首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New measurements have been made of fluorescence lifetime (τ) of chlorophyll a in the algae Chlorella pyrenoidosa, Porphyridium cruentum, Anacystis nidulans, and in spinach chloroplast. τ-values of 0.6 and 0.7 nsec were obtained with green plants. Anacystis and Porphyridium gave a τ of 0.5 nsec. The previously described two stage decay of fluorescence in vivo in these organisms could not be confirmed. This observation could have been caused by a second wave of light emission from the exciting hydrogen lamp (not detected in earlier work). The lifetimes found in this study (calculated, as before, by the method of convolution integrals) were close to those found by other observers for “low” excitation intensities; the value first reported from this laboratory (1.0-1.7 nsec) may have corresponded to “high” excitation intensity.  相似文献   

2.
Volvocine green algae represent the “evolutionary time machine” model lineage for studying multicellularity, because they encompass the whole range of evolutionary transition of multicellularity from unicellular Chlamydomonas to >500-celled Volvox. Multicellular volvocalean species including Gonium pectorale and Volvox carteri generally have several common morphological features to survive as integrated multicellular organisms such as “rotational asymmetry of cells” so that the cells become components of the individual and “cytoplasmic bridges between protoplasts in developing embryos” to maintain the species-specific form of the multicellular individual before secretion of new extracellular matrix (ECM). However, these morphological features have not been studied in the four-celled colonial volvocine species Tetrabaena socialis that is positioned in the most basal lineage within the colonial or multicellular volvocine greens. Here we established synchronous cultures of T. socialis and carried out immunofluorescence microscopic and ultrastructural observations to elucidate these two morphological attributes. Based on immunofluorescence microscopy, four cells of the mature T. socialis colony were identical in morphology but had rotational asymmetry in arrangement of microtubular rootlets and separation of basal bodies like G. pectorale and V. carteri. Ultrastructural observations clearly confirmed the presence of cytoplasmic bridges between protoplasts in developing embryos of T. socialis even after the formation of new flagella in each daughter protoplast within the parental ECM. Therefore, these two morphological attributes might have evolved in the common four-celled ancestor of the colonial volvocine algae and contributed to the further increase in cell number and complexity of the multicellular individuals of this model lineage. T. socialis is one of the simplest integrated multicellular organisms in which four identical cells constitute the individual.  相似文献   

3.
Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of “molecular fossils” of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the “molecular fossil” hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (ω) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin''s theory.  相似文献   

4.
During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs) to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as “collapsed” or “extended”. The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in ‘collapsed’ GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay.  相似文献   

5.
6.
The excitation lifetimes of photosynthetic pigments and the times needed for energy transfer between pigments in various algae, were determined in vitro and in vivo. For this purpose, the time curves of fluorescence rise and decay were measured by means of Brody''s instrument (10), and compared with theoretical curves obtained by the method of “convolution of the first kind.”1  相似文献   

7.
8.

Correction to: EMBO Reports (2019) 20: e47074. DOI 10.15252/embr.201847074 | Published online 6 May 2019The authors noticed that the control and disease labels had been inverted in their data analysis resulting in publication of incorrect data in Figure 1C. The corrected figure is displayed below. This change affects the conclusions as detailed below. The authors apologize for this error and any confusion it may have caused.In the legend of 1C, change from, “Differential gene expression analysis of pediatric ileal CD patient samples (n = 180) shows increased (> 4‐fold) IMP1 expression as compared to non‐inflammatory bowel disease (IBD) pediatric samples (n = 43)”.Open in a separate windowFigure 1CCorrected Open in a separate windowFigure 1COriginal To, "Differential gene expression analysis of pediatric ileal CD patient samples (n = 180) shows decreased (> 4‐fold) IMP1 expression as compared to non‐inflammatory bowel disease (IBD) pediatric samples (n = 43)”.In abstract, change from, “Here, we report increased IMP1 expression in patients with Crohn''s disease and ulcerative colitis”.To, “Here, we report increased IMP1 expression in adult patients with Crohn''s disease and ulcerative colitis”.In results, change from, “Consistent with these findings, analysis of published the Pediatric RISK Stratification Study (RISK) cohort of RNA‐sequencing data 38 from pediatric patients with Crohn''s disease (CD) patients revealed that IMP1 is upregulated significantly compared to control patients and that this effect is specific to IMP1 (i.e., other distinct isoforms, IMP2 and IMP3, are not changed; Fig 1C)”.To, “Contrary to our findings in colon tissue from adults, analysis of published RNA‐sequencing data from the Pediatric RISK Stratification Study (RISK) cohort of ileal tissue from children with Crohn’s disease (CD) 38 revealed that IMP1 is downregulated significantly compared to control patients in the RISK cohort and that this effect is specific to IMP1 (i.e., other distinct isoforms, IMP2 and IMP3, are not changed; Fig 1C)”.In discussion, change from, “Indeed, we report that IMP1 is upregulated in patients with Crohn''s disease and ulcerative colitis and that mice with Imp1 loss exhibit enhanced repair following DSS‐mediated damage”.To “Indeed, we report that IMP1 is upregulated in adult patients with Crohn''s disease and ulcerative colitis and that mice with Imp1 loss exhibit enhanced repair following DSS‐mediated damage”.  相似文献   

