首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
Accurate identification of strand residues aids prediction and analysis of numerous structural and functional aspects of proteins. We propose a sequence-based predictor, BETArPRED, which improves prediction of strand residues and β-strand segments. BETArPRED uses a novel design that accepts strand residues predicted by SSpro and predicts the remaining positions utilizing a logistic regression classifier with nine custom-designed features. These are derived from the primary sequence, the secondary structure (SS) predicted by SSpro, PSIPRED and SPINE, and residue depth as predicted by RDpred. Our features utilize certain local (window-based) patterns in the predicted SS and combine information about the predicted SS and residue depth. BETArPRED is evaluated on 432 sequences that share low identity with the training chains, and on the CASP8 dataset. We compare BETArPRED with seven modern SS predictors, and the top-performing automated structure predictor in CASP8, the ZHANG-server. BETArPRED provides statistically significant improvements over each of the SS predictors; it improves prediction of strand residues and β-strands, and it finds β-strands that were missed by the other methods. When compared with the ZHANG-server, we improve predictions of strand segments and predict more actual strand residues, while the other predictor achieves higher rate of correct strand residue predictions when under-predicting them.  相似文献   

2.
Structural genomics projects are determining the three-dimensional structure of proteins without full characterization of their function. A critical part of the annotation process involves appropriate knowledge representation and prediction of functionally important residue environments. We have developed a method to extract features from sequence, sequence alignments, three-dimensional structure, and structural environment conservation, and used support vector machines to annotate homologous and nonhomologous residue positions based on a specific training set of residue functions. In order to evaluate this pipeline for automated protein annotation, we applied it to the challenging problem of prediction of catalytic residues in enzymes. We also ranked the features based on their ability to discriminate catalytic from noncatalytic residues. When applying our method to a well-annotated set of protein structures, we found that top-ranked features were a measure of sequence conservation, a measure of structural conservation, a degree of uniqueness of a residue's structural environment, solvent accessibility, and residue hydrophobicity. We also found that features based on structural conservation were complementary to those based on sequence conservation and that they were capable of increasing predictor performance. Using a family nonredundant version of the ASTRAL 40 v1.65 data set, we estimated that the true catalytic residues were correctly predicted in 57.0% of the cases, with a precision of 18.5%. When testing on proteins containing novel folds not used in training, the best features were highly correlated with the training on families, thus validating the approach to nonhomologous catalytic residue prediction in general. We then applied the method to 2781 coordinate files from the structural genomics target pipeline and identified both highly ranked and highly clustered groups of predicted catalytic residues.  相似文献   

3.
Liu S  Zhang C  Liang S  Zhou Y 《Proteins》2007,68(3):636-645
Recognizing the structural similarity without significant sequence identity (called fold recognition) is the key for bridging the gap between the number of known protein sequences and the number of structures solved. Previously, we developed a fold-recognition method called SP(3) which combines sequence-derived sequence profiles, secondary-structure profiles and residue-depth dependent, structure-derived sequence profiles. The use of residue-depth-dependent profiles makes SP(3) one of the best automatic predictors in CASP 6. Because residue depth (RD) and solvent accessible surface area (solvent accessibility) are complementary in describing the exposure of a residue to solvent, we test whether or not incorporation of solvent-accessibility profiles into SP(3) could further increase the accuracy of fold recognition. The resulting method, called SP(4), was tested in SALIGN benchmark for alignment accuracy and Lindahl, LiveBench 8 and CASP7 blind prediction for fold recognition sensitivity and model-structure accuracy. For remote homologs, SP(4) is found to consistently improve over SP(3) in the accuracy of sequence alignment and predicted structural models as well as in the sensitivity of fold recognition. Our result suggests that RD and solvent accessibility can be used concurrently for improving the accuracy and sensitivity of fold recognition. The SP(4) server and its local usage package are available on http://sparks.informatics.iupui.edu/SP4.  相似文献   

4.
5.

Background

Protein sequence profile-profile alignment is an important approach to recognizing remote homologs and generating accurate pairwise alignments. It plays an important role in protein sequence database search, protein structure prediction, protein function prediction, and phylogenetic analysis.

