首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upstream spawning migrations of brown trout and sea trout were studied using stationary traps placed in Kirk Burn, a tributary of the upper Tweed. The sea trout spawning period extended from early November to the first week of December, while that of brown trout occurred from the middle of October to the third week of December. Sea trout were predominantly maiden spawners of ages 2.1+ and 3.1+ while brown trout were mostly age 2+ and 3+. Male-female sex ratios approximated 1:1.4 in sea trout but 6 : 1 in brown trout. Brown trout males participated in the spawning activities of sea trout. Low water conditions in Kirk Burn hindered the upstream movement of spawning sea trout, while sudden increases in water level appeared to stimulate the upstream migration of both brown trout and sea trout. The suggestion is advanced that the freshwater resident brown trout of the Tweed which migrate upstream into the smaller tributaries to spawn is wholly, or at least partially, the progeny of anadromous parents.  相似文献   

2.
Life-history effects of migratory costs in anadromous brown trout   总被引:2,自引:0,他引:2  
Mean size of sexually mature anadromous brown trout (sea trout) Salmo trutta in south-east Norway increased significantly with migratory distance ( D ) between the feeding area at sea and the spawning area in fresh water, from 32 cm for those spawning close to the river mouth to 43 cm at the spawning grounds 40 km inland. This was largely due to an increased size of the smallest anadromous spawners with increasing D . The raised mean size of the long-distance migrants is paralleled by an increased age at sexual maturity. Body mass at the same length of sea trout decreased with D in fresh water, meaning that the fish moving far inland was slimmer than those spawning near the coast. Gonadal mass of first-time spawning anadromous males declined significantly with D , and the fecundity and the ratio of fecundity over mean mass of the individual eggs adjusted for variation in fish mass, increased with D . There was no clear relationship between the ratio of anadromous to resident fish and D , probably because more variables than D , influence this relationship in the study streams.  相似文献   

3.
Trade-off between egg mass and egg number in brown trout   总被引:2,自引:0,他引:2  
Individual egg mass and fecundity increased with somatic mass in first time and repeat spawning wild anadromous and freshwater resident brown trout Salmo trutta . The egg mass was larger for similar-sized trout in south (58° N) than mid Norway (63° N), whereas fecundity was higher in mid- than in south Norway, making total gonadal investment similar in the two areas. Repeat spawners had heavier eggs than similar-sized first time spawners. The egg mass of residents was c. 10% larger than that of similar-sized first time spawning anadromous trout. Common garden experiments with offspring of wild anadromous trout showed no significant correlation between egg and somatic mass in first time spawners in two of the three populations studied. In the third population, a slight positive correlation was found. Similar results were found for repeat spawners. In the three populations, fecundity increased significantly with somatic mass in both first time and repeat spawners. Wild and hatchery-reared trout showed negative correlation between egg mass and fecundity when the effect of body size was excluded, indicating a trade-off between the two parameters. In wild trout, this was caused by variation among populations, whereas in hatchery fish, within population variation was observed in egg mass over fecundity. Furthermore, the egg mass of first time and repeat spawners were positively correlated, when adjusted for fish size. Size-specific gonadal investment was significantly higher in wild anadromous than resident trout. There was no significant difference in gonadal investment between first time and repeat spawners in wild anadromous trout. However, in the hatchery-reared trout, gonadal investment was significantly higher at repeat than first time maturation. The hatchery trout did not spawn naturally, but were artificially stripped. Among populations, a part of the variation in egg mass and fecundity is phenotypically plastic, a part appears genetically determined.  相似文献   

4.
To test whether seawater–acclimatization of hatchery–reared anadromous and freshwater resident brown trout before release increased the survival of adults, smolts were retained 0, 2, 4 and 8 weeks in sea water before release. Total recapture rate increased for smolts retained 4 and 8 weeks in sea water before release relative to the controls. This trend was more pronounced for Freshwater resident than for anadromous stocks, Offspring of anadromous fish stayed longer at sea than offspring of freshwater resident fish. Recapture rates in fresh water were higher for brown trout released in the river than in the fjord in the R, Drammen area, but not in the R. Imsa. In both cases, most fish were recaptured in the sea. Moving into the R. Imsa (relative to other rivers) appeared higher for fish released at the mouth of the river (93%) than in the fjord (47%). Judged from the recapture rates, sea survival appeared to be the same whether released in the fjord or at the mouth of the river.  相似文献   

