首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
Fresh minimally processed shrimps were stored under modified atmosphere packaging (60% CO2:40% N2 for MAP A and 92.9% N2:5.1% CO2:2% O2 for MAP B) for 5 days at 3 °C. Total mesophiles, H2S forming bacteria, Pseudomonas spp., Brochothrix thermosphacta, firmness, color and sensory parameters were investigated throughout the whole time of the experiment. During storage period samples stored under MAP B managed to retain firmness values close to the initial values. All microbial populations growth was suppressed by the presence of MAP A. Samples stored under MAP B managed to maintain their firmness values close to the initial ones while MAP A samples were significantly less firm (p < 0.05).  相似文献   

2.
The conservation of food products within a controlled atmosphere is efficient in packaging. To extend the cold storage of raw milk, the effects of five gas atmospheres enriched with carbon dioxide and nitrogen were investigated. Treated and control milk were stored at 7 °C for 10 days and analyzed for microbial counts, pH, proteolysis and lipolysis. The addition of CO2, N2, or their mixture had a significant inhibitory effect on psychrotrophic growth. The generation times of these microorganisms were significantly longer in treated milk, particularly for yeasts where they amounted to 16.63 h. The maximum inhibition was observed when a gas mixture of 50 % CO2 and 50 % N2 was used. As a result, psychrotrophic growth was affected to 98 % whereas this inhibition did not exceed 78 % when CO2 and 41 % N2 were applied. Milk treatment under the conditions of 50 % CO2 and 50 % N2 gave significantly lower counts for all groups of psychrotrophs being more efficient against Enterobacteriaceae with 99.5 % of inhibition. Storage of raw milk under the tested atmospheres had a different effect on extracellular enzyme productions. Significant decreases in protease and lipase activities were observed during the storage at 7 °C. These enzyme activities were not detectable with pure CO2 and a 50 % CO2 and 50 % N2 mixture. N2 has shown to be the less efficient treatment against lipases (65 %) and proteases (95 %). With regard to growth, the course of the pH and the protease and lipase activities, the tested gas mixture of 50 % CO2 and 50 % N2 was more suitable for extending the shelf life of raw milk.  相似文献   

3.
Although carbon dioxide (CO2) is known to inhibit growth of most bacteria, very little is known about the cellular response. The food-borne pathogen Listeria monocytogenes is characterized by its ability to grow in high CO2 concentrations at refrigeration temperatures. We examined the listerial responses of different strains to growth in air, 100% N2, and 100% CO2. The CO2-induced changes in membrane lipid fatty acid composition and expression of selected genes were strain dependent. The acid-tolerant L. monocytogenes LO28 responded in the same manner to CO2 as to other anaerobic, slightly acidic environments (100% N2, pH 5.7). An increase in the expression of the genes encoding glutamate decarboxylase (essential for survival in strong acid) as well as an increased amount of branched-chain fatty acids in the membrane was observed in both atmospheres. In contrast, the acid-sensitive L. monocytogenes strain EGD responded differently to CO2 and N2 at the same pH. In a separate experiment with L. monocytogenes 412, an increased isocitrate dehydrogenase activity level was observed for cells grown in CO2-containing atmospheres. Together, our findings demonstrate that the CO2-response is a partly strain-dependent complex mechanism. The possible links between the CO2-dependent changes in isocitrate dehydrogenase activity, glutamate metabolism and branched fatty acid biosynthesis are discussed.  相似文献   

4.
Summary In a batch culture of Zymomonas mobilis the specific growth and specific glucose uptake rates and the molar growth yields were similar under CO2 and N2 sparging. The use of N2 or N2 with nucleation agents to strip dissolved CO2 from the medium did not improve growth rates or yields or enhance glucose consumption rates. Carbon dioxide produced no direct feedback inhibition on metabolic rates. The catabolic enzymes of Z. mobilis are not allosterically controlled by CO2.  相似文献   

