首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thymus vulgaris is a gynodioecious species (in which females and hermaphrodites coexist) with a highly variable frequency of females among natural populations (5–95%) and a high average female frequency (60%). Sex determination involves both cytoplasmic genes responsible for male sterility, i.e. the female phenotype, and specific nuclear factors responsible for the restoration of male fertility, and thus a hermaphrodite phenotype. In this study, molecular markers of the mitochondrial genome have been used to quantify the cytoplasmic diversity in 11 clumps of individuals observed in four recently founded populations. The very low diversity within patches in conjunction with the strong diversity among patches strongly suggests that clumps of individuals are the result of single matrilinear families. In clumps that contain mainly females, all the analysed females showed the same cytoplasmic pattern. This pattern differed from that shown by neighbouring hermaphrodites, indicating that the determination of sex is locally cytoplasmic. A comparison of genetic diversity before and after fire in one population showed that disturbances may cause a reduction in genetic diversity and a concurrent induction of local cytoplasmic determination of sex. Such cytoplasmic determination of sex in colonizing populations, together with the greater seed set of females, may largely improve the colonizing ability of the species.  相似文献   

2.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

3.
In gynodioecious species, in which hermaphroditic and female plants co-occur, the maintenance of sexual polymorphism relies on the genetic determination of sex and on the relative fitness of the different phenotypes. Flower production, components of male fitness (pollen quantity and pollen quality) and female fitness (fruit and seed set) were measured in gynodioecious Beta vulgaris spp. maritima, in which sex is determined by interactions between cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. The results suggested that (i) female had a marginal advantage over hermaphrodites in terms of flower production only, (ii) restored CMS hermaphrodites (carrying both CMS genes and nuclear restorers) suffered a slight decrease in fruit production compared to non-CMS hermaphrodites and (iii) restored CMS hermaphrodites were poor pollen producers compared to non-CMS hermaphrodites, probably as a consequence of complex determination of restoration. These observations potentially have important consequences for the conditions of maintenance of sexual polymorphism in B. vulgaris and are discussed in the light of existing theory on evolutionary dynamics of gynodioecy.  相似文献   

4.
D E Wolf  J A Satkoski  K White  L H Rieseberg 《Genetics》2001,159(3):1243-1257
Datisca glomerata is an androdioecious plant species containing male and hermaphroditic individuals. Molecular markers and crossing data suggest that, in both D. glomerata and its dioecious sister species D. cannabina, sex is determined by a single nuclear locus, at which maleness is dominant. Supporting this conclusion, an amplified fragment length polymorphism (AFLP) is heterozygous in males and homozygous recessive in hermaphrodites in three populations of the androdioecious species. Additionally, hermaphrodite x male crosses produced 1:1 sex ratios, while hermaphrodite x hermaphrodite crosses produced almost entirely hermaphroditic offspring. No perfectly sex-linked marker was found in the dioecious species, but all markers associated with sex mapped to a single linkage group and were heterozygous in the male parent. There was no sex-ratio heterogeneity among crosses within D. cannabina collections, but males from one collection produced highly biased sex ratios (94% females), suggesting that there may be sex-linked meiotic drive or a cytoplasmic sex-ratio factor. Interspecific crosses produced only male and female offspring, but no hermaphrodites, suggesting that hermaphroditism is recessive to femaleness. This comparative approach suggests that the hermaphrodite form arose in a dioecious population from a recessive mutation that allowed females to produce pollen.  相似文献   

5.
Abstract.— Models allowing the coexistence of females and hermaphrodites in gynodioecious populations assume a simple genetic system of sex determination, a seed fitness advantage of females (compensation), and a negative pleiotropic effect of nuclear sex-determining genes on fitness (cost of restoration). In Lobelia siphilitica , sex is determined by both mitochondrial genes causing cytoplasmic male sterility (CMS) and nuclear genes that restore fertility when present with specific CMS haplotypes (nuclear restorers). I tested for a cost of restoration in L. siphilitica by measuring restored hermaphrodites for five fitness components and estimating the number of nuclear restorers by crosses with females carrying CMS1 and CMS2. A cost of restoration appears as a significant negative coefficient (B) in the regression model explaining fitness. I found that hermaphrodites carrying more nuclear restorer genes for CMS2 (or restorer genes of greater effect) have lower pollen viability (B =– 1.08, P = 0.001). This pollen viability cost of restoration in L. siphilitica supports the theoretical prediction that negative pleiotropic effects of restorers will exist in populations of gynodioecious species containing females. The existence of such a cost supports the view that gynodioecy can be a stable breeding system in nature.  相似文献   

