首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lantibiotics are small peptide antibiotics that contain the characteristic thioether amino acids lanthionine and methyllanthionine. As ribosomally synthesized peptides, lantibiotics possess biosynthetic gene clusters which contain the structural gene (lanA) as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP), regulation (lanR, lanK), export (lanT(P)) and immunity (lanEFG). The lantibiotic mersacidin is produced by Bacillus sp. HIL Y-85,54728, which is not naturally competent.

Methodology/Principal Findings

The aim of these studies was to test if the production of mersacidin could be transferred to a naturally competent Bacillus strain employing genomic DNA of the producer strain. Bacillus amyloliquefaciens FZB42 was chosen for these experiments because it already harbors the mersacidin immunity genes. After transfer of the biosynthetic part of the gene cluster by competence transformation, production of active mersacidin was obtained from a plasmid in trans. Furthermore, comparison of several DNA sequences and biochemical testing of B. amyloliquefaciens FZB42 and B. sp. HIL Y-85,54728 showed that the producer strain of mersacidin is a member of the species B. amyloliquefaciens.

Conclusions/Significance

The lantibiotic mersacidin can be produced in B. amyloliquefaciens FZB42, which is closely related to the wild type producer strain of mersacidin. The new mersacidin producer strain enables us to use the full potential of the biosynthetic gene cluster for genetic manipulation and downstream modification approaches.  相似文献   

2.

Background

Lantibiotics are heat-stable peptides characterized by the presence of thioether amino acid lanthionine and methyllanthionine. They are capable to inhibit the growth of Gram-positive bacteria, including Listeria monocytogenes, Staphylococcus aureus or Bacillus cereus, the causative agents of food-borne diseases or nosocomial infections. Lantibiotic biosynthetic machinery is encoded by gene cluster composed by a structural gene that codes for a pre-lantibiotic peptide and other genes involved in pre-lantibiotic modifications, regulation, export and immunity.

Methodology/Findings

Bacillus amyloliquefaciens GA1 was found to produce an antimicrobial peptide, named amylolysin, active on an array of Gram-positive bacteria, including methicillin resistant S. aureus. Genome characterization led to the identification of a putative lantibiotic gene cluster that comprises a structural gene (amlA) and genes involved in modification (amlM), transport (amlT), regulation (amlKR) and immunity (amlFE). Disruption of amlA led to loss of biological activity, confirming thus that the identified gene cluster is related to amylolysin synthesis. MALDI-TOF and LC-MS analysis on purified amylolysin demonstrated that this latter corresponds to a novel lantibiotic not described to date. The ability of amylolysin to interact in vitro with the lipid II, the carrier of peptidoglycan monomers across the cytoplasmic membrane and the presence of a unique modification gene suggest that the identified peptide belongs to the group B lantibiotic. Amylolysin immunity seems to be driven by only two AmlF and AmlE proteins, which is uncommon within the Bacillus genus.

Conclusion/Significance

Apart from mersacidin produced by Bacillus amyloliquefaciens strains Y2 and HIL Y-85,544728, reports on the synthesis of type B-lantibiotic in this species are scarce. This study reports on a genetic and structural characterization of another representative of the type B lantibiotic in B. amyloliquefaciens.  相似文献   

3.
Lantibiotics are ribosomally synthesized antimicrobial peptides with substantial posttranslational modifications. They are characterized by the unique amino acids lanthionine and methyllanthionine, which are introduced by dehydration of Ser/Thr residues and linkage of the resulting dehydrated amino acids with Cys residues. BLAST searches using the mersacidin biosynthetic enzyme (MrsM) in the NCBI database revealed a new class II lantibiotic gene cluster in Bacillus pseudomycoides DSM 12442. Production of an antimicrobial substance with activity against Gram-positive bacteria was detectable in a cell wash extract of this strain. The substance was partially purified, and mass spectrometric analysis predicted a peptide of 2,786 Da in the active fraction. In order to characterize the putative lantibiotic further, heterologous expression of the predicted biosynthetic genes was performed in Escherichia coli. Coexpression of the prepeptide (PseA) along with the corresponding modification enzyme (PseM) resulted in the production of a modified peptide with the corresponding mass, carrying four out of eight possible dehydrations and supporting the presence of four thioether and one disulfide bridge. After the proteolytic removal of the leader, the core peptide exhibited antimicrobial activity. In conclusion, pseudomycoicidin is a novel lantibiotic with antimicrobial activity that was heterologously produced in E. coli.  相似文献   