5.
The role of carbon dioxide in glucose metabolism of Bacteroides fragilis   总被引:2,自引:0,他引:2  
The effect of CO2 concentration on growth and glucose fermentation of Bacteroides fragilis was studied in a defined mineral medium. Batch culture experiments were done in closed tubes containing CO2 concentrations ranging from 10% to 100% (with appropriate amounts of bicarbonate added to maintain the pH at 6.7). These experiments revealed that CO2 had no influence on growth rate or cell yield when the CO2 concentration was above 30% CO2 (minimum available CO2–HCO 3 - , 25.5 mM), whereas a slight decrease in these parameters was observed at 20% and 10% CO2 (available CO2–HCO 3 - , 17 and 8.5 mM, respectively). If CO2–HCO 3 - concentrations were below 10 mM, the lag phase lengthened and a decrease in maximal growth rate and cell yield were observed. The amount of acetate made decreased, while d-lactate concentration increased. A net production of CO2 allowed growth under conditions of extremely low concentrations of added CO2.When B. fragilis was grown in continuous culture with 100% CO2 or 100% N2, the dilution rate influenced the concentrations of acetate, succinate, propionate, d-lactate, l-malate and formate formed. Decreasing the dilution rate favored propionate and acetate production under both conditions. When the organism was grown with 100% N2, the amount of propionate formed was greater than the amount of succinate formed at all dilution rates. Except at slow dilution rates the reverse was true when 100% CO2 was used. B. fragilis was unable to grow at dilution rates faster than 0.154 h-1 when grown with 100% N2; the Y glc max was 67.9 g DW cells/mol glucose and m s was 0.064 mmol glucose/g DW·h. If the gas atmosphere was 100% CO2 the organism was washed out of the culture when the dilution rate exceeded 0.38 h-1; the Y glc max was 59.4 g DW cells/mol glucose and m s was 0.094 mmol glucose/g DW·h.Measurement of the phosphoenolpyruvate (PEP) carboxykinase (E.C. 4.1.1.49) with whole, permeabilized cells of B. fragilis showed an increase of specific enzyme activity with decreasing CO2 concentrations. The mechanisms used by B. fragilis to adjust to low levels of CO2 are discussed.  相似文献   

6.
The effects of air temperatures (4, 14 and 24°C) and modified atmosphere packaging (MAP) (0% CO2/100% N2; 20% CO2/80% N2 or 40% CO2/60% N2) on vigour of a Sclerotinia minor barley formulation during 6 months storage were evaluated. The study was performed using a multilevel factorial experimental design and response surface methodology (RSM) and aimed to determine the optimum combination of the above factors that resulted in retention of S. minor vigour during storage. Temperature and storage duration are the main factors that affect S. minor vigour. CO2 concentration had no effect on S. minor vigour during storage. However, oxygen displacement from storage containers by CO2 and N2 resulted in significant decrease of vigour reduction of S. minor as compared to ambient air control. An acceptable level of S. minor vigour reduction (ALVR) during storage was developed and determined to be ALVR=31.7±14.8% (mean±95% CI). Contour plot analysis indicated that the S. minor barley formulation at 0.4 water activity could be stored for 6, 12 or 26 weeks without exceeding the upper ALVR threshold (ca. 46%) at air temperatures not higher than 20, 17 or 11°C, respectively.  相似文献   

7.
Pseudomonas sp. strain M285 immobilized on diatomaceous earth beads was used to remove 3,5,6-trichloro-2-pyridinol (TCP) from industrial wastewater. Batch studies showed that immobilized Pseudomonas sp. strain M285 mineralized [2,6-14C]TCP rapidly; about 75% of the initial radioactivity was recovered as 14CO2. Transformation of TCP was inhibited by high concentrations of salt, and addition of osmoprotectants (proline and betaine at 1 mM) did not reduce the adverse effect of salt. TCP-containing wastewater (60–140 mg/l) was passed through columns containing immobilized Pseudomonas sp. strain M285 at increasing flow rates and increasing TCP concentrations; TCP removal of 80%–100% was achieved. Addition of nutrients, such as glucose and yeast extract, retarded TCP degradation. Growing cell cultures were found to be better inocula for immobilization than resting cells. Received: 5 February 1996 / Received last revision: 12 August 1996 / Accepted: 24 August 1996  相似文献   