5.
One- and two-year-old hatchery reared juveniles of seven freshwater resident and anadromous populations of Scandinavian brown trout were released in the outer and inner part of the Oslofjord and in the River Akerselva, flowing through the city of Oslo. Recapture rates were highest (mean 20.3%) for river released fish and lowest for those released in the outer (16.8%) and inner (12.1%) fjord. In general, recapture rate increased with fish size at release (r=0.76). When released in fresh water, most of the recaptures were from fresh water and when released in the fjord, most recaptures were from the fjord. In general, freshwater resident stocks showed a higher degree of freshwater residency than anadromous stocks. However, mean migratory distance was longer for freshwater resident than anadromous fish. Trout moved longer distances at sea when released in the outer than in the inner fjord. Specific growth rate and size at recapture varied among release sites and stocks; they were highest for fish released in the outer fjord and lowest for river-released trout. There was no consistent difference in sea growth between freshwater resident and anadromous stocks. Estimated total yield was highest for fish released in the outer fjord, whereas there was no significant difference in yields between trout released in the river and the inner Oslofjord.  相似文献   

6.
Distribution, growth and movement of River Usk brown trout (Salmo trutta)   总被引:3,自引:0,他引:3  
The River Usk catchment in South Wales supports mainly freshwater resident brown trout, with few anadromous fish. Electric fishing and netting revealed that age-class distribution differed between main river and tributary habitats, the latter environment acting as a nursery area for young fish. Few fry were found at main river sites. Age-class distribution also differed between tributary systems, and possible reasons are discussed. Trapping experiments indicated that trout move to main river habitat at 2+ yr. Lengths at age (back-calculated from scale reading) were similar for main river and tributary resident fish at 1 and 2 year, but main river fish were larger at 3 and 4 yr. This habitat shift and size difference is discussed with reference to current angling regulations.  相似文献   

7.
In order to increase the size of declining salmonid populations, supplementation programmes intentionally release fish raised in hatcheries into the wild. Because hatchery-born fish often have lower fitness than wild-born fish, estimating rates of gene flow from hatcheries into wild populations is essential for predicting the fitness cost to wild populations. Steelhead trout (Oncorhynchus mykiss) have both freshwater resident and anadromous (ocean-going) life history forms, known as rainbow trout and steelhead, respectively. Juvenile hatchery steelhead that 'residualize' (become residents rather than go to sea as intended) provide a previously unmeasured route for gene flow from hatchery into wild populations. We apply a combination of parentage and grandparentage methods to a three-generation pedigree of steelhead from the Hood River, Oregon, to identify the missing parents of anadromous fish. For fish with only one anadromous parent, 83% were identified as having a resident father while 17% were identified as having a resident mother. Additionally, we documented that resident hatchery males produced more offspring with wild anadromous females than with hatchery anadromous females. One explanation is the high fitness cost associated with matings between two hatchery fish. After accounting for all of the possible matings involving steelhead, we find that only 1% of steelhead genes come from residualized hatchery fish, while 20% of steelhead genes come from wild residents. A further 23% of anadromous steelhead genes come from matings between two resident parents. If these matings mirror the proportion of matings between residualized hatchery fish and anadromous partners, then closer to 40% of all steelhead genes come from wild trout each generation. These results suggest that wild resident fish contribute substantially to endangered steelhead 'populations' and highlight the need for conservation and management efforts to fully account for interconnected Oncorhynchus mykiss life histories.  相似文献   

8.
Strontium was determined in trout scales from a river where it is often difficult to distinguish between sea trout and resident brown trout by coloration or other visual marks. Sr values were compared with values in scales from brown trout caught above the anadromous stretch of the same river and in scales from a river where sea trout coloration is typical. In the first river, the Sr concentration was generally low, and as a mean only 50 ppm higher in scales from individuals classified as sea trout from the anadromous stretch than in brown trout scales from the upper stretch. There was no consistency between fish coloration and Sr concentration in scales from presumed sea trout on the anadromous stretch. Individuals with a typical sea trout coloration could have a lower concentration of Sr than individuals that were classified as uncertain sea trout by coloration. Fish weight did not seem to influence Sr levels. The mean Sr concentration in scales from the typical sea trout colored population in the second river was 2.8 times higher than that of the anadromous part of the first river. The high variability of Sr concentration in sea trout scales may be explained by differences in individual and population life history. The Sr levels reflect differences in saltwater exposure, either expressed by length of stay or concentration of salt in marine habitats. The study has shown that fish coloration is an inadequate mean to distinguish between resident and migratory trout. Nor is Sr determination of scales alone sufficient, because of low inter-group and high intra-group variability in some rivers. However, Sr values can give valuable information on individual and population migration on a large scale.  相似文献   