Results

In this work, we integrate predicted solvent accessibility, torsion angles and evolutionary residue coupling information with the pairwise Hidden Markov Model (HMM) based profile alignment method to improve profile-profile alignments. The evaluation results demonstrate that adding predicted relative solvent accessibility and torsion angle information improves the accuracy of profile-profile alignments. The evolutionary residue coupling information is helpful in some cases, but its contribution to the improvement is not consistent.

Conclusion

Incorporating the new structural information such as predicted solvent accessibility and torsion angles into the profile-profile alignment is a useful way to improve pairwise profile-profile alignment methods.  相似文献   

6.
Prediction of recursive convex hull class assignments for protein residues   总被引:1,自引:0,他引:1  
MOTIVATION: We introduce a new method for designating the location of residues in folded protein structures based on the recursive convex hull (RCH) of a point set of atomic coordinates. The RCH can be calculated with an efficient and parameterless algorithm. RESULTS: We show that residue RCH class contains information complementary to widely studied measures such as solvent accessibility (SA), residue depth (RD) and to the distance of residues from the centroid of the chain, the residues' exposure (Exp). RCH is more conserved for related structures across folds and correlates better with changes in thermal stability of mutants than the other measures. Further, we assess the predictability of these measures using three types of machine-learning technique: decision trees (C4.5), Naive Bayes and Learning Classifier Systems (LCS) showing that RCH is more easily predicted than the other measures. As an exemplar application of predicted RCH class (in combination with other measures), we show that RCH is potentially helpful in improving prediction of residue contact numbers (CN).  相似文献   

7.
MOTIVATION: The quality of a model structure derived from a comparative modeling procedure is dictated by the accuracy of the predicted sequence-template alignment. As the sequence-template pairs are increasingly remote in sequence relationship, the prediction of the sequence-template alignments becomes increasingly problematic with sequence alignment methods. Structural information of the template, used in connection with the sequence relationship of the sequence-template pair, could significantly improve the accuracy of the sequence-template alignment. In this paper, we describe a sequence-template alignment method that integrates sequence and structural information to enhance the accuracy of sequence-template alignments for distantly related protein pairs. RESULTS: The structure-dependent sequence alignment (SDSA) procedure was optimized for coverage and accuracy on a training set of 412 protein pairs; the structures for each of the training pairs are similar (RMSD< approximately 4A) but the sequence relationship is undetectable (average pair-wise sequence identity = 8%). The optimized SDSA procedure was then applied to extend PSI-BLAST local alignments by calculating the global alignments under the constraint of the residue pairs in the local alignments. This composite alignment procedure was assessed with a testing set of 1421 protein pairs, of which the pair-wise structures are similar (RMSD< approximately 4A) but the sequences are marginally related at best in each pair (average pair-wise sequence identity = 13%). The assessment showed that the composite alignment procedure predicted more aligned residues pairs with an average of 27% increase in correctly aligned residues over the standard PSI-BLAST alignments for the protein pairs in the testing set.  相似文献   

8.
Here we perform a systematic exploration of the use of distance constraints derived from small angle X-ray scattering (SAXS) measurements to filter candidate protein structures for the purpose of protein structure prediction. This is an intrinsically more complex task than that of applying distance constraints derived from NMR data where the identity of the pair of amino acid residues subject to a given distance constraint is known. SAXS, on the other hand, yields a histogram of pair distances (pair distribution function), but the identities of the pairs contributing to a given bin of the histogram are not known. Our study is based on an extension of the Levitt-Hinds coarse grained approach to ab initio protein structure prediction to generate a candidate set of C(alpha) backbones. In spite of the lack of specific residue information inherent in the SAXS data, our study shows that the implementation of a SAXS filter is capable of effectively purifying the set of native structure candidates and thus provides a substantial improvement in the reliability of protein structure prediction. We test the quality of our predicted C(alpha) backbones by doing structural homology searches against the Dali domain library, and find that the results are very encouraging. In spite of the lack of local structural details and limited modeling accuracy at the C(alpha) backbone level, we find that useful information about fold classification can be extracted from this procedure. This approach thus provides a way to use a SAXS data based structure prediction algorithm to generate potential structural homologies in cases where lack of sequence homology prevents identification of candidate folds for a given protein. Thus our approach has the potential to help in determination of the biological function of a protein based on structural homology instead of sequence homology.  相似文献   

9.