8.
The shelf life of Graviera cheese, a full fat cheese produced in Heraklion (Crete Greece), was investigated. Graviera cheese was stored at 4 °C for up to 90 days in polyamide packages under three different modified atmosphere compositions. Control cheeses were packaged in air whereas MAP mixtures were MAP1: 40% CO2/55% N2/5% O2, MAP2: 60% CO2/40% N2 and MAP3: 50% CO2/50% N2. Sampling of product was carried out every 10 days to investigate its sensory quality and microbiological characteristics. Ten trained panelists participated in the sensory panel to evaluate the cheeses for external appearance (color, texture), taste, and flavor in a scale from 1 to 10 (1 very poor, 10 very good). The microbiological analysis revealed that there were no colonies of Staphylococcus aureus and Listeria monocytogenes whereas both Escherichia coli and Total Viable Counts (TVC) increased strongly in control samples but were inhibited under all MAP compositions.  相似文献   

9.
Abstract

The objective of this study was to investigate the effect of increasing CO2 concentration on the growth and the capability of Tetraselmis chui. in removal of nitrate, ammonium and phosphate from shrimp pond wastewater (SPWW). The factorial experimental design was used with the treatment of SPWW percentage in culture medium, namely: 100% SPWW, 75% SPWW + 25% Sea Water (SW) and 75% SW + 25% SPWW coupled with three CO2 concentration treatments: 390?ppm, 550?ppm and 1000?ppm using CO2 system. Growth of T. chui. for lengh of cultivation period tended to be higher at treatments of 390?ppm CO2 and 100% SPWW, however there was a declining growth over period of cultivation for both treatments. The growth rate of T. chui was higher for all percentage of SPWW treatments in culture medium at 390?ppm CO2 concentration compared to other percentage of SPWW treatments and CO2 concentration treatments. There was a decreasing of growth rate with increasing CO2 concentration at 100% SPWW and 75% SPWW + 25% SW in culture medium. Nitrogen removal efficiency and removal rate by T. chui. were strongly affected by CO2 concentration. However, there was no significant effect of increasing CO2 concentration to removal efficiency and rate of PO4 by T. chui.  相似文献   

10.
Lee TD  Reich PB  Tjoelker MG 《Oecologia》2003,137(1):22-31
Legumes, with the ability to fix atmospheric nitrogen (N), may help alleviate the N limitations thought to constrain plant community response to elevated concentrations of atmospheric carbon dioxide (CO2). To address this issue we assessed: (1) the effects of the presence of the perennial grassland N2 fixer, Lupinus perennis, on biomass accumulation and plant N concentrations of nine-species plots of differing plant composition; (2) leaf-level physiology of co-occurring non-fixing species (Achillea millefolium, Agropyron repens, Koeleria cristata) in these assemblages with and without Lupinus; (3) the effects of elevated CO2 on Lupinus growth and symbiotic N2 fixation in both monoculture and the nine-species assemblages; and (4) whether assemblages containing Lupinus exhibit larger physiological and growth responses to elevated CO2 than those without. This study was part of a long-term grassland field experiment (BioCON) that controls atmospheric CO2 at current ambient and elevated (560 µmol mol–1) concentrations using free-air CO2 enrichment. Nine-species plots with Lupinus had 32% higher whole plot plant N concentrations and 26% higher total plant N pools than those without Lupinus, based on both above and belowground measurements. Co-occurring non-fixer leaf N concentrations increased 22% and mass-based net photosynthetic rates increased 41% in plots containing Lupinus compared to those without. With CO2 enrichment, Lupinus monocultures accumulated 32% more biomass and increased the proportion of N derived from fixation from 44% to 57%. In nine-species assemblages, Lupinus N derived from fixation increased similarly from 43% to 54%. Although Lupinus presence enhanced photosynthetic rates and leaf N concentrations of co-occurring non-fixers, and increased overall plant N pools, Lupinus presence did not facilitate stronger photosynthetic responses of non-fixing species or larger growth responses of overall plant communities to elevated CO2. Non-fixer leaf N concentrations declined similarly in response to elevated CO2 with and without Lupinus present and the relationship between net photosynthesis and leaf N was not affected by Lupinus presence. Regardless of the presence or absence of Lupinus, CO2 enrichment resulted in reduced leaf N concentrations and rates of net photosynthesis.  相似文献   