9.
The evolution of the faculty of language largely remains an enigma. In this essay, we ask why. Language''s evolutionary analysis is complicated because it has no equivalent in any nonhuman species. There is also no consensus regarding the essential nature of the language “phenotype.” According to the “Strong Minimalist Thesis,” the key distinguishing feature of language (and what evolutionary theory must explain) is hierarchical syntactic structure. The faculty of language is likely to have emerged quite recently in evolutionary terms, some 70,000–100,000 years ago, and does not seem to have undergone modification since then, though individual languages do of course change over time, operating within this basic framework. The recent emergence of language and its stability are both consistent with the Strong Minimalist Thesis, which has at its core a single repeatable operation that takes exactly two syntactic elements a and b and assembles them to form the set {a, b}.It is uncontroversial that language has evolved, just like any other trait of living organisms. That is, once—not so long ago in evolutionary terms—there was no language at all, and now there is, at least in Homo sapiens. There is considerably less agreement as to how language evolved. There are a number of reasons for this lack of agreement. First, “language” is not always clearly defined, and this lack of clarity regarding the language phenotype leads to a corresponding lack of clarity regarding its evolutionary origins. Second, there is often confusion as to the nature of the evolutionary process and what it can tell us about the mechanisms of language. Here we argue that the basic principle that underlies language''s hierarchical syntactic structure is consistent with a relatively recent evolutionary emergence.  相似文献   

10.
In 1865, the German botanist Julius Sachs published a seminal monograph entitled Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) and hence became the founder of a new scientific discipline that originated 150 y ago. Here, we outline the significance of the achievements of Sachs. In addition, we document, with reference to his Vorlesungen über Pflanzen-Physiologie (Lectures on the Physiology of Plants, 1882), that Sachs was one of the first experimentalists who proposed the functional unity of all organisms alive today (humans, animals, plants and other “vegetable” organisms, such as algae, cyanophyceae, fungi, myxomycetes, and bacteria).  相似文献   

11.
Predation is one of the most important drivers of natural selection. In consequence a huge variety of anti-predator defenses have evolved in prey species. Under unpredictable and temporally variable predation pressure, the evolution of phenotypically plastic defensive traits is favored. These “inducible defenses”, range from changes in behavior, life history, physiology to morphology and can be found in almost all taxa from bacteria to vertebrates. An important group of model organisms in ecological, evolutionary and environmental research, water fleas of the genus Daphnia (Crustacea: Cladocera), are well known for their ability to respond to predators with an enormous variety of inducible morphological defenses. Here we report on the “twist”, a body torsion, as a so far unrecognized inducible morphological defense in Daphnia, expressed by Daphnia barbata exposed to the predatory tadpole shrimp Triops cancriformis. This defense is realized by a twisted carapace with the helmet and the tail spine deviating from the body axis into opposing directions, resulting in a complete abolishment of bilateral symmetry. The twisted morphotype should considerably interfere with the feeding apparatus of the predator, contributing to the effectiveness of the array of defensive traits in D. barbata. As such this study does not only describe a completely novel inducible defense in the genus Daphnia but also presents the first report of a free living Bilateria to flexibly respond to predation risk by abandoning bilateral symmetry.  相似文献   

