首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
Recognizing the predominant mode of selection in hybrid systems is important in predicting the evolutionary fate of recombinant genotypes. Natural selection is endogenous if hybrid genotypes are at a disadvantage relative to parental species independent of environment. Alternatively, relative fitness can vary in response to environmental variation (exogenous selection), and hybrid genotypes can possess fitness values equal to or greater than that of parental species. I investigated the nature of natural selection in a leopard frog hybrid system by rearing larvae of hybrid and parental genotypes between Rana blairi and R. sphenocephala in 1000-L outdoor experimental ponds. Three hybrid (F1, backcrossj [B1], backcross2 [B2]) and two parental (R. blairi [BB] and R. sphenocephala [SS]) larval genotypes were produced by artificial fertilzations using adult frogs from a natural population in central Missouri. Resultant larvae were reared in single-genotype populations and two-way mixtures at equal total numbers from hatching to metamorphosis. In single-genotype ponds, F1 hybrid larvae had highest survival and BB were largest at metamorphosis. When F1 and SS larvae were mixed together, F1 hybrids had reduced survival and both F1 and SS larvae metamorphosed at larger body masses than when reared separately. When mixed, both B1 and SS larvae had shorter larval period lengths than when reared alone. Higher proportion of B1 metamorphs were produced when larvae were mixed with either parental species than when reared alone. Larval fitness components as measured by survival, body mass at metamorphosis, proportion of survivors metamorphosing, and larval period length for B2 hybrid and BB larvae were similar in single-genotype populations and mixtures. Comparison of composite fitness component estimates indicated hybrid genotypes possess equivalent or higher larval fitness relative to both parental species for the life-history fitness components measured. Despite reduced survival of F1 hybrids in mixtures, backcross-generation hybrid genotypes demonstrated high levels of larval growth, survival, and metamorphosis in mixtures with parental species. Consequently, this study suggests natural hybridization and subsequent backcrossing between R. blairi and R. sphenocephala can produce novel and relatively fit hybrid genotypes capable of successful existence with parental species larvae. Thus, the evolutionary fate of hybrid and parental genotypes in this system may be influenced by exogenous selection mediated by genotypic composition of larval assemblages.  相似文献   

2.
Asymmetric competition in larval amphibians can influence population dynamics and community structure. This density-dependent regulatory mechanism may be of particular importance for rare or endangered species such as the northern crawfish frog, Rana areolata circulosa. Interspecific competition of R. areolata with two congenerics, R. blairi and R. sphenocephala, was examined in artificial ponds. Analysis of covariance (differential mortality covariate) indicated that interspecific competition increased larval period length and decreased metamorphic body mass of R. areolata. The number of metamorphs produced was lower for R. blairi ponds when reared with R. areolata at high density. Body mass at metamorphosis was larger for R. sphenocephala when reared with R. areolata, suggesting that R. areolata facilitates larval growth in R. sphenocephala. These results indicate that the larval performance of R. areolata was reduced in the presence of interspecific competitors. Although many conservation efforts emphasize the preservation of critical habitat or particular rare species, interactive effects of biotic components in the focal community may also be important demographic regulators. Received: 11 December 1997 / Accepted: 15 April 1998  相似文献   

3.
Larvae of the salamander, Hynobius retardatus, are carnivorous, and even though there are two morphs, a typical morph and a broad-headed or “cannibal” morph, both are cannibalistic. They also sometimes eat other large prey, for example larvae of the frog, Rana pirica. In natural habitats, use of both conspecific and R. pirica larvae as food may contribute more strongly to high survival and substantially to fitness when larval densities are higher, because early-stage H. retardatus larvae sometimes experience scarcity of their typical prey. In cannibalistic oviparous amphibians, larger individuals that developed from larger eggs can more efficiently catch and consume larger prey and thus their survival may be better than that of smaller individuals developed from smaller eggs. Populations might therefore diverge in respect of egg size in response to variation in the density of conspecific and R. pirica larvae in natural ponds, with eggs being larger when larval density is higher. I examined how variance in hatchling size correlated with the incidence of cannibalism, and whether increasing larval density in natural ponds correlated with increasing egg size. Variance in initial larval body size facilitated cannibalism, and egg size increased as larval density in the ponds increased. In ponds with high larval density, where cannibalism and large prey consumption is a critical factor in offspring fitness, the production of fewer clutches with larger eggs, and thus of fewer and larger offspring, results in greater maternal fitness. Variation among the mean egg size in populations is likely to represent a shift in optimum egg size across larval density gradients.  相似文献   