11.
Propachlor (2-chloro-N-isopropylacetanilide) is an acetamide herbicide used in preemergence. In this study, we isolated and characterized a soil bacterium, Acinetobacter strain BEM2, that was able to utilize this herbicide as the sole and limiting carbon source. Identification of the intermediates of propachlor degradation by this strain and characterization of new metabolites in the degradation of propachlor by a previously reported strain of Pseudomonas (PEM1) support two different propachlor degradation pathways. Washed-cell suspensions of strain PEM1 with propachlor accumulated N-isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain PEM1 grew on propachlor with a generation time of 3.4 h and a Ks of 0.17 ± 0.04 mM. Acinetobacter strain BEM2 grew on propachlor with a generation time of 3.1 h and a Ks of 0.3 ± 0.07 mM. Incubations with strain BEM2 resulted in accumulation of N-isopropylacetanilide, N-isopropylaniline, isopropylamine, and catechol. Both degradative pathways were inducible, and the principal product of the carbon atoms in the propachlor ring was carbon dioxide. These results and biodegradation experiments with the identified metabolites indicate that metabolism of propachlor by Pseudomonas sp. strain PEM1 proceeds through a different pathway from metabolism by Acinetobacter sp. strain BEM2.  相似文献   

12.
The microbial spoilage of beef was monitored during storage at 5°C under three different conditions of modified-atmosphere packaging (MAP): (i) air (MAP1), (ii) 60% O2 and 40% CO2 (MAP2), and (iii) 20% O2 and 40% CO2 (MAP3). Pseudomonas, Enterobacteriaceae, Brochothrix thermosphacta, and lactic acid bacteria were monitored by viable counts and PCR-denaturing gradient gel electrophoresis (DGGE) analysis during 14 days of storage. Moreover, headspace gas composition, weight loss, and beef color change were also determined at each sampling time. Overall, MAP2 was shown to have the best protective effect, keeping the microbial loads and color change to acceptable levels in the first 7 days of refrigerated storage. The microbial colonies from the plate counts of each microbial group were identified by PCR-DGGE of the variable V6-V8 region of the 16S rRNA gene. Thirteen different genera and at least 17 different species were identified after sequencing of DGGE fragments that showed a wide diversity of spoilage-related bacteria taking turns during beef storage in the function of the packaging conditions. The countable species for each spoilage-related microbial group were different according to packaging conditions and times of storage. In fact, the DGGE profiles displayed significant changes during time and depending on the initial atmosphere used. The spoilage occurred between 7 and 14 days of storage, and the microbial species found in the spoiled meat varied according to the packaging conditions. Rahnella aquatilis, Rahnella spp., Pseudomonas spp., and Carnobacterium divergens were identified as acting during beef storage in air (MAP1). Pseudomonas spp. and Lactobacillus sakei were found in beef stored under MAP conditions with high oxygen content (MAP2), while Rahnella spp. and L. sakei were the main species found during storage using MAP3. The identification of the spoilage-related microbiota by molecular methods can help in the effective establishment of storage conditions for fresh meat.  相似文献   

13.
This study tested the hypothesis that inoculation of soybean (Glycine max Merr.) with a Bradyrhizobium japonicum strain (USDA110) with greater N2 fixation rates would enhance soybean response to elevated [CO2]. In field experiments at the Soybean Free Air CO2 Enrichment facility, inoculation of soybean with USDA110 increased nodule occupancy from 5% in native soil to 54% in elevated [CO2] and 34% at ambient [CO2]. Despite this success, inoculation with USDA110 did not result in greater photosynthesis, growth or seed yield at ambient or elevated [CO2] in the field, presumably due to competition from native rhizobia. In a growth chamber experiment designed to study the effects of inoculation in the absence of competition, inoculation with USDA110 in sterilized soil resulted in nodule occupation of >90%, significantly greater 15N2 fixation, photosynthetic capacity, leaf N and total plant biomass compared with plants grown with native soil bacteria. However, there was no interaction of rhizobium fertilization with elevated [CO2]; inoculation with USDA110 was equally beneficial at ambient and elevated [CO2]. These results suggest that selected rhizobia could potentially stimulate soybean yield in soils with little or no history of prior soybean production, but that better quality rhizobia do not enhance soybean responses to elevated [CO2].  相似文献   