4.
Lantibiotics are gene-encoded antimicrobial peptides that are distinguished by the presence of the unusual structures, lanthionine and β-methyllanthionine, which are introduced through enzyme-catalysed post-translational modification. Lantibiotics can be subdivided on the basis of the nature of the enzyme(s) which catalyse this reaction. Lantibiotic synthetases, generically designated LanM, which catalyse the dehydration of serines (and threonines) followed by the formation lanthionine (and β-methyllanthioine), are responsible for the synthesis of the largest subdivision, type 2. One can take advantage of the conserved nature of LanM proteins to screen for and bioinformatically characterize novel lantibiotic-encoding operons in genome-sequenced microorganisms. Having employed this strategy with success previously, here we update the investigation to reveal the existence of 124 LanM homologs encoded within genome-sequenced microbes. Further analysis focussed specifically on 9 novel lantibiotic gene clusters in Anaerocellum thermophilum DSM 6725, Anaerococcus tetradius ATCC 35098, Corynebacterium matruchotti ATCC 33806, Streptococcus suis 98HAH33, Geobacillus sp. G11MC16, Nostoc punctiforme PCC 73102 (× 2; one on plasmid and one on the chromosome) and Streptococcus pneumoniae CDC 0288-04 and TIGR4. Furthermore, screening of metagenomic datasets revealed 11 additional LanM-encoding genes from a variety of environments. The alignment of these LanM proteins facilitated a detailed investigation of conserved domains and led to the design of an improved set of degenerate primers which can be employed in the laboratory to identify strains containing type 2 lantibiotic gene clusters.  相似文献   

5.
Lantibiotics are lanthionine ring containing natural products that belong to the class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Recent expansion in the availability of microbial genome data and in silico analysis tools have accelerated the discovery of these promising alternatives to antibiotics. Following the genome-mining approach, a biosynthetic gene cluster for a putative two-component lantibiotic, roseocin, was identified in the genome of an Actinomycete, Streptomyces roseosporus NRRL 11379. Posttranslationally modified lanthipeptides of this cluster were obtained by heterologous expression of the genes in Escherichia coli, and were in vitro reconstituted to their bioactive form by exploiting commercial proteases like endoproteinase GluC, and proteinase K. The two peptides displayed synergistic antimicrobial activity against Gram-positive bacteria including the WHO high-priority pathogens, MRSA and VRE. Structural characterization confirmed the installation of four (methyl)lanthionine rings with an indispensable disulfide bond in the α-peptide, and six (methyl)lanthionine rings in the β-peptide, by a single promiscuous lanthionine synthetase, RosM. Roseocin is the first two-component lantibiotic from a non-Firmicute, with extensive lanthionine bridging.  相似文献   