12.
The elucidation of the sources of n-3 fatty acids available for the humans in the Upper Palaeolithic and Neolithic is highly relevant in order to ascertain the availability of such nutrients in that time frame as well as to draw useful conclusions about healthy dietary habits for present-day humans. To this end, we have analysed fat from several frozen mammals found in the permafrost of Siberia (Russia). A total of 6 specimens were included in this study: 2 mammoths, i.e. baby female calf called “Lyuba” and a juvenile female called “Yuka”, both specimens approximately from the same time, i.e. Karginian Interstadial (41,000 and 34,000 years BP); two adult horses from the middle Holocene (4,600 and 4,400 years BP); and two bison very close to the Early Holocene (8,200 and 9,300 years BP). All samples were analysed by gas-liquid chromatography-mass spectrometry (GLC-MS) and GLC-flame ionization detector (GLC-FID). As demonstrated in this work, the fat of single-stomached mammals often consumed by Palaeolithic/Neolithic hunters contained suitable amounts of n-3 and n-6 fatty acids, possibly in quantities sufficient to meet the today''s recommended daily intake for good health. Moreover, the results also suggest that mammoths and horses at that time were hibernators.  相似文献   

13.
Internal contamination of Salmonella in plants is attracting increasing attention for food safety reasons. In this study, three different tomato cultivars “Florida Lanai”, “Crown Jewel”, “Ailsa Craig” and the transgenic line Sp5 of “Ailsa Craig” were inoculated with 1 µl GFP-labeled Salmonella Typhimurium through guttation droplets at concentrations of 109 or 107 CFU/ml. Survival of Salmonella on/in tomato leaves was detected by both direct plating and enrichment methods. Salmonella cells survived best on/in the inoculated leaves of cultivar “Ailsa Craig” and decreased fastest on/in “Florida Lanai” leaves. Increased guttation in the abscisic acid over-expressing Sp5 plants may have facilitated the entrance of Salmonella into leaves and the colonization on the surface of tomato leaves. Internalization of Salmonella Typhimurium in tomato leaves through guttation drop inoculation was confirmed by confocal laser microscopy. For the first time, convincing evidence is presented that S. enterica can enter tomato leaves through hydathodes and move into the vascular system, which may result in the internal translocation of the bacteria inside plants.  相似文献   

14.
Seminal proteins from the Drosophila male accessory gland induce post-mating responses (PMR) in females. The PMR comprise behavioral and physiological changes that include increased egg laying, decreased receptivity to courting males, and changes in the storage and use of sperm. Many of these changes are induced by a “sex peptide” (SP) and are maintained by SP’s binding to, and slow release from, sperm. The accessory gland contains two secretory cell types with distinct morphological and developmental characteristics. Products of these “main” and “secondary” cells work interdependently to induce and maintain the PMR. To identify individual genes needed for the morphology and function of secondary cells, we studied iab-6cocu males, whose secondary cells have abnormal morphology and fail to provide products to maintain the PMR. By RNA-seq, we identified 77 genes that are downregulated by a factor of >5× in iab-6cocu males. By functional assays and microscopy, we tested 20 candidate genes and found that at least 9 are required for normal storage and release of SP in mated females. Knockdown of each of these 9 genes consequently leads to a reduction in egg laying and an increase in receptivity over time, confirming a role for the secondary cells in maintaining the long-term PMR. Interestingly, only 1 of the 9 genes, CG3349, encodes a previously reported seminal fluid protein (Sfp), suggesting that secondary cells may perform essential functions beyond the production and modification of known Sfps. At least 3 of the 9 genes also regulate the size and/or abundance of secondary cell vacuoles, suggesting that the vacuoles’ contents may be important for the machinery used to maintain the PMR.  相似文献   

15.
Gohl D  Müller M  Pirrotta V  Affolter M  Schedl P 《Genetics》2008,178(1):127-143
Intra- and interchromosomal interactions have been implicated in a number of genetic phenomena in diverse organisms, suggesting that the higher-order structural organization of chromosomes in the nucleus can have a profound impact on gene regulation. In Drosophila, homologous chromosomes remain paired in somatic tissues, allowing for trans interactions between genes and regulatory elements on the two homologs. One consequence of homolog pairing is the phenomenon of transvection, in which regulatory elements on one homolog can affect the expression of a gene in trans. We report a new instance of transvection at the Drosophila apterous (ap) locus. Two different insertions of boundary elements in the ap regulatory region were identified. The boundaries are inserted between the ap wing enhancer and the ap promoter and have highly penetrant wing defects typical of mutants in ap. When crossed to an ap promoter deletion, both boundary inserts exhibit the interallelic complementation characteristic of transvection. To confirm that transvection occurs at ap, we generated a deletion of the ap wing enhancer by FRT-mediated recombination. When the wing-enhancer deletion is crossed to the ap promoter deletion, strong transvection is observed. Interestingly, the two boundary elements, which are inserted ~10 kb apart, fail to block enhancer action when they are present in trans to one another. We demonstrate that this is unlikely to be due to insulator bypass. The transvection effects described here may provide insight into the role that boundary element pairing plays in enhancer blocking both in cis and in trans.  相似文献   