14.
Saccharomyces cerevisiae was grown under aerobic and substrate-limiting conditions for efficient biomass production. Under these conditions, where the sugar substrate was fed incrementally, the growth pattern of the yeast cells was found to be uniform, as indicated by a constant respiratory quotient during the entire growing period. The effect of carbon dioxide was investigated by replacing portions of the nitrogen in the air stream with carbon dioxide, while maintaining the oxygen content at the normal 20% level, so that identical oxygen transfer rate and atmospheric pressure were maintained for all experiments with different partial pressures of carbon dioxide. Inhibition of yeast growth was negligible below 20% CO2 in the aeration mixture. Slight inhibition was noted at the 40% CO2 level and significant inhibition was noted above the 50% CO2, level, corresponding to 1.6 × 10?2M of dissolved CO2 in the fermentor broth. High carbon dioxide content in the gas phase also inhibited the fermentation activity of baker's yeast.  相似文献   

15.
To elucidate the basic food requirement of spiders, the important polyphagous predators of rice-plant insect pests, an attempt was made to measure the respiratory energy loss of fasting spiders, Lycosa pseudoannulata. Relationship between fresh (y) and dry (x) weights of spiders inhabiting the bottom layer of the rice-plant community was represented by the following allometric equation:y=0.428x0.872. The carbon dioxide production by previously fed and unfed females under the dark at 29°C 100% R. H. was measured by a titration technique. The relationship between fresh body weight and CO2 production by unfed animals could be represented by the equation M=aWb, M being the CO2 output per individual per day and W the fresh body weight. The constant b, which determines the slope of curve, was 0.808. Respiration of the adult female with 100 mg fresh weight was 1.155±0.250 mg CO2/100 g fresh weight/day or 48.69 mg CO2/g dry weight/day. This value corresponds to 35.81 cal/g fresh weight/day or 150.94 cal/g dry weight/day. Supposing the calorific content of spiders to be 5820 cal/g dry weight, rate of the respiratory energy loss to total energy of the body was estimated to be 2.60%. This rate did not strongly contradict with the loss of fresh body weight before and after the measurement. The metabolic rate showed remarkable fluctuation with changing food supply. The CO2 production of starved individuals decreased to 83.63±16.34% as compared with individuals which were fed before the measurement.  相似文献   

16.
A new bacterial strain isolated from soil consumed nitric oxide (NO) under oxic conditions by oxidation to nitrate. Phenotypic and phylogenetic characterization of the new strain PS88 showed that it represents a previously unknown species of the genus Pseudomonas, closely related to Pseudomonas fluorescens and Pseudomonas putida. The heterotrophic, obligately aerobic strain PS88 was not able to denitrify or nitrify; however, strain PS88 oxidized NO to nitrate. NO was not reduced to nitrous oxide (N2O). Nitrogen dioxide (NO2) and nitrite (NO2 ) as possible intermediates of NO oxidation to nitrate (NO3 ) could not be detected. NO oxidation was inhibited under anoxic conditions and by high osmolarity, but not by nitrite. NO oxidation activity was inhibited by addition of formaldehyde, HgCl2, and antimycin, and by autoclaving or disintegrating the cells, indicating that the process was enzyme-mediated. However, the mechanism remains unclear. A stepwise oxidation at a metalloenzyme and a radical mechanism are discussed. NO oxidation in strain PS88 seems to be a detoxification or a co-oxidation mechanism, rather than an energy-yielding process. Received: 15 November 1995 / Accepted: 24 February 1996  相似文献   