6.
7.
Lantibiotics are ribosomally synthesized peptide antimicrobials which contain considerable posttranslational modifications. Given their usually broad host range and their highly stable structures, there have been renewed attempts to identify and characterize novel members of the lantibiotic family in recent years. The increasing availability of bacterial genome sequences means that in addition to traditional microbiological approaches, in silico screening strategies may now be employed to the same end. Taking advantage of the highly conserved nature of lantibiotic biosynthetic enzymes, we screened publicly available microbial genome sequences for genes encoding LanM proteins, which are required for the posttranslational modification of type 2 lantibiotics. By using this approach, 89 LanM homologs, including 61 in strains not known to be lantibiotic producers, were identified. Of these strains, five (Streptococcus pneumoniae SP23-BS72, Bacillus licheniformis ATCC 14580, Anabaena variabilis ATCC 29413, Geobacillus thermodenitrificans NG80-2, and Herpetosiphon aurantiacus ATCC 23779) were subjected to a more detailed bioinformatic analysis. Four of the strains possessed genes potentially encoding a structural peptide in close proximity to the lanM determinants, while two, S. pneumoniae SP23-BS72 and B. licheniformis ATCC 14580, possess two potential structural genes. The B. licheniformis strain was selected for a proof-of-concept exercise, which established that a two-peptide lantibiotic, lichenicidin, which exhibits antimicrobial activity against all Listeria monocytogenes, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococcus strains tested, was indeed produced, thereby confirming the benefits of such a bioinformatic approach when screening for novel lantibiotic producers.Bacteriocins are microbially produced, ribosomally synthesized peptides that have a bactericidal or bacteriostatic effect on other species. One of the two major classes of bacteriocins are lantibiotics (lanthionine-containing antibiotics) and are distinguished by the cross-linking of cysteine to either dehydroalanine or dehydrobutyrine (resulting from the dehydration of hydroxyl amino acids) to form lanthionine and/or methyllanthionine residues. Other unusual posttranslationally modified amino acids including unlinked dehydroalanines and dehydrobutyrines can also be present (reviewed in references 7, 11, 15, and 19). The lantibiotics can themselves be subdivided on the basis of the nature of the enzymes responsible for these characteristic modifications. Type 1 lantibiotics (such as nisin, subtilin, and epidermin) are modified by a dual-enzyme system generically referred to as LanBC, while type 2 lantibiotics (such as lacticin 481, mersacidin, lacticin 3147, and cinnamycin) are modified by LanM proteins (33, 50). Lantibiotics have been the focus of extensive research in recent years, since it was established that many of them exhibit broad-range activity against a number of clinically relevant pathogens (6, 18, 24, 31, 41). At least some lantibiotics are active at single-nanomolar concentrations through a dual mechanism of action, which is facilitated by binding to lipid II, the “Achilles heel” of the gram-positive cell wall and a target of a number of clinically relevant antibiotics (4, 5, 48, 49). It is unsurprising that numerous screening strategies have taken place with a view to identifying novel lantibiotics with desirable properties such as enhanced potency, target specificity, or physicochemical properties. As with producers of antimicrobials in general, lantibiotic-producing strains have traditionally been screened by functional assays based on the inhibition of specific target spoilage or pathogenic microbes. In addition to being time-consuming, a lack of precise knowledge with respect to optimal lantibiotic-producing conditions (e.g., pH, incubation temperature, time of incubation, carbohydrate source, and temporal expression, etc.) and the use of a limited number of indicator strains can result in producing strains being overlooked. As the number of bacterial genome sequences available in public databases is increasing rapidly, it is likely that a postgenomic approach to identify novel bacteriocins may prove to be an attractive alternative.In the current communication, we describe computational analyses employed to search sequenced bacterial genomes for novel type 2 lantibiotics. Of the putative LanM-encoding genes identified, 61 are in strains not previously reported to be producers of lantibiotics. Five strains that were subjected to closer in silico analysis revealed further evidence of the potential for the production of lantibiotic-like peptides, and one, Bacillus licheniformis ATCC 14580, through a combination of bioinformatic analyses, antimicrobial assays, mass spectrometry, and high-performance liquid chromatography (HPLC) analyses, was confirmed to be the producer of a broad-spectrum two-peptide lantibiotic, lichenicidin.  相似文献   

8.
9.
10.
11.

Background

Lantibiotics are small lanthionine-containing bacteriocins produced by lactic acid bacteria. Salivaricin 9 is a newly discovered lantibiotic produced by Streptococcus salivarius. In this study we present the mechanism of action of salivaricin 9 and some of its properties. Also we developed new methods to produce and purify the lantibiotic from strain NU10.

Methodology / Principal Findings

Salivaricin 9 was found to be auto-regulated when an induction assay was applied and this finding was used to develop a successful salivaricin 9 production system in liquid medium. A combination of XAD-16 and cation exchange chromatography was used to purify the secondary metabolite which was shown to have a molecular weight of approximately 3000 Da by SDS-PAGE. MALDI-TOF MS analysis indicated the presence of salivaricin 9, a 2560 Da lantibiotic. Salivaricin 9 is a bactericidal molecule targeting the cytoplasmic membrane of sensitive cells. The membrane permeabilization assay showed that salivaricin 9 penetrated the cytoplasmic membrane and induced pore formation which resulted in cell death. The morphological changes of test bacterial strains incubated with salivaricin 9 were visualized using Scanning Electron Microscopy which confirmed a pore forming mechanism of inhibition. Salivaricin 9 retained biological stability when exposed to high temperature (90-100°C) and stayed bioactive at pH ranging 2 to 10. When treated with proteinase K or peptidase, salivaricin 9 lost all antimicrobial activity, while it remained active when treated with lyticase, catalase and certain detergents.