16.
Violent coercive mating initiation is typical for animals with sexual conflict over mating. In these species, the coevolutionary arms-race between female defenses against coercive mating and male counter-adaptations for increased mating success leads to coevolutionary chases of male and female traits that influence the mating. It has been controversial whether one of the sexes can evolve traits that allow them to “win” this arms race. Here, we use morphological analysis (traditional and scanning electron micrographs), laboratory experiments and comparative methods to show how females of a species characterized by typical coercive mating initiation appear to “win” a particular stage of the sexual conflict by evolving morphology to hide their genitalia from direct, forceful access by males. In an apparent response to the female morphological adaptation, males of this species added to their typically violent coercive mounting of the female new post-mounting, pre-copulatory courtship signals produced by tapping the water''s surface with the mid-legs. These courtship signals are intimate in the sense that they are aimed at the female, on whom the male is already mounted. Females respond to the signals by exposing their hidden genitalia for copulatory intromission. Our results indicate that the apparent victory of coevolutionary arms race by one sex in terms of morphology may trigger evolution of a behavioral phenotype in the opposite sex.  相似文献   

17.
To investigate the fine-scale diversity of the polyphosphate-accumulating organisms (PAO) “Candidatus Accumulibacter phosphatis” (henceforth referred to as “Ca. Accumulibacter”), two laboratory-scale sequencing batch reactors (SBRs) for enhanced biological phosphorus removal (EBPR) were operated with sodium acetate as the sole carbon source. During SBR operations, activated sludge always contained morphologically different “Ca. Accumulibacter” strains showing typical EBPR performances, as confirmed by the combined technique of fluorescence in situ hybridization (FISH) and microautoradiography (MAR). Fragments of “Ca. Accumulibacter” 16S rRNA genes were retrieved from the sludge. Phylogenetic analyses together with sequences from the GenBank database showed that “Ca. Accumulibacter” 16S rRNA genes of the EBPR sludge were clearly differentiated into four “Ca. Accumulibacter” clades, Acc-SG1, Acc-SG2, Acc-SG3, and Acc-SG4. The specific FISH probes Acc444, Acc184, Acc72, and Acc119 targeting these clades and some helpers and competitors were designed by using the ARB program. Microbial characterization by FISH analysis using specific FISH probes also clearly indicated the presence of different “Ca. Accumulibacter” cell morphotypes. Especially, members of Acc-SG3, targeted by probe Acc72, were coccobacillus-shaped cells with a size of approximately 2 to 3 μm, while members of Acc-SG1, Acc-SG2, and Acc-SG4, targeted by Acc444, Acc184, and Acc119, respectively, were coccus-shaped cells approximately 1 μm in size. Subsequently, cells targeted by each FISH probe were sorted by use of a flow cytometer, and their polyphosphate kinase 1 (ppk1) gene homologs were amplified by using a ppk1-specific PCR primer set for “Ca. Accumulibacter.” The phylogenetic tree based on sequences of the ppk1 gene homologs was basically congruent with that of the 16S rRNA genes, but members of Acc-SG3 with a distinct morphology comprised two different ppk1 genes. These results suggest that “Ca. Accumulibacter” strains may be diverse physiologically and ecologically and represent distinct populations with genetically determined adaptations in EBPR systems.Enhanced biological phosphorus removal (EBPR) has been applied in many wastewater treatment plants to reduce the phosphorus that causes eutrophication in surface waters. EBPR employs polyphosphate-accumulating organisms (PAOs), which are enriched through alternating aerobic-anaerobic cycles (34). Since PAOs are essential for an understanding of EBPR, many candidates have been proposed as potential PAOs, such as Acinetobacter spp. (11), Tetrasphaera spp. (31), Microlunatus phosphovorus (36), Lampropedia spp. (40), and Gram-positive Actinobacteria (24). However, those organisms do not exhibit all of the characteristics of the EBPR biochemistry model. Recently developed culture-independent approaches such as PCR-clone libraries, fluorescence in situ hybridization (FISH), and microautoradiography (MAR) have highlighted an uncultured Rhodocyclus-related bacterium, “Candidatus Accumulibacter phosphatis” (henceforth referred to as “Ca. Accumulibacter”), as one of the most important PAO candidates (2, 5, 16, 22, 23, 27, 28, 47).Numerous studies have sought to investigate uncultured “Ca. Accumulibacter” and have shown the presence of genetically and physiologically different members with a global geographic distribution (3, 9, 22, 27, 39). For example, Kong et al. (22) identified two morphologically different “Ca. Accumulibacter” cells of small cocci and large coccobacilli labeled with PAOmix (PAO462, PAO651, and PAO846) in laboratory-scale EBPR reactors. Additional results showing phenotypic and morphological diversities of “Ca. Accumulibacter” cells also existed with respect to the different roles of denitrifying PAO (DPAO) in the EBPR process (3, 9, 23). Carvalho et al. (3) detected two different morphotypes of “Ca. Accumulibacter” with different nitrate reduction capabilities. The presence of other “Ca. Accumulibacter” strains with 15% genome sequence divergence from the dominant strains in metagenomic analyses is likely to explain these morphological and phenotypic differences (12). McMahon et al. (33) suggested the use of the polyphosphate kinase (ppk) gene, which is involved in the production of polyphosphate, for a finer elucidation of “Ca. Accumulibacter” diversity. He et al. (15) grouped “Ca. Accumulibacter” strains into five distinct clades, designated clades I, IIA, IIB, IIC, and IID, using ppk gene sequence information. Flowers and colleagues (9) previously reported that “Ca. Accumulibacter” cells of clade IA had nitrate reduction activity with phosphorus uptake but that “Ca. Accumulibacter” cells of clade IIA did not.FISH-fluorescence activated cell sorting (FACS) techniques have been used for the separation of specific microbial cells from complex microbial consortia and their metabolic gene analysis (14, 46). For example, Miyauchi et al. (35) sorted PAOmix probe-labeled “Ca. Accumulibacter” cells from EBPR sludge and analyzed their nitrite reductase gene (nirS) diversity. In the current study, we found that four different “Ca. Accumulibacter” clades (Acc-SG1, Acc-SG2, Acc-SG3, and Acc-SG4) were present in the EBPR sludge of laboratory-scale reactors supplied with acetate as the sole carbon source. We analyzed their morphological characteristics and ppk gene sequence information using a suite of FISH and FACS approaches and linked fine-scale phylogenetic diversities of “Ca. Accumulibacter” strains with their morphological characteristics and metabolic genes. This study will be useful for further genetic and physiological studies of different “Ca. Accumulibacter” clades.  相似文献   