17.
Summary Carbon dioxide concentrations were elevated in three estuarine communities for an entire growing season. Open top chambers were used to raise CO2 concentrations ca. 336 ppm above ambient in monospecific communities of Scirpus olneyi (C3) and Spartina patens (C4), and a mixed community of S. olneyi, S. patens and Distichlis spicata (C4). Nitrogen and carbon concentration (% wt) of aboveground tissue was followed throughout growth and senescence. Green shoot %N was reduced and %C was unchanged under elevated CO2 in S. olneyi. This resulted in a 20%–40% increase in tissue C/N ratio. There was no effect of CO2 on either C4 species. Maximum aboveground N (g/m2) was unchanged in S. olneyi, indicating that increased productivity under elevated CO2 was dependent on reallocation of stored N. There was no change in the N recovery efficiency of S. olneyi in pure stand and a decrease in the mixed community. Litter C/N ratio was not affected by elevated CO2 suggesting that decomposition and N mineralization rates will also remain unchanged. Continued growth responses to elevated CO2 could, however, be limited by the ability of S. olneyi to increase the total aboveground N pool.  相似文献   

18.
We investigated the effects of spring barley growth on nitrogen (N) transformations and rhizosphere microbial processes in a controlled system under elevated carbon dioxide (CO2) at two levels of N fertilization (applied with 15N labelling). After 25 d, elevated CO2 (twice ambient) increased plant growth (dry weight, DW) by 141% at low‐N fertilization and by 60% at high‐N fertilization, but its positive effect on the root‐to‐shoot ratio was only significant at low‐N input. As a result of this plant response, elevated CO2 caused a greater soil CO2 efflux, rhizosphere soil DW, and soil microbial biomass under N‐limiting conditions than under high N availability. Elevated CO2 also caused a significant (P < 0.001) increase in the N recovered by the plant from both the labelled (Nf) and unlabelled (Ns + Nuf) N pools. The dynamics of N in the system as affected by elevated CO2 were driven principally by mineralization–immobilization turnover, with little loss by denitrification. Under N‐limiting conditions, there is evidence to suggest enhanced nutrient release from soil organic matter (SOM) pools—a process which could be defined as priming. The results of our experiment did not indicate a direct plant‐mediated effect of elevated CO2 on nitrous oxide (N2O) fluxes or denitrification activity.  相似文献   

19.
Anaerobic stimulation of root exudates and disease of peas   总被引:1,自引:0,他引:1  
Summary The relationships between root exudation, root disease and anaerobic root stresses were investigated. Sand culture and mist chamber studies demonstrated that low O2 and high CO2 reduced plant growth and increased the exudation of ethanol, amino acids, and sugars by pea roots. The relative loss of ethanol by roots was much greater in treatments with atmospheres of N2 containing 30% CO2 than in treatments of air containing 30% CO2 or N2. Ethanol was not detected in the nutrient solution of aerated plant roots. Atmospheres of N2 plus 30% CO2 caused 500% greater mycelial growth ofFusarium solani f. sp.pisi and 400% more disease of inoculated pea roots. Relative losses of four amino acids and four sugars were much greater in atmospheres of N2 plus 30% CO2 than in N2 or air.  相似文献   

20.
The log of the time interval between inoculation with Nectria galligena in October and the onset of rotting in apples held in air was proportional to the deficit between the temperature of incubation and 25°C, but temperature did not affect the rate of subsequent rot expansion. Rots expanded equally fast whether apples were held in dry or moist air. The quantity of rotted tissue obtained after incubating inoculated apples in atmospheres containing up to 12.5% CO2 increased with increasing concentrations of CO2 greater than 2.5%. The quantity of rotted tissue obtained in apples incubated in 10% CO2 was three times as great as that obtained after incubation in air. The incidence of natural rots was lower in apples stored at 4% CO2 than in those stored in air and rotting increased with increasing concentrations of CO2 higher than 4%. Colonies of N. galligena grew faster on malt agar plates incubated in 5% CO2 than in air, but growth was slower in 10% CO2 than in air. The quantity of benzoic acid per mg hyphae accumulated in developing lesions was similarly related to the CO2 concentrations up to 2.5% but decreased at higher concentrations, and the quantities found in apples stored in CO2 concentrations >5.0% CO2 were less than in those stored in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号