9.
For the first time, an overlooked aspect of partial migration was quantified using otolith microchemistry and brown trout, Salmo trutta, as a model species. Relative contributions of freshwater resident and anadromous female brown trout to mixed-stock sea trout populations in the Baltic Sea were estimated. Out of 236 confirmed wild sea trout sampled around the coast of Estonia 88% were of anadromous maternal origin and 12% were of resident maternal origin. This novel finding underscores the importance of the resident contingent in maintaining the persistence and resilience of the migratory contingent.  相似文献   

10.
Based on published data, we reviewed clinal variations in life-history characteristics of anadromous brown trout Salmo trutta from 102 European rivers at latitudes between 54 and 70° N. Growth rate in fresh water, mean smolt age, mean sea age at first sexual maturity, proportion of repeal spawners among adults, longevity, and length of adult life span exhibited latitudinal clines. Brown trout grew faster in fresh water, smolted and matured younger, lived fewer years but spawned more times in the south than in the north. The life-history traits studied were often correlated. Longevity, smolt age and sea age at maturity were negatively and smolt length and proportion of repeat spawners among adults were positively correlated with growth rate in fresh water. Longevity was positively correlated with smolt age and sea age at maturity. The latter also increased with increasing smolt age. None of these significant correlations among life history variables, except for those between smolt age and parr growth and proportion of repeat spawners and parr growth, are latitudinal effects. We do not know to what extent the latitudinal variation in life–history traits reflects phenotypic plasticity and to what extent it is caused by inherited differences among populations.  相似文献   

11.
Upstream spawning migrations of mature brown trout, S. trutta , and rainbow trout, S. gairdneri , were studied in Liawenee Canal, Great Lake from 1949 to 1985. Brown trout migrations normally occurred from early April to mid-May and rainbow trout from late August to early November. In 1983, 16 425 brown trout and 1338 rainbow trout passed through a fixed upstream diversion trap. Brown trout spawning migrations occurred predominantly over the temperature range 6–10° C, while rainbow trout migrated predominantly over the range 5–11° C. Migrations peaked at water temperatures of 7.6°C (males) and 7.8°C (females) for brown trout, and 8.3°C (males) and 9.6°C (females) for rainbow trout. Rainbow trout migrations occurred at high flow conditions and were positively correlated with canal flow increases, while brown trout migrated under low canal flow. Mean length, weight and condition of rainbow trout of both sexes decreased significantly during migrations. Female brown trout decreased in weight and condition but not in length; male brown trout did not change in condition despite decreases in both length and weight during migrations. Overall sex ratio was 2:1 (female:male) for both species, with the relative proportion of male fish decreasing as migrations progressed. Age composition changed during migrations; dominant age classes were 3 < 4 < 5 + years for both species. Comparison of length, weight, condition and age revealed minor changes during the 37-year period 1949–1985.  相似文献   

12.
  1. The brown trout Salmo trutta is characterised by both anadromous (sea trout) and resident populations, naturally occurring in Atlantic and Ponto-Caspian rivers. Sea trout are currently considered absent from rivers of the Mediterranean area, probably because of the non-optimal chemical–physical characteristics of the Mediterranean Sea. However, the occasional bycatch of smoltified S. trutta in the Adriatic Sea is well known among fishermen and the biological explanation of this phenomenon is still controversial. The aim of this study was to compare the genetic diversity of freshwater and marine brown trout to try to understand the factors underlying the presence of putative anadromous brown trout in the Adriatic Sea.
  2. In this study, we analysed the genetic diversity of: (1) wild brown trout collected from the Esino River (central Italy); (2) a domestic strain of brown trout used for stocking the study area; and (3) a sample of Adriatic sea trout collected near the outlet of the Esino River. Together with genetic analysis, we carried out scale analysis in order to track the freshwater/marine stages of the life cycle in the sea trout samples. The genetic characterisation was carried out by polymerase chain reaction–restriction fragment length polymorphism analysis of the mtDNA fragment ND-5/6 and the nuclear locus LDH-C1* and by genotyping 15 microsatellite loci. The genetic polymorphism obtained was used to investigate intra- and inter-population genetic diversity, rates of genetic introgression between wild and domestic samples and the origin of sea trout specimens by using assignment tests.
  3. Our genetic analyses demonstrated that the sea trout analysed in this study are from the domestic strain of Atlantic origin used in central Italy for stocking activities. The level of genetic introgression between native and domestic samples is high in the Esino River. The populations more resilient to introgressive hybridisation appeared to be those living in the portion of the river network dominated by carbonate rocks. Assignment tests (GeneClass) suggest the existence of a link between stocking efforts and the freshwater origin of the sea trout. In addition, data obtained from the analysis of scales, size measurement, and sex determination showed a pattern of smolt age, size, and sex ratio very similar to those observed in other anadromous populations.
  4. In conclusion, the present study highlighted that sea trout from the central Adriatic Sea originated from brown trout of Atlantic origin inhabiting the Esino River. Their seaward migratory behaviour could represent a consequence of an active migration instead of a passive displacement by water flow. Our results also showed that traditional stocking practices represent a negative activity for the conservation of the last Mediterranean native S. trutta populations.
  相似文献   