Background

Residues in a protein might be buried inside or exposed to the solvent surrounding the protein. The buried residues usually form hydrophobic cores to maintain the structural integrity of proteins while the exposed residues are tightly related to protein functions. Thus, the accurate prediction of solvent accessibility of residues will greatly facilitate our understanding of both structure and functionalities of proteins. Most of the state-of-the-art prediction approaches consider the burial state of each residue independently, thus neglecting the correlations among residues.

Results

In this study, we present a high-order conditional random field model that considers burial states of all residues in a protein simultaneously. Our approach exploits not only the correlation among adjacent residues but also the correlation among long-range residues. Experimental results showed that by exploiting the correlation among residues, our approach outperformed the state-of-the-art approaches in prediction accuracy. In-depth case studies also showed that by using the high-order statistical model, the errors committed by the bidirectional recurrent neural network and chain conditional random field models were successfully corrected.

Conclusions

Our methods enable the accurate prediction of residue burial states, which should greatly facilitate protein structure prediction and evaluation.
  相似文献   

10.
This paper proposes a novel method using protein residue conservation and evolution information, i.e., spatial sequence profile, sequence information entropy and evolution rate, to infer protein binding sites. Some predictors based on support vector machines (SVMs) algorithm are constructed to predict the role of surface residues in protein-protein interface. By combining protein residue characters, the prediction performance can be improved obviously. We then made use of the predicted labels of neighbor residues to improve the performance of the predictors. The efficiency and the effectiveness of our proposed approach are verified by its better prediction performance based on a non-redundant data set of heterodimers.  相似文献   

11.
We investigate the relationship between the flexibility, expressed with B‐factor, and the relative solvent accessibility (RSA) in the context of local, with respect to the sequence, neighborhood and related concepts such as residue depth. We observe that the flexibility of a given residue is strongly influenced by the solvent accessibility of the adjacent neighbors. The mean normalized B‐factor of the exposed residues with two buried neighbors is smaller than that of the buried residues with two exposed neighbors. Inclusion of RSA of the neighboring residues (local RSA) significantly increases correlation with the B‐factor. Correlation between the local RSA and B‐factor is shown to be stronger than the correlation that considers local distance‐ or volume‐based residue depth. We also found that the correlation coefficients between B‐factor and RSA for the 20 amino acids, called flexibility‐exposure correlation index, are strongly correlated with the stability scale that characterizes the average contributions of each amino acid to the folding stability. Our results reveal that the predicted RSA could be used to distinguish between the disordered and ordered residues and that the inclusion of local predicted RSA values helps providing a better contrast between these two types of residues. Prediction models developed based on local actual RSA and local predicted RSA show similar or better results in the context of B‐factor and disorder predictions when compared with several existing approaches. We validate our models using three case studies, which show that this work provides useful clues for deciphering the structure–flexibility–function relation. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
Ishida T  Nakamura S  Shimizu K 《Proteins》2006,64(4):940-947
We developed a novel knowledge-based residue environment potential for assessing the quality of protein structures in protein structure prediction. The potential uses the contact number of residues in a protein structure and the absolute contact number of residues predicted from its amino acid sequence using a new prediction method based on a support vector regression (SVR). The contact number of an amino acid residue in a protein structure is defined by the number of residues around a given residue. First, the contact number of each residue is predicted using SVR from an amino acid sequence of a target protein. Then, the potential of the protein structure is calculated from the probability distribution of the native contact numbers corresponding to the predicted ones. The performance of this potential is compared with other score functions using decoy structures to identify both native structure from other structures and near-native structures from nonnative structures. This potential improves not only the ability to identify native structures from other structures but also the ability to discriminate near-native structures from nonnative structures.  相似文献   