6.
In many gynodioecious species the nuclear inheritance of male fertility is complex and involves multiple (restorer) genes. In addition to restoring plants from the female (male sterile) to the hermaphrodite (male fertile) state, these genes are also thought to play a role in the determination of the quantity of pollen produced by hermaphrodites. The more restorer alleles a hermaphroditic plant possesses, the higher the pollen production. To test this hypothesis I combined the results of crossing studies of the genetics of male sterility with phenotypic data on investment in stamens and ovules among the progeny of plants involved in these studies. The sex ratio (i.e. the frequency of hermaphrodites among the progeny), being a measure of the number of restorer alleles of the maternal plant, was positively related to the investment in pollen (male function), but negatively related to the investment in ovules (female function), in both field and greenhouse experiments. Consequently, a negative correlation between male and female function was observed (trade-off) and it is suggested that antagonistic pleiotropic effects of restorer genes might be the cause. Phenotypic gender, a measure combining investment in both pollen and ovules, was highly repeatable between field and greenhouse, indicating genetic determination of a more male- or female-biased allocation pattern among the studied plants.  相似文献   

7.
In many gynodioecious species, sex determination involves both cytoplasmic male‐sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.  相似文献   

8.
In gynodioecious plant species with nuclear‐cytoplasmic sex determination, females and hermaphrodites plants can coexist whenever female have higher seed fitness than hermaphrodites. Although the effect of self fertilization on seed fitness in hermaphrodites has been considered theoretically, this effect is far from intuitive, because it can either increase the relative seed fitness of the females (if it leads hermaphrodites to produce inbred, low quality offspring) or decrease it (if it provides reproductive assurance to hermaphrodites). Hence, empirical investigation is needed to document whether relative seed fitness varies with whether pollen is or is not limiting to seed production. In the current study, we measured fruit set and seed production in both females and hermaphrodites and the selfing rate in hermaphrodites in two experimental patches that differed in sex ratios in the gynodioecious plant Silene nutans. We found an impact of plant gender, patch, and their interaction, with females suffering from stronger pollen limitation when locally frequent. In the most pollen‐limited situation, the selfing rate of hermaphrodites increased and provided hermaphrodites with a type of reproductive assurance that is not available to females. By integrating both the beneficial (reproductive assurance) and costly effects (through inbreeding depression) of self‐pollination, we showed that whether females did or did not exhibit higher seed fitness depended on the degree of pollen limitation on seed production.  相似文献   

9.
Differences between plant sex morphs in pollen or resource availability may affect their relative fitness and thereby the sex ratio of dimorphic species. In gynodioecious species, in which hermaphroditic and female plants coexist, a variety of factors (e.g., hermaphrodite self-fertility or rarity or pollinator discrimination against females) might be expected to lead to stronger pollen limitation in females than in hermaphrodites. On the other hand, females have been found to be superior compared to hermaphrodites in low-nutrient conditions. The effects of supplemental hand-pollination and resource addition on the reproductive output of the self-fertile gynodioecious perennial Geranium sylvaticum (Geraniaceae) were tested for several populations that differ in their female frequency (4.4-23.0%). Both pollen and resource availability limited fruit set and the number of seeds produced per plant; however, seed set (i.e., the number of seeds produced per fruit) was limited only by resources. Because pollen limitation in females did not correlate with female frequency, our results suggest that pollen limitation in females does not depend on the frequency of the pollen-producing hermaphrodites. Furthermore, because pollen and resource availability limited reproductive output of both sex morphs, these factors may not contribute significantly to maintenance and evolution of gynodioecy in G. sylvaticum.  相似文献   