13.
An experiment to induce anadromy in a population of wild brook trout, Salvelinus fontinalis , was conducted near Sept-Iles, Quebec, in 1978–1979. Brook trout were captured from the Matamek River, tagged and transported to the Matamek River estuary during late spring and early summer, and allowed free movement between an impassable waterfall 0.7 km upstream and the sea. Fish were recaptured in autumn as they returned to fresh water. Over two years, 34.0% of the released fish were recaptured. Best returns were in the 2+ and 3+ age classes with 38.0 and 62.1% recaptured, respectively. Straying of transplanted fish appeared to be <1%. All age classes included sea run brook trout (sea trout) but the largest percentages of sea trout occurred in older fish. Growth was better in sea trout than in fish which did not develop anadromy, presumably a function of an increased food supply at sea. Severe tagging effects stunted growth and probably suppressed anadromy, especially among younger fish. Sexual characteristics of recaptured fish indicated suppressed maturation of gonads in sea trout compared to fish remaining in fresh water and there was a shift to a larger percentage of females in the sea trout. Comparisons between our results and data on other anadromous Salvelinus species underscore the potential for sea-ranching of trout and char as a moderate effort, high yield aquaculture technique.  相似文献   

14.
Growth, age composition, gonad maturity and patterns of life history strategy adoption in the population of Dolly Varden from the Kol River (West Kamchatka) are studied. Major factors controlling differentiation of juveniles and trajectories of ontogenetic developments, growth rate and gametogenesis in generations in particular years. The differentiation in a generation into anadromous and resident groupings is completed mainly at the age of 4 years. The process of formation of resident and migratory life history strategy in Dolly Varden is epigenetic. Bifurcation in the life of one specimen is observed once in life, and that in a generation is observed four times: at the first, the second, the third, or the fourth year. The life cycle of females from the Kol River is invariant until they reach the age of 1 year, and that in males is during the 4 years of the freshwater phase. In Kamchatka, all spawners, including precocious males, may reproduce several times during life.  相似文献   

15.
Population dynamics of brown trout (Salmo trutta) in a breton stream (France): The non-migrant spawners.The biological factors of the population dynamic of brown trout in a tributary of the Scorff river, have been studied during 4 years. The characteristics of the spawners, present in the stream before the spawning migration from the main river, are described. These spawners were born in the stream and stayed there during their entire life-span. Among mature fish the sex ratio was always in favour of males. During the third and the fourth years of life, annual mortality rate was 70% for males and 50% for females. 1+ spawners were these which had the best 0+ growth rate. A majority of males first matured at 1+ years of age. On an average, 1+ females were responsible for 25% of the total reproductive potential. The number of 3+ and 4+ females seemed to depend on the fishing effort.
  相似文献   

16.
Juvenile migration in brown trout: a consequence of energetic state   总被引:6,自引:0,他引:6  
1. We explored the mechanisms determining age and size at juvenile migration in brown trout Salmo trutta L. A 133Cs tracer methodology was used to estimate food consumption of juvenile brown trout in a Norwegian stream, and the energy budgets of early migrants and stream residents were compared.
2. Fast-growing brown trout migrated to the lake earlier and at a smaller body size than slower-growing individuals. The 2+ migrants were significantly larger than those that remained 1 or more years longer in the stream. The 3+ migrants were significantly larger than the 2+ migrants. Some fast-growing males matured in the stream, whereas all females left the stream before maturing sexually.
3. The food consumption and the energy budgets for 2+ migrants were more than four times higher than those of the resident 2+ fish. Total energy allocated to growth was also higher among migrants, and the total metabolic costs were five times higher among migrants than among resident fish.
4. The proportional energy allocation to growth among the 2+ migrants was much lower (about half) than that of those remaining longer in the stream. The reduction in the proportion of energy available for growth from age 1+ to 2+ was larger among migrants (88%) than among resident fish (68%). Reduction in the proportion of energy available for growth is a probable explanation for why migrations are initiated at age 2.
5. Our study supports the hypothesis that fast-growing individuals shift their niche earlier and at a smaller body size than slower-growing individuals because they maintain higher metabolic rates and are energetically constrained at a younger age by limited food resources than slow growers.  相似文献   