15.
MOTIVATION: A large body of experimental and theoretical evidence suggests that local structural determinants are frequently encoded in short segments of protein sequence. Although the local structural information, once recognized, is particularly useful in protein structural and functional analyses, it remains a difficult problem to identify embedded local structural codes based solely on sequence information. RESULTS: In this paper, we describe a local structure prediction method aiming at predicting the backbone structures of nine-residue sequence segments. Two elements are the keys for this local structure prediction procedure. The first key element is the LSBSP1 database, which contains a large number of non-redundant local structure-based sequence profiles for nine-residue structure segments. The second key element is the consensus approach, which identifies a consensus structure from a set of hit structures. The local structure prediction procedure starts by matching a query sequence segment of nine consecutive amino acid residues to all the sequence profiles in the local structure-based sequence profile database (LSBSP1). The consensus structure, which is at the center of the largest structural cluster of the hit structures, is predicted to be the native state structure adopted by the query sequence segment. This local structure prediction method is assessed with a large set of random test protein structures that have not been used in constructing the LSBSP1 database. The benchmark results indicate that the prediction capacities of the novel local structure prediction procedure exceed the prediction capacities of the local backbone structure prediction methods based on the I-sites library by a significant margin. AVAILABILITY: All the computational and assessment procedures have been implemented in the integrated computational system PrISM.1 (Protein Informatics System for Modeling). The system and associated databases for LINUX systems can be downloaded from the website: http://www.columbia.edu/~ay1/.  相似文献   

16.

Background

The lentiviral Rev protein mediates nuclear export of intron-containing viral RNAs that encode structural proteins or serve as the viral genome. Following translation, HIV-1 Rev localizes to the nucleus and binds its cognate sequence, termed the Rev-responsive element (RRE), in incompletely spliced viral RNA. Rev subsequently multimerizes along the viral RNA and associates with the cellular Crm1 export machinery to translocate the RNA-protein complex to the cytoplasm. Equine infectious anemia virus (EIAV) Rev is functionally homologous to HIV-1 Rev, but shares very little sequence similarity and differs in domain organization. EIAV Rev also contains a bipartite RNA binding domain comprising two short arginine-rich motifs (designated ARM-1 and ARM-2) spaced 79 residues apart in the amino acid sequence. To gain insight into the topology of the bipartite RNA binding domain, a computational approach was used to model the tertiary structure of EIAV Rev.

Results

The tertiary structure of EIAV Rev was modeled using several protein structure prediction and model quality assessment servers. Two types of structures were predicted: an elongated structure with an extended central alpha helix, and a globular structure with a central bundle of helices. Assessment of models on the basis of biophysical properties indicated they were of average quality. In almost all models, ARM-1 and ARM-2 were spatially separated by >15 Å, suggesting that they do not form a single RNA binding interface on the monomer. A highly conserved canonical coiled-coil motif was identified in the central region of EIAV Rev, suggesting that an RNA binding interface could be formed through dimerization of Rev and juxtaposition of ARM-1 and ARM-2. In support of this, purified Rev protein migrated as a dimer in Blue native gels, and mutation of a residue predicted to form a key coiled-coil contact disrupted dimerization and abrogated RNA binding. In contrast, mutation of residues outside the predicted coiled-coil interface had no effect on dimerization or RNA binding.

Conclusions

Our results suggest that EIAV Rev binding to the RRE requires dimerization via a coiled-coil motif to juxtapose two RNA binding motifs, ARM-1 and ARM-2.
  相似文献   

17.
Predicting accurate fragments from sequence has recently become a critical step for protein structure modeling, as protein fragment assembly techniques are presently among the most efficient approaches for de novo prediction. A key step in these approaches is, given the sequence of a protein to model, the identification of relevant fragments - candidate fragments - from a collection of the available 3D structures. These fragments can then be assembled to produce a model of the complete structure of the protein of interest. The search for candidate fragments is classically achieved by considering local sequence similarity using profile comparison, or threading approaches. In the present study, we introduce a new profile comparison approach that, instead of using amino acid profiles, is based on the use of predicted structural alphabet profiles, where structural alphabet profiles contain information related to the 3D local shapes associated with the sequences. We show that structural alphabet profile-profile comparison can be used efficiently to retrieve accurate structural fragments, and we introduce a fully new protocol for the detection of candidate fragments. It identifies fragments specific of each position of the sequence and of size varying between 6 and 27 amino-acids. We find it outperforms present state of the art approaches in terms (i) of the accuracy of the fragments identified, (ii) the rate of true positives identified, while having a high coverage score. We illustrate the relevance of the approach on complete target sets of the two previous Critical Assessment of Techniques for Protein Structure Prediction (CASP) rounds 9 and 10. A web server for the approach is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/SAFrag.  相似文献   

18.