10.
Dufay M  Billard E 《Annals of botany》2012,109(3):505-519

Background

Gynodioecy is a reproductive system of interest for evolutionary biologists, as it poses the question of how females can be maintained while competing with hermaphrodites that possess both male and female functions. One necessary condition for the maintenance of this polymorphism is the occurrence of a female advantage, i.e. a better seed production or quality by females compared with hermaphrodites. Theoretically, its magnitude can be low when sterility mutations are cytoplasmic, while a 2-fold advantage is needed in the case of nuclear sterility. Such a difference is often thought to be due to reduced inbreeding depression in obligatory outcrossed females. Finally, variation in sex ratio and female advantage occur among populations of some gynodioecious species, though the prevalence of such variation is unknown.

Scope

By reviewing and analysing the data published on 48 gynodioecious species, we examined three important issues about female advantage. (1) Are reduced selfing and inbreeding depression likely to be the major cause of female advantage? (2) What is the magnitude of female advantage and does it fit theoretical predictions? (3) Does the occurrence or the magnitude of female advantage vary among populations within species and why?

Conclusions

It was found that a female advantage occurred in 40 species, with a magnitude comprised between 1 and 2 in the majority of cases. In many species, reduced selfing may not be a necessary cause of this advantage. Finally, female advantage varied among populations in some species, but both positive and negative correlations were found with female frequency. The role of reduced selfing in females for the evolution of gynodioecy, as well as the various processes that affect sex ratios and female advantage in populations are discussed.  相似文献   

11.
We investigated the sex morphs and frequency of females in 24 natural populations of the clonal, gynodioecious species Glechoma longituba. In addition to the presence of hermaphrodites and females, there were some individuals with intermediate sex expression that could not be categorized as either morph. The majority of populations contained a predominance of hermaphrodites, although female frequency varied from 0 to 100%. The sexual expression of individual ramets did not change over three consecutive years or when ramets were transplanted to different populations, but it did change over the course of a flowering season. Seeds from females weighed more than those from hermaphrodites. The seed set of hermaphrodites was relatively constant across populations; the seed set of females was higher than that of hermaphrodites in most populations, but lower in populations in which females occurred at a very high frequency because of pollen limitation. This led to a negative correlation being detected between the seed set of females and the frequency of females in a population. We postulated that the adjustment of sex expression within seasons could be an adaptive mechanism of reproductive assurance in this system.  相似文献   

12.
Variation in sex expression, flowering pattern, and seed production was studied in the self-compatible perennial herb Geranium maculatum in Illinois and Indiana. In a survey of eight populations, female (male-sterile) plants were found in seven (frequencies ranging from 0.5% to 24.3% [median 4.2%]), and intermediate plants (with partly reduced male function) were found in all populations. Gender variation and sexual differences in reproductive characters were studied in detail in two populations. One population consisted of 5% female, 27% intermediate, and 68% hermaphrodite plants; the other consisted of 1% female, 20% intermediate, and 79% hermaphrodite plants. Females produced smaller flowers and began flowering earlier than hermaphrodites. Intermediates produced flowers of an intermediate size and began flowering as early as females. Females and hermaphrodites did not differ in flower number, vegetative size, flowering frequency, survival, or seed size. However, females produced 1.6 times more seeds than hermaphrodites. Intermediates produced 1.3–1.6 times more seeds than hermaphrodites. Some between-year variation in sex expression was observed. Hand-pollination with outcross pollen produced two to four times as many seeds as hand-pollination with self-pollen. A lower outcrossing rate in hermaphrodites than in females may at least partly explain the lower seed set in hermaphrodites. The higher seed production of females, and possibly the high fecundity of the intermediates, should contribute to the maintenance of this sexual polymorphism.  相似文献   