4.
Abstract: A major challenge facing wildlife biologists is understanding why some species go extinct while others persist in the same habitat. To address this question, we investigated whether tree canopy closure over ponds affects growth and survival of rare and common tadpoles within ponds and mediates competitive interactions among species. We conducted 2 experiments to test whether canopy closure and competition may have contributed to the decline of the endangered dusky gopher frog (Rana sevosa), but allowed the persistence of the southern leopard frog (R. sphenocephala). We explored the response of both species to canopy closure in single-species and mixed- (1:1) species treatments of identical total tadpole density. An experiment using aquatic enclosures in temporary ponds showed that canopy closure reduced tadpole growth approximately 20% for both species. Survival of dusky gopher frog tadpoles was higher in mixed-species enclosures than in single-species enclosures. In a complementary experiment using artificial ponds, dusky gopher frogs had lower survival to metamorphosis, reduced size at metamorphosis, and produced a lower total biomass of metamorphosed juveniles in shaded ponds. Southern leopard frogs exhibited reduced body size at metamorphosis only when shaded. These studies suggest that pond canopy closure, not larval competition, may be contributing to the decline of the dusky gopher frog. The different responses to canopy closure suggest a potential mechanism for the loss of dusky gopher frogs and the persistence of southern leopard frogs. Removal of trees from historically open-canopy ponds may help facilitate the recovery of dusky gopher frogs and benefit similar species.  相似文献   

5.
Hybridogenetic Rana esculenta tadpoles display tolerance to extreme environmental conditions and fit criteria of the “general-purpose” genotype. A trade-off between generality and competitive ability is assumed to occur in asexual species, but the evidence remains unclear. The purpose of my experiment was to test the competitive ability of hemiclonal hybrid Rana esculenta tadpoles relative to the parental species Rana lessonae. Mixed and single genotype populations of R. esculenta and R. lessonae tadpoles were reared at three densities in artificial ponds. Survival of R. esculenta was higher than for R. lessonae tadpoles, but did not differ among densities. Body size at metamorphosis was the same between genotypes, but decreased with increasing density. Larval period was not affected by density, but R. esculenta tended to metamorphose earlier than R. lessonae. Percentage of individuals metamorphosing was higher for R. esculenta at both medium and high densities, but the same as R. lessonae at the low density. The difference in survival, body size, and larval period between tadpoles reared in single and mixed genotype populations was unaffected by genotype or density. The difference in the percentage of metamorphs, however, was strongly affected. The percentage of hybrids metamorphosing was 9% above the responses of single genotype populations at the highest density. Conversely, the percentage of R. lessonae metamorphosing was 12% below the responses of single genotype populations at the same density. Hybrid success in this experiment further supports the criterion of a “general-purpose” genotype without assumptions of reduced competitive ability.  相似文献   