17.
1. Upstream and downstream migrating anadromous brown trout Salmo trutta were monitored daily in fish traps in the River Imsa in south-western Norway for 24 years, from 1976 to 1999. One-third of the fish descended to sea during spring (February–June) and two-thirds during autumn (September–January).
2. In spring, high water temperature appeared to influence the downstream descent. Large brown trout (> 30 cm, chiefly two or more sea sojourns) descended earlier and appeared less dependent on high water temperature than smaller and younger fish. The spring water flow was generally low and of little importance for the descent.
3. In autumn, the daily number of descending brown trout correlated positively with flow and negatively with water temperature.
4. Brown trout ascended from the sea between April and December, but more than 70% ascended between August and October. The number of ascending trout increased significantly with both decreasing temperature and flow during the autumn. This response to flow appeared to be the result of the autumn discharge which is generally high and most fish ascended at an intermediate flow of 7.5–10 m3 s−1 (which is low for the season).
5. In a river like the Imsa with low spring and high autumn flows, water temperature appears to be the main environmental factor influencing the timing and rate of spring descent, while both water temperature and flow seemed to influence the timing and rate of the autumn descent and ascent. These relationships make sea trout migrations susceptible to variation in climate and human impacts of the flow regime in rivers.  相似文献   

18.
The colonization by both resident and migrating spawner populations of brown trout and the characteristics of resident and migrating juveniles derived from the two populations have been studied in a brook and its tributary over 4 years. Resident trout spawns mainly in the upstream part of the brook and migrating trout in the downstream part. There are density and growth variations for the two age classes (0+ and 1 +) of juveniles in autumn according to the year and the environment. In the brook, the population of 0 + fish increases from downstream to upstream while the density of other age classes decreases. The migrating juvenile population of the brook changes annually and consists mainly of 1 s (one summer) individuals coming from the upper part. These individuals migrate generally in autumn and winter while young trout produced in the middle and downstream parts of the brook migrate mainly in the spring. The emigration process of the 0 + population decreases markedly from upstream to downstream and appears to be independent of the autumn length and sex ratio. In the tributary, most trout are 0+ years old, the population structure is different, and no migrating fish is observed. The results are discussed and a colonization strategy of the brown trout population in this brook is suggested.  相似文献   

19.
Brown trout (Salmo trutta) display extensive plasticity in marine migratory behaviours, with marine migrations considered to be an adaptive strategy which enables sea trout to maximize growth and reproductive potential. However, marine migrations are not without associated costs, including threats posed by ever-increasing salmon lice (Lepeophtheirus salmonis) infestations. In the present study, we used passive integrated transponder technology to characterize variability in sea trout migration behaviour amongst three catchments situated in a region of intensive salmon farming in central Norway. Specifically, we investigate how lice infestation, out-migration date and body size alter sea trout return rate and marine residence duration during the first out-migration to sea from each catchment. Distinct catchment-specific differences in sea trout out-migration size and the number of cohorts were observed, but larger body size did not guarantee the successful return of migrating trout. The marine residence duration of individuals that successfully returned to freshwater was positively correlated with lice infestation risk, suggesting for these individuals the lethal infestation threshold had not been reached. Our results also suggest that sea trout populations from lotic-dominated catchments are potentially at greater risk from size-related threats to their survival encountered during their marine migrations than sea trout from lentic-dominated catchments. The variability in sea trout migratory behaviour amongst catchments observed here emphasizes the challenges fisheries managers face when deciding the best actions to take to protect the anadromous portion of brown trout populations.  相似文献   

20.
The relationship between the strontium content of the outer layers of otoliths (an indication of recent marine, estuarine or riverine habitat use) and the strontium content of roe in ripe female brown trout Salmo trutta was examined in fish collected from the Pomahaka River and the lower reaches of the Clutha River, South Island, New Zealand. A close relationship was found between the strontium content of roe and the outer layers of otoliths. This finding suggests that spawned eggs collected from redds could potentially be used to track the extent of upstream spawning migrations by anadromous brown trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号