13.
Gynodioecy, the phenomenon of having both hermaphrodite and female (i.e. male‐sterile) individuals within the same population, is an important intermediate step in the evolution of separate sexes in flowering plants. In this study, we investigated the floral micromorphology and microsporogenesis of the gynodioecious herb Glechoma longituba from four natural populations in Korea. The floral micromorphological characters of the different sex morphs were examined and compared using scanning electron microscopy (SEM), and the ultrastructure of microspores during microsporogenesis was studied. We also examined the development of anthers and pollen grains in the three sexual morphs (i.e. hermaphrodites, females, and gynomonoecious, i.e. individuals with a mixture of female and hermaphroditic flowers) by embryological investigation. The major difference in anther development between the three phenotypes was the early disintegration of the tapetal cells in the anthers of female flowers. While mature fertile pollen grains were found in both hermaphrodite and gynomonoecious phenotypes, females did not produce any pollen grains. In addition, both fertile and sterile pollen grains in gynomonoecious phenotypes were frequently observed. The results of the present study indicate that floral micromorphological characters were not distinct between sexual morphs of G. longituba, except for the structure of the inner cell surfaces of the anther. The observed tapetum abnormalities and degeneration of pollen grains in both gynomonoecious phenotypes and females may be the consequence of inbreeding depression in hermaphrodites.  相似文献   

14.
In many gynodioecious species, cytoplasmic male sterility genes (CMS) and nuclear male fertility restorers (Rf) jointly determine whether a plant is female or hermaphrodite. Equilibrium models of cytonuclear gynodioecy, which describe the effect of natural selection within populations on the sex ratio, predict that the frequency of females in a population will primarily depend on the cost of male fertility restoration, a negative pleiotropic effect of Rf alleles on hermaphrodite fitness. Specifically, when the cost of restoration is higher, the frequency of females at equilibrium is predicted to be higher. To test this prediction, we estimated variation in the cost of restoration across 26 populations of Lobelia siphilitica, a species in which Rf alleles can have negative pleiotropic effects on pollen viability. We found that L. siphilitica populations with many females were more likely to contain hermaphrodites with low pollen viability. This is consistent with the prediction that the cost of restoration is a key determinant of variation in female frequency. Our results suggest that equilibrium models can explain variation in sex ratio among natural populations of gynodioecious species.  相似文献   

15.
Resources, sex ratio, and seed production by hermaphrodites covary among natural populations of many gynodioecious plant species, such that they are functionally "more dioecious" as resources become more limiting. Strong correlations among these three factors confound our understanding of their relative roles in maintaining polymorphic sexual systems. We manipulated resource availability and sex ratio and measured their effects on relative fertility and phenotypic selection through the maternal fitness of females and hermaphrodites of Fragaria virginiana. Two results were particularly surprising. First, hermaphrodites showed little variability in fecundity across resource treatments and showed strong positive and context-dependent selection for fruit set. This suggests that variation in hermaphrodite seed production along resource gradients in nature may result from adaptation rather than plasticity. Second, although females increased their fecundity with higher resources, their fertility was unaffected by sex ratio, which is predicted to mediate pollen limitation of females in natural populations where they are common. Selection on petal size of females was also weak, indicating a minimal effect of pollinator attraction on variation in the fertility of female plants. Hence, we found no mechanistic explanation for the complete absence of high-resource high female populations in nature. Despite strong selection for increased fruit set of hermaphrodites, both the strength of selection and its contribution to the maintenance of gynodioecy are severely reduced under conditions where females have high relative fecundity (i.e., low resources and high-female sex ratios). High relative fertility plus high female frequency means that the evolution of phenotypic traits in hermaphrodites (i.e., response to selection via seed function) should be manifested through females because most hermaphrodites will have female mothers. Fruit set was never under strong selection in females; hence, selection to increase fruit set hermaphrodites will be less effective in maintaining their fruiting ability in natural populations with low resources and high female frequency. In sum, both sex ratio and resource availability influence trait evolution indirectly-through their effects on relative fertility of the sexes and patterns of selection. Sex ratio did not impose strong pollen limitation on females but did directly moderate the outcome of natural selection by biasing the maternal sex of the next generation. This direct effect of sex ratio on the manifestation of natural selection is expected to have far greater impact on the evolution of traits, such as seed-producing ability in hermaphrodites and the maintenance of sexual polymorphisms in nature, compared to indirect effects of sex ratio on relative fertility of the sexes.  相似文献   