6.
Variation in age and size at life‐history transitions is a reflection of the diversifying influence of biotic or abiotic environmental change. Examples abound, but it is not well understood how such environmental changes influence the age structure of a population. I experimentally investigated the effects of water temperature and food type on age and body size at metamorphosis in larvae of the salamander Hynobius retardatus. In individuals grown at a cold temperature (15 °C) or given Chironomidae as prey, the time to metamorphosis was significantly prolonged, and body size at metamorphosis was significantly enlarged, compared with individuals grown at a warmer temperature (20 °C) or fed larvae. I also examined whether larval density (a possible indicator of cannibalism in natural habitats) generated variation in the age structure of natural populations in Hokkaido, Japan, where the climate is subarctic. Natural ponds in Hokkaido may contain larvae that have overwintered for 1 or 2 years, as well as larvae of the current year, and I found that the number of age classes was related to larval density. Although cool water temperatures prolong the larval period and induce later metamorphosis, in natural ponds diet‐based enhancement of development translated into a shorter larval duration and earlier metamorphosis. Geographic variation in the frequency of cannibalism resulted in population differences in metamorphic timing in H. retardatus larvae. It is important to understand how environmental effects are ultimately transduced through individual organisms into population‐level phenomena, with the population response arising as the summation of individual responses. Without a thorough comprehension of the mechanisms through which population and individual responses to environmental conditions are mediated, we cannot interpret the relationship between population‐level and individual‐level phenomena. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 100–114.  相似文献   

7.
Vertebrate animals reproducing without genetic recombination typically are hybrids, which have large ranges, are locally abundant, and live in disturbed or harsh habitats. This holds for the hemiclonal hybridogenetic frog Rana esculenta: it is widespread in Europe and commonly is found in disturbed habitats such as gravel pits. We hypothesize that its widespread occurrence may either be the result of natural selection for a single hemiclone acting as a broadly adapted “general-purpose” genotype, or of interclonal selection, which maintains multiple hemiclones that each are relatively narrowly adapted and perform differently across environments, that is, the Frozen Niche Variation model. We tested these competing hypotheses using 1000-L outdoor artificial ponds to rear tadpoles of the parental species (Rana lessonae [LL] and Rana ridibunda [RR]) alone, and each of three hemiclones of Rana esculenta (GUT1, GUT2, GUT3) alone, and in mixed hemiclonal populations from hatching to metamorphosis. Tadpoles of three coexisting hemiclones from a single natural population (near Gütighausen, Switzerland) were reared in both two- and three-way mixtures in equal total numbers at high and low density. For each species and hemiclone, the proportion of tadpoles metamorphosing decreased as the density of tadpoles increased, with the three hemiclones spanning the range of values exhibited by the two parental species. LL and GUT1 tadpoles produced the highest proportion of metamorphs, whereas tadpoles of RR produced the fewest metamorphs at both densities. GUT1 tadpoles also produced the largest metamorphs at low density, GUT2 and GUT3 tadpoles produced smaller metamorphs than did GUT1 tadpoles at the low density, but the three hemiclones did not differ from each other at high density. The parental species (LL and RR) were intermediate in metamorphic size to the hemiclones at low density, but all genotypes converged on a similar size at high density. Length of the larval period also was affected by density, but its effect was dependent on genotype. GUT1 tadpoles had the shortest larval period at the low density, but larval period was longer and not different between GUT1, GUT3, and LL at high density. RR tadpoles had the longest larval period at both densities. The most dramatic results were that three genotypes (GUT1, GUT2, and RR) maintained rank order and increased days to metamorphosis from low to high density, whereas two genotypes (GUT3 and LL) changed rank order and decreased days to metamorphosis from low to high density. Mixtures of hemiclones in two- and three-way combinations facilitated the proportion of tadpoles metamorphosing for GUT1 and GUT2 at both densities, but only at the low density for GUT3 tadpoles. Results from this experiment are incompatible with the General-Purpose Genotype model as a global explanation of hybrid abundance in these frogs. Alternatively, the Frozen Niche Variation prediction of general performance superiority of clonal mixtures relative to single clone populations is strongly supported. The data confirm that fitness advantages of hemiclones change, depending on the environment, such that in temporally and spatially heterogeneous habitats like ponds, frequency-dependent selection among hemiclones may promote coexistence in hemiclonal assemblages. Yet, differential dispersal or colonization ability and historical factors affecting hemiclone distribution may also be important in shaping patterns of clonal coexistence.  相似文献   

