her offspring inheriting “good genes” that increase survival chances. A new handicap model is developed that allows equilibria to be given in terms of selection pressures, independent of genetic parameters. Multiple sexual preferences evolve if the overall cost of choice is not greatly increased by a female using additional male traits in her assessment of potential mates. However, only a single preference is evolutionarily stable if assessment of additional male traits greatly increases the overall cost of choice (more than expected by combining the cost of each preference independently). Any single preference can evolve, the outcome being determined by initial conditions. The evolution of one preference effectively blocks the evolution of others, even for traits that are better indicators of male quality. Comparison is made with sexual selection caused by Fisher's runaway process in which male traits are purely attractive characters. This shows that sexual preferences for multiple Fisher traits are likely to evolve alongside preference for a single handicap trait that indicates male quality. This is a general difference in the evolutionary outcome of these two causes of sexual selection.  相似文献   

12.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   

13.
Sexual selection is widely hypothesized to facilitate the evolution of reproductive isolation through divergence in sexual traits and sexual trait preferences among populations. However, direct evidence of divergent sexual selection causing intraspecific trait divergence remains limited. Using the wolf spider Schizocosa crassipes, we characterized patterns of female mate choice within and among geographic locations and related those patterns to geographic variation in male display traits to test whether divergent sexual selection caused by mate choice explains intraspecific trait variation. We found evidence of phenotypic selection on male behavior arising from female mate choice, but no evidence that selection varied among locations. Only those suites of morphological and behavioral traits that did not influence mate choice varied geographically. These results are inconsistent with ongoing divergent sexual selection underlying the observed intraspecific divergence in male display traits. These findings align with theory on the potentially restrictive conditions under which divergent sexual selection may persist, and suggest that long‐term studies capable of detecting periodic or transient divergent sexual selection will be critical to rigorously assess the relative importance of divergent sexual selection in intraspecific trait divergence.  相似文献   

14.
Theory predicts that parents adjust the sex ratio of their brood to the sexually selected traits of their mate because the reproductive success of sons may be more dependent on inherited paternal attractiveness than that of daughters. Empirical studies vary in terms of whether they support the theory, and this variation has often been regarded as evidence against sex ratio adjustment or has been ascribed to methodological differences. Applying phylogenetic meta‐analyses, we aimed to find biological explanations for the variation observed in songbirds. In particular, we tested the role extra‐pair paternity, because infidelity occurs in the majority of these species and may reduce the adaptive value of adjusting brood sex ratio to the phenotype of the social mate. However, we found that the variation in effect sizes was unrelated to the proportion of extra‐pair paternity. Thus future studies should consider that mate quality dependent sex ratio adjustment may be driven by direct (material) rather than indirect (genetic) benefits. We also tested if the effect sizes are influenced by whether the focal male trait is indeed under sexual selection as it is assumed by the sex allocation theory. We found that for male traits with proven role in sexual selection, effect sizes significantly differed from the null expectation of random production of sons and daughters. For male traits with only presumed sexual role in sexual selection, the deviation from the null expectation was less convincing, and the effect sizes were significantly smaller. This result indicates that studies that neglect the assumptions of the hypotheses concerned, may lead to the underestimation of the mean effect size and, eventually, false conclusions.  相似文献   

15.
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration).  相似文献   

16.
The costs of choice in sexual selection   总被引:15,自引:0,他引:15  
In Fisher's model of sexual selection female mating preferences are not subject to direct selection but evolve purely because they are genetically correlated with the favoured male trait. But when female choice is costly relative to random mating, for example in energy, time or predation risks, the evolution of female mating preference is subject also to direct selection. With costly female choice the set or line of equilibria found in models of Fisher's process no longer exists. On the line the male trait is under zero net selection, and there is no advantage for a female choosing a male with a more exaggerated character. Therefore any cost to choice causes choosiness to decline. In turn this lowers the strength of sexual selection and the male trait declines as well. So when Fisher's process is the sole force of sexual selection and female choice is costly, only transitory increases in female choice and the preferred male trait are possible. It has often been claimed that exaggerated male characters act as markers or revealers of the genetic quality of potential mates. If females choose their mates using traits that correlate with heritable viability differences then stable exaggeration of both female choice and the preferred male character is possible, even when female choice is costly. The offspring of choosy females have not only a Fisherian reproductive advantage but also greater viability. This suggests that in species with exaggerated male ornamentation, in which female choice is costly, it is likely that female mate choice will be for traits that correlate with male genetic quality.  相似文献   