16.
Females of gynodioecious species need to have reproductive advantages to compensate for their lack of male function and assure their maintenance in natural populations. Females may be more fecund than hermaphrodites because they reallocate resources from male to female function, avoid selfing and inbreeding depression, or produce higher quality offspring by screening arriving pollen better. A novel type of female advantage is proposed that may be important for several species of gynodioecious Caryophyllaceae. The anther smut fungus Microbotryum violaceum generally sterilizes its infected hosts but even without infection, spore deposition can negatively affect the reproduction of healthy individuals. In Gypsophila repens, flowers of hermaphrodite plants experimentally pollinated with both fungal spores and pollen produced significantly fewer fruits and seeds than those that received pollen alone, whereas female reproduction was unaffected by spore deposition. This unexplored reproductive advantage of females is probably due to the larger stigmatic surface in pistillate flowers, that allows pollen germination despite the presence of spores. Because longer stigmas may also lead to increased spore deposition, these results raise questions regarding the infection probability for each sex, possible sex-specific defense mechanisms, and the general role of pathogens in the maintenance of females in natural gynodioecious populations.  相似文献   

17.
Fine scale spatial structure (FSSS) of cytoplasmic genes in plants is thought to be generated via founder events and can be amplified when seeds germinate close to their mother. In gynodioecious species these processes are expected to generate FSSS in sex ratio because maternally inherited cytoplasmic male sterility genes partially influence sex expression. Here we document a striking example of FSSS in both mitochondrial genetic markers and sex in roadside populations of Silene vulgaris. We show that in one population FSSS of sexes influences relative fruit production of females compared to hermaphrodites. Furthermore, FSSS in sex ratio is expected to persist into future generations because offspring sex ratios from females are female-biased whereas offspring sex ratios from hermaphrodites are hermaphrodite-biased. Earlier studies indicated that pollen limitation is the most likely mechanism underlying negative frequency dependent fitness of females. Our results support the theoretical predictions that FSSS in sex ratio can reduce female fitness by decreasing the frequency at which females experience hermaphrodites. We argue that the influence of FSSS on female fitness is complementary to the influence of larger scale population structure on female fitness, and that population structure at both scales will act to decrease female frequencies in gynodioecious species. Better comprehension of the spatial structure of genders and genes controlling sex expression at a local scale is required for future progress toward understanding sex ratio evolution in gynodioecious plants.  相似文献   

18.
Dwarf ginseng (Panax trifolium L., Araliaceae) is a diphasic (“sex changing”) species in which one phase has staminate flowers and the other has hermaphroditic flowers. In order to determine the relative allocations of the hermaphroditic gender phase to male and female functions,variation in population gender phase ratios, pollen production and viability, and ovule and seed production were documented. Gender phase ratios are highly male-biased. Dwarf ginseng is self-compatible, and both gender phases have viable pollen capable of effecting fertilization. Males produce more flowers and more viable pollen per anther than hermaphrodites. The phenotypic gender of hermaphrodites is extremely female-biased; it is likely that hermaphrodites function essentially as females. Sexual selection may have a role in the evolution and maintenance of differences between the gender phases in allocation to male function.  相似文献   

19.
We studied seed germination and the growth and survivorship of seedlings of females and hermaphrodites ofPachycereus pringlei (cardon), a Mexican columnar cactus whose geographically variable breeding system includes trioecy and gynodioecy. Results of a two-year field experiment conducted near Bahia Kino, Sonora, Mexico and a ten-month laboratory experiment were similar and did not support the hypothesis that seedlings of females outperform those of hermaphrodites. In the field, percent seed germination and 2-yr seedling survivorship averaged 66% and 95%, respectively and did not differ among six treatment classes. Seedlings of hermaphrodites generally were larger than those of females at the end of both experiments. Selfed seedlings of hermaphrodites did not grow more slowly than outcrossed seedlings of hermaphrodites or females. Hermaphrodite seedlings performed best when pollinated with hermaphrodite pollen; female seedlings performed best with male pollen. We conclude that superior seedling performance cannot explain why females are able to coexist with hermaphrodites in populations of this cactus. Instead, we postulate that greater annual seed production, which averaged 1.6 times higher in females than in hermaphrodites in two years, may be sufficient to allow females to co-occur with hermaphrodites in this large, longlived plant, especially if sex determination involves cytoplasmic-nuclear inheritance.  相似文献   

20.
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号