8.
The performance of three genotypes (LL, LR, RR) of tadpoles resulting from the hybrid mating system of Rana lessonae (phenotype L, genotype LL) and Rana esculenta (phenotype E, genotype LR) was determined in artificial ponds. The effects of interspecific competition and pond drying on growth, development, and survival of tadpoles were used to measure the performance of genotypes and the relative fitness of offspring. Among the three genotypes, tadpoles from the homogametic mating RR had the lowest survival, growth, and development under all environmental conditions. Body size of the LL and LR genotype tadpoles at metamorphosis was reduced by competition and pond drying. Days to metamorphosis were also higher for the LL and LR genotype tadpoles in competition ponds. The proportion of individuals metamorphosing of each genotype was differentially lowered by competition and pond drying. The LL genotype produced more metamorphs than the LR genotype in the constant water level ponds, but the LR genotype produced more in drying ponds. In competition ponds, the LR genotype produced more metamorphs than the LL genotype, but the LL genotype produced more metamorphs in ponds without competition. The RR genotype produced no metamorphs in any of the experimental environments. Increased performance of LR offspring from the heterogametic mating, in harsh conditions, and reduced performance of RR offspring from the homogametic mating, even under favorable conditions, relative to the parental genotype (LL) suggests that the population dynamics of this hybridogenetic system is strongly dependent on mate choice in mixed populations and the subsequent pond environment females select for oviposition and larval development.  相似文献   

9.
We genetically characterize an unusual hybrid incompatibility phenotype manifest in F1 offspring of crosses between two populations of Tribolium castaneum. Hybrid larvae cease development at the third larval instar, persisting as ‘perpetually immature larvae’ thereafter. Although unable to produce viable adult hybrid offspring with one another, each population produces abundant, fertile hybrids with other populations, indicating a recent origin of the incompatibility and facilitating genetic studies. We mapped the paternal component of the hybrid phenotype to a single region, which exhibits two characteristics common to hybrid incompatibility: marker transmission ratio distortion within crosses and elevated genetic divergence between populations. The incompatible variation and an elevation in between‐population genetic divergence is associated with a region containing the T. castaneum ecdysone receptor homologue, a major regulatory switch, controlling larval moults, pupation and metamorphosis. This contributes to understanding the genetics of speciation in the Coleoptera, one of the most speciose of all arthropod taxa.  相似文献   

10.
Phenotypic plasticity has long been a focus of research, but the mechanisms of its evolution remain controversial. Many amphibian species exhibit a similar plastic response in metamorphic timing in response to multiple environmental factors; therefore, more than one environmental factor has likely influenced the evolution of plasticity. However, it is unclear whether the plastic responses to different factors have evolved independently. In this study, we examined the relationship between the plastic responses to two experimental factors (water level and food type) in larvae of the salamander Hynobius retardatus, using a cause-specific Cox proportional hazards model on the time to completion of metamorphosis. Larvae from ephemeral ponds metamorphosed earlier than those from permanent ponds when kept at a low water level or fed conspecific larvae instead of larval Chironomidae. This acceleration of metamorphosis depended only on the permanency of the larvae's pond of origin, but not on the conspecific larval density (an indicator of the frequency of cannibalism) in the ponds. The two plastic responses were significantly correlated, indicating that they may evolve correlatively. Once plasticity evolved as an adaptation to habitat desiccation, it might have relatively easily become a response to other ecological factors, such as food type via the pre-existing developmental pathway.  相似文献   