Background

The fluctuation of atoms around their average positions in protein structures provides important information regarding protein dynamics. This flexibility of protein structures is associated with various biological processes. Predicting flexibility of residues from protein sequences is significant for analyzing the dynamic properties of proteins which will be helpful in predicting their functions.

Results

In this paper, an approach of improving the accuracy of protein flexibility prediction is introduced. A neural network method for predicting flexibility in 3 states is implemented. The method incorporates sequence and evolutionary information, context-based scores, predicted secondary structures and solvent accessibility, and amino acid properties. Context-based statistical scores are derived, using the mean-field potentials approach, for describing the different preferences of protein residues in flexibility states taking into consideration their amino acid context.The 7-fold cross validated accuracy reached 61 % when context-based scores and predicted structural states are incorporated in the training process of the flexibility predictor.

Conclusions

Incorporating context-based statistical scores with predicted structural states are important features to improve the performance of predicting protein flexibility, as shown by our computational results. Our prediction method is implemented as web service called “FLEXc” and available online at: http://hpcr.cs.odu.edu/flexc.
  相似文献   

19.
Three-dimensional cluster analysis offers a method for the prediction of functional residue clusters in proteins. This method requires a representative structure and a multiple sequence alignment as input data. Individual residues are represented in terms of regional alignments that reflect both their structural environment and their evolutionary variation, as defined by the alignment of homologous sequences. From the overall (global) and the residue-specific (regional) alignments, we calculate the global and regional similarity matrices, containing scores for all pairwise sequence comparisons in the respective alignments. Comparing the matrices yields two scores for each residue. The regional conservation score (C(R)(x)) defines the conservation of each residue x and its neighbors in 3D space relative to the protein as a whole. The similarity deviation score (S(x)) detects residue clusters with sequence similarities that deviate from the similarities suggested by the full-length sequences. We evaluated 3D cluster analysis on a set of 35 families of proteins with available cocrystal structures, showing small ligand interfaces, nucleic acid interfaces and two types of protein-protein interfaces (transient and stable). We present two examples in detail: fructose-1,6-bisphosphate aldolase and the mitogen-activated protein kinase ERK2. We found that the regional conservation score (C(R)(x)) identifies functional residue clusters better than a scoring scheme that does not take 3D information into account. C(R)(x) is particularly useful for the prediction of poorly conserved, transient protein-protein interfaces. Many of the proteins studied contained residue clusters with elevated similarity deviation scores. These residue clusters correlate with specificity-conferring regions: 3D cluster analysis therefore represents an easily applied method for the prediction of functionally relevant spatial clusters of residues in proteins.  相似文献   

20.
Schlessinger A  Rost B 《Proteins》2005,61(1):115-126
Structural flexibility has been associated with various biological processes such as molecular recognition and catalytic activity. In silico studies of protein flexibility have attempted to characterize and predict flexible regions based on simple principles. B-values derived from experimental data are widely used to measure residue flexibility. Here, we present the most comprehensive large-scale analysis of B-values. We used this analysis to develop a neural network-based method that predicts flexible-rigid residues from amino acid sequence. The system uses both global and local information (i.e., features from the entire protein such as secondary structure composition, protein length, and fraction of surface residues, and features from a local window of sequence-consecutive residues). The most important local feature was the evolutionary exchange profile reflecting sequence conservation in a family of related proteins. To illustrate its potential, we applied our method to 4 different case studies, each of which related our predictions to aspects of function. The first 2 were the prediction of regions that undergo conformational switches upon environmental changes (switch II region in Ras) and the prediction of surface regions, the rigidity of which is crucial for their function (tunnel in propeller folds). Both were correctly captured by our method. The third study established that residues in active sites of enzymes are predicted by our method to have unexpectedly low B-values. The final study demonstrated how well our predictions correlated with NMR order parameters to reflect motion. Our method had not been set up to address any of the tasks in those 4 case studies. Therefore, we expect that this method will assist in many attempts at inferring aspects of function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号