17.
Species with paternal care show less exaggerated sexual ornamentation than those in which males do not care, although direct benefits from paternal care can vastly exceed the indirect benefits of mate choice. Whether condition-dependent handicaps can signal parenting ability is controversial. The good-parent process predicts the evolution of honest signals of parental investment, whereas the differential-allocation model suggests a trade-off between the attractiveness of a mate and his care-provisioning. I show that both alternatives can arise from optimal allocations to advertisement, parental investment and future reproductive value of the male, and that the male''s marginal fitness gain from multiple matings determines which option should apply. The marginal gain is diminishing if opportunities for polygyny or extra-pair copulations are limited. Advertisement is then expected to be modest and honest, indicating genetic quality and condition-dependent parental investment simultaneously. Increasing marginal gains are likely to be related to cases where genetic quality has a significant influence on offspring fitness. This alternative leads to differential allocation with stronger advertisement, more frequent extra-pair copulations, and diminished male care. Reliability is also reduced if allocation benefits have thresholds, e.g. if there is a minimum body condition required for survival, or if females use a polygyny-threshold strategy of mate choice.  相似文献   

18.
We analysed the morphology of nestling barn swallows (Hirundo rustica) in relation to their sex, and laying and hatching order. In addition, we studied sex-allocation in relation to parentage, parental age and expression of a secondary sexual character of fathers. Molecular sexing was conducted using the sex chromosome-linked avian CHD1 gene. Sex of the offspring was not associated with laying or hatching order. None of nine morphological, serological and immunological variables varied in relation to offspring sex. Sexual dimorphism did not vary in relation to parental age and expression of a paternal secondary sexual character. The proportion of sons declined with brood size. Individual males and females had a similar proportion of sons during consecutive breeding years. The proportion of sons of individual females declined with age, but increased with the expression of a secondary sexual character of their current mate. The generalized lack of variation in sexual dimorphism among nestlings may suggest that barn swallows do not differentially invest in sons vs. daughters. Alternatively, male offspring may require different parental effort compared to their female siblings in order to attain the same morphological state. The lack of variation in offspring sexual dimorphism with paternal ornamentation suggests no adjustment of overall parental effort in relation to reproductive value of the two sexes. However, male-biased sex ratio among offspring of highly ornamented males may represent an adaptive sex-allocation strategy because the expression of male ornaments is heritable and highly ornamented males are at a sexual selection advantage.  相似文献   

19.
H. Kokko 《Ecology letters》2001,4(4):322-326
“Good genes” models of mate choice are commonly tested by examining whether attractive males sire offspring with improved survival. If offspring do not survive better (or indeed survive less well), but instead inherit the attractiveness of their father, results are typically interpreted to support the Fisherian process, which allows the evolution of preferences for arbitrary traits. Here, I show that the above view is mistaken. Because of life‐history trade‐offs, an attractive male may perform less well in other components of fitness. A female obtains a “good genes” benefit whenever males show heritable variation in quality, even if high‐quality males invest so much in sexual advertisement that attractiveness has no positive correlation with any other life‐history trait than male mating success itself. Therefore, a negative correlation between attractiveness and viability does not falsify good genes, if mating with a high‐quality male results on average in superior offspring performance (mating success of sons included). The heritable “good genes” benefit can be sustained even if sexually antagonistic genes cause female offspring sired by high‐quality males to survive and reproduce less well. Neglecting the component of male mating success from measurements of fitness returns from sons and daughters will bias the advantage of mating with a high‐quality male downwards. This result may partly account for the rather weak “good genes” effects found in a recent meta‐analysis.  相似文献   

20.
Observations of male mate choice are increasingly common, even in species with traditional sex roles. In addition, female traits that bear the hallmarks of secondary sexual characters are increasingly reported. These concurrent empirical trends have led to the repeated inference that, even under polygyny, male mate choice is a mechanism of sexual selection on female traits. It is often either assumed or argued that in these cases females are competing for males of superior “quality”; females might experience sexual selection under polygyny if they compete for mates that provide either direct or indirect benefits. However, the theoretical foundation of this testable hypothesis remains largely uninvestigated. We develop a population genetic model to probe the logic of this hypothesis and demonstrate that, contrary to common inferences, male mate choice, variation in male quality (in the form of a direct fecundity benefit to females), and female ornamentation can coexist in a population without any sexual selection on female ornamentation taking place at all. Furthermore, even in a “best case scenario” where high quality males with a preference for ornamented females are able to mate disproportionately more often with them, the evolution of female traits by sexual selection may be relatively weak. We discuss the implication of these findings for ongoing empirical and theoretical research on the evolution of sexual‐signaling in females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号