11.
12.
Scott DE  Casey ED  Donovan MF  Lynch TK 《Oecologia》2007,153(3):521-532
In organisms that have complex life cycles, factors in the larval environment may affect both larval and adult traits. For amphibians, the postmetamorphic transition from the aquatic environment to terrestrial habitat may be a period of high juvenile mortality. We hypothesized that lipid stores at metamorphosis may affect an animal’s success during this critical transition period. We examined variation in total lipid levels among years and sites in recently metamorphosed individuals of two pond-breeding salamander species, the marbled salamander (Ambystoma opacum) and the mole salamander (A. talpoideum), with limited data for one anuran species (southern leopard frog, Rana sphenocephala). Lipid levels were allometrically related to body size and ranged from 1.9 to 23.8% of body dry mass. The two salamander species differed in lipid allocation patterns, with A. opacum apportioning a higher percentage of total lipid reserves into fat bodies than A. talpoideum. Species differences in lipid allocation patterns may primarily reflect that large metamorphs will mature as one-year olds, and, regardless of species, will alter lipid compartmentalization accordingly. We used mark–recapture data obtained at drift fences encircling breeding ponds for 13 A. opacum cohorts to estimate the proportion of postmetamorphic individuals that survived to breed (age 1–4) and the mean age at first reproduction. Regression models indicated that size-corrected lipid level at metamorphosis (i.e., lipid residuals), and to a lesser extent rainfall following metamorphosis, was positively related to adult survival. Snout-vent length at metamorphosis was negatively related to age at first reproduction. We suggest that lipid stores at metamorphosis are vital to juvenile survival in the months following the transition from aquatic to terrestrial habitat, and that a trade-off shaped by postmetamorphic selection in the terrestrial habitat exists between allocation to energy stores versus structural growth in the larval environment.  相似文献   

13.
The evolution of environmentally-induced changes in phenotype or reaction norm implies both the existence at some time of genetic variation within a population for that plasticity measured by the presence of genotype x environment interaction (G x E), and that phenotypic variation affects fitness. Otherwise, the genetic structure of polygenic traits may restrict the evolution of the reaction norm by the lack of independent evolution of a given trait in different environments or by genetic trade-offs with other traits that affect fitness. In this paper, we analyze the existence of G x E in metamorphic traits to two environmental factors, larval density and pond duration in a factorial experiment with Bufo calamita tadpoles in semi-natural conditions and in the laboratory. Results showed no plastic temporal response in metamorphosis to pond durability at low larval density. The rank of genotypes did not change across different hydroperiods, implying a high genetic correlation that may constrain the evolution of the reaction norm. At high larval density a significant G x E interaction was found, suggesting the potential for the evolution of the reaction norm. A sibship (#1) attained the presumed “optimal” reaction norm by accelerating developmental rate in short duration ponds and delaying it in longer ponds. This could be translated in fitness by an increment in metamorphic survival and size at metamorphosis in short and long ponds respectively with respect to non-plastic sibships. However, genetic variability for plasticity suggests that optimal reaction norm for developmental rates may be variable and hard to achieve in the heterogeneous pond environment. Mass at metamorphosis was not plastic across different pond durations but decreased at high larval density. Significant adaptive plasticity for growth rates appeared in environments that differed drastically in level of crowding conditions, both in the field and in the laboratory. The fact that survival of juveniles metamorphosed at high density ponds was a monotonic function of metamorphic size, implies that response to selection may occur in this population of natterjacks and that genetic variability in plasticity may be a reliable mechanism maintaining adaptive genetic variation in growth rates in the highly variable pond environment.  相似文献   

14.
Eitam A  Blaustein L  Mangel M 《Oecologia》2005,146(1):36-42
Priority effects, i.e., effects of an early cohort on the performance of a later cohort, are generally studied between, and not within, species. The paucity of intraspecific assessments does not reflect a lack of ecological importance, but the technical problem associated with differentiating between conspecific cohorts. Here, we examine priority and density-dependent effects on larval Salamandra salamandra infraimmaculata. Larvae deposited by their mother early in the season have increased risk of desiccation, as rains at the beginning of the season are less frequent and unpredictable. However, breeding later may incur a high cost through conspecific priority effects, including cannibalism and competition. In an outdoor artificial pool experiment, we established densities of 0, 1, 2, 4 or 6 newly born larvae per pool (∼30 l), and 40 days later, added a second cohort of three newly born larvae to each pool. We differentiated between cohorts using natural individual-specific markings. For the early cohort, increasing density decreased survival and size at metamorphosis, and increased time to metamorphosis. For the late cohort, survival was 100% in pools without early-cohort larvae, but ranged between 13 and 33% in the presence of early-cohort larvae. Time to metamorphosis was significantly longer in the presence of low vs high densities of early-cohort larvae. Results suggest that early-cohort larvae are mainly subjected to exploitative competition and cannibalism mediated by food limitation, and that late-cohort larvae are subjected to cannibalism and interference due to size asymmetry between cohorts. The strong priority effects suggest that Salamandra females could increase their fitness by adjusting the number of larvae they deposit in specific pools to avoid cannibalism and intraspecific competition.  相似文献   