Conclusion

The mechanism of antimicrobial action of a newly discovered lantibiotic salivaricin 9 was elucidated in this study. Salivaricin 9 penetrated the cytoplasmic membrane of its targeted cells and induced pore formation. This project has given new insights on lantibiotic peptides produced by S. salivarius isolated from the oral cavities of Malaysian subjects.  相似文献   

12.
13.
14.
15.
16.
17.
Nine wells producing from six different reservoirs with salinities ranging from 2.1% to 15.9% were surveyed for presence of surface-active compounds and biosurfactant-producing microbes. Degenerate primers were designed to detect the presence of the surfactin/lichenysin (srfA3/licA3) gene involved in lipopeptide biosurfactant production in members of Bacillus subtilis/licheniformis group and the rhlR gene involved in regulation of rhamnolipid production in pseudomonads. Polymerase chain reaction amplification, cloning, and sequencing confirmed the presence of the srfA3/licA3 genes in brines collected from all nine wells. The presence of B. subtilis/licheniformis strains was confirmed by sequencing two other genes commonly used for taxonomic identification of bacteria, gyrA (gyrase A) and the 16S rRNA gene. Neither rhlR nor 16S rRNA gene related to pseudomonads was detected in any of the brines. Intrinsic levels of surface-active compounds in brines were low or not detected, but biosurfactant production could be stimulated by nutrient addition. Supplementation with a known biosurfactant-producing Bacillus strain together with nutrients increased biosurfactant production. The genetic potential to produce lipopeptide biosurfactants (e.g., srfA3/licA3 gene) is prevalent, and nutrient addition stimulated biosurfactant production in brines from diverse reservoirs, suggesting that a biostimulation approach for biosurfactant-mediated oil recovery may be technically feasible.  相似文献   

18.

Background and Aims

Positive selection in the α-crystallin domain (ACD) of the chloroplast small heat shock protein (CPsHSP) gene was found in a previous study and was suggested to be related to the ecological adaptation of Rhododendron species in the subgenus Hymenanthes. Consequently, it was of interest to examine whether gene duplication and subsequent divergence have occurred in other sHSP genes, for example class I cytosolic sHSP genes (CT1sHSPs) in Rhododendron in Taiwan, where many endemic species have evolved as a result of habitat differentiation.

Methods

A phylogeny of CT1sHSP amino acid sequences was built from Rhododendron, Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Vitis vinifera and other species for elucidation of the phylogenetic relationships among CT1sHSPs. Phylogenies of Rhododendron CT1sHSP nucleotide and amino acid sequences were generated for positive selection and functional divergence analysis, respectively. Positively selected sites and amino acid differences between types of Rhododendron CT1sHSPs were mapped onto the wheat sHSP16·9 protein structure. Average genetic distance (Dxy) and dN/dS ratios between types of Rhododendron CT1sHSP genes were analysed using sliding window analysis. Gene conversion was also assessed between types of Rhododendron CT1sHSPs.

Key Results

Two types of Rhododendron CT1sHSP were identified. A high level of genetic similarity and diversity within and flanking the ACD, respectively, between types of Rhododendron CT1sHSP were found. Main differences between the two types of Rhododendron CT1sHSPs were: (1) increased hydrophobicity by two positively selected amino acid sites and a seven-amino-acid insertion in the N-terminal arm; and (2) increased structural flexibility and solubility by a seven-amino-acid insertion in the N-terminal arm and one positively selected amino acid site in the C-terminal extension.

Conclusions

Functional conservation of the ACD of Rhododendron CT1sHSP genes was inferred because of strong purifying selection. However, sequence variations flanking the ACD in Rhododendron CT1sHSP gene duplicates may have resulted in functional divergence and played important roles in chaperon function enhancement.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号