15.
Keith A. Berven 《Oecologia》1982,52(3):360-369
Summary The variation in larval developmental patterns in the wood frog, Rana sylvatica, along an elevation gradient of 1,000 m was experimentally studied. Larval populations at high elevation ponds had lower growth rates, developmental rates and were larger at all stages (including metamorphic climax) than larval populations developing in low elevation ponds. There was considerable variation among ponds within each elevation in both the length of the larval period and size at metamorphic climax. Reciprocal transplant experiments and controlled laboratory experiments revealed that most of the observed variation between high and low elevation populations could be explained by the effects of temperature induction during ontogeny. Significant genetic differences in growth rates and non-genetic maternal effects on developmental rates between larvae of mountain origin and lowland origin were also demonstrated. Selection in both environments has acted to minimize the prevailing environmental effect of pond temperature on developmental rates, but has accentuated the prevailing environmental effects on larval body size. As a consequence mountain larvae were capable of completing metamorphosis sooner and at a larger size in all environments than lowland larvae.  相似文献   

16.
Summary Hybridogenetic species possess a hybrid genome: half is clonally inherited (hemiclonal reproduction) while the other half is obtained each generation by sexual reproduction with a parental species. We addressed the question of whether different hemiclones of the hybridogenetic water frogRana esculenta are locally adapted for genetic compatibility with their sexual parental hostRana lessonae. We artificially crossedR. esculenta females of three hemiclones (GUT1, GUT2 and GUT3) from a pond near Gütighausen, Switzerland and one hemiclone (HEL1) from near Hellberg, Switzerland each toR. lessonae males from both populations. We also created primary hybrids by crossing the sameR. lessonae males from both populations toR. ridibunda females from Pozna, Poland (POZ). Tadpoles were then reared in the laboratory at two food levels to assess their performance related to early larval growth rate, body size at metamorphosis and length of the larval period. Tadpoles from hemiclones GUT1, GUT3 and POZ had higher growth rates than those from hemiclones GUT2 and HEL1 at the low food level, but at the high food level all growth rates were higher and diverged significantly between hemiclones GUT2 and HEL1. Tadpoles from the intrapopulational crosses GUT2 × GUT and HEL1 × HEL were larger at metamorphosis than those from the interpopulational crosses GUT2 × HEL and HEL1 × GUT. A high food level increased the size at metamorphosis in all tadpoles. A high food level also decreased the days to metamorphosis and tadpoles from GUT1, GUT3 and POZ had the shortest larval period whereas those from GUT2 and HEL1 had the longest. These results indicate that the differential compatibility of clonal genomes may play an important role in hybridogenetic species successfully using locally adapted sexual genomes of parental species and that interclonal selection is likely important in determining the distribution of hemiclones among local populations.  相似文献   

17.
To elucidate the importance of hybridization in evolution, it is necessary to understand the processes that affect hybridization frequency in nature. Here we focus on postpollination, prefertilization isolating mechanisms using two hybridizing species of Louisiana iris as a study system. We compared the effects of differential pollen-tube growth on the frequency of F1 hybrid formation in experimental crosses between Iris fulva and Iris hexagona. Analyses of seed production in fruits from pure conspecific and heterospecific pollinations revealed that more seeds were produced in the top half than the bottom half of fruits for all four crosses. Heterospecific pollen was applied to flowers of each species at zero to 24 h prior to conspecific pollen, thereby giving a head start to the foreign pollen. Using diagnostic isozyme markers, the frequency of hybrid progeny was examined at the level of the whole fruit and separately for the top and bottom halves of fruits. In both species, the proportion of hybrid seeds per fruit increased significantly with increasing head starts, suggesting that differences in pollen-tube growth rates affect the frequency of hybridization. In I. fulva fruits, the increase in hybrid seeds occurred in both halves of the fruits, but in I. hexagona an increase was only detected in the top half of fruits. These findings are consistent with a model that assumes attrition of pollen tubes due to the greater length of I. hexagona styles. While pollen-tube growth rate appears to be the most important factor affecting hybridization frequency in I. fulva, both pollen-tube growth rate and pollen-tube attrition appear to be important in I. hexagona.  相似文献   

18.
Assessment of patch quality by ladybirds: role of larval tracks   总被引:7,自引:0,他引:7  
Gravid females of the two-spot ladybird, Adalia bipunctata (L.), were deterred from ovipositing when kept in petri dishes that had previously contained conspecific larvae but not conspecific adults, or the larvae of another two species of ladybird, Adalia decempunctata (L.) and Coccinella septempunctata L. The deterrent effect was density dependent and mediated via a chloroform-soluble contact pheromone present in the larval tracks. Similarly, gravid females of C. septempunctata were deterred from ovipositing by conspecific larval tracks and chloroform extracts of these tracks, but not by the tracks or extracts of tracks of A. bipunctata larvae. That is, in ladybirds the larvae produce a species-specific oviposition-deterring pheromone. In the field, the incidence of egg cannibalism in ladybirds increases very rapidly with the density of conspecific eggs or larvae per unit area. Thus, in responding to the species specific oviposition deterring pheromone female ladybirds reduce the risk of their eggs being eaten and spread their offspring more equally between patches. Received: 14 March 1997 / Accepted: 26 August 1997  相似文献   

19.
Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd). We sought to determine how conditions at the larval stage can affect variation in development and patterns of Bd infection across amphibian life stages. We used outdoor experimental mesocosms to simulate natural pond habitats and manipulated the presence of Bd, the larval density, and the number of host species in larvae of two co-occurring amphibian species (Rana cascadae and Pseudacris regilla). We found that infection differed between species throughout development; P. regilla consistently had higher infection severity compared to R. cascadae. Additionally, while up to 100% of larvae were infected, only 18.2% of R. cascadae and 81.5% of P. regilla were infected after metamorphosis. This indicates that amphibians have the ability to recover from Bd infection as they undergo metamorphosis. Higher larval densities in P. regilla led to a shorter larval period, and individuals with a shorter larval period had lower infection severity. This led to a trend where P. regilla larvae reared at high densities tended to have lower infection prevalence after metamorphosis. We also found that exposure to Bd increased larval mortality and prolonged the larval period in P. regilla, indicating that P. regilla are susceptible to the negative effects of Bd as larvae. This study demonstrates that host density, species composition, and pathogen exposure may all interact to influence development and infection in hosts with complex life cycles.  相似文献   

20.
The impacts of different concentrations of the excretory-secretory products (ESPs) of the solitary ascidian Styela rustica (Linnaeus, 1767) and the sponge Halichondria panacea (Pallas, 1766) on the settlement, metamorphosis, and mortality rates of H. panacea larvae were studied in a laboratory experiment. At high concentrations, substances released into the environment by the ascidian S. rustica exerted a negative impact on the metamorphosis rate of sponge larvae. The exposure to moderate or high concentrations of ESPs from conspecific adults led to high mortality of larval sponges; however, low conspecific ESP concentrations markedly stimulated metamorphosis; larval mortality was low. Apparently, different concentrations of the same ESPs can have effects with a different strength and focus. This should be taken into account in the study of chemically mediated interactions between aquatic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号