18.

Background

Natural populations of most organisms, especially unicellular microorganisms, are constantly exposed to harsh environmental factors which affect their growth. UV radiation is one of the most important physical parameters which influences yeast growth in nature. Here we used 46 natural strains of Saccharomyces cerevisiae isolated from several natural populations at the “Evolution Canyon” microsite (Nahal Oren, Mt. Carmel, Israel). The opposing slopes of this canyon share the same geology, soil, and macroclimate, but they differ in microclimatic conditions. The interslope differences in solar radiation (200%–800% more on the “African” slope) caused the development of two distinct biomes. The south-facing slope is sunnier and has xeric, savannoid “African” environment while the north-facing slope is represented by temperate, “European” forested environment. Here we studied the phenotypic response of the S. cerevisiae strains to UVA and UVC radiations and to methyl methanesulfonate (MMS) in order to evaluate the interslope effect on the strains'' ability to withstand DNA-damaging agents.

Methodology/Principal Findings

We exposed our strains to the different DNA-damaging agents and measured survival by counting colony forming units. The strains from the “African” slope were more resilient to both UVA and MMS than the strains from the “European” slope. In contrast, we found that there was almost no difference between strains (with similar ploidy) from the opposite slopes, in their sensitivity to UVC radiation. These results suggest that the “African” strains are more adapted to higher solar radiation than the “European” strains. We also found that the tetraploids strains were more tolerant to all DNA-damaging agents than their neighboring diploid strains, which suggest that high ploidy level might be a mechanism of adaptation to high solar radiation.

Conclusions/Significance

Our results and the results of parallel studies with several other organisms, suggest that natural selection appears to select, at a microscale, for adaptive complexes that can tolerate the higher UV radiation on the “African” slope.  相似文献   

19.
20.
We describe and compare the external morphology of eleven clonal strains and one sexual lineage of the globally distributed Folsomia candida, known as “standard” test Collembola. Of the 18 morphological characters studied, we measured 14 to have significant between-strains genetic variations, 9 of these had high heritabilities (>78%). The quantified morphological polymorphism was used to analyse the within-species relationships between strains by using both a parsimony analysis and a distance tree. These two detailed morphological phylogenies have revealed that the parthenogenetic strains grouped themselves into two major clades. However the exact position of the sexual strain remains unclear and further analysis is needed to confirm its exact relationship with the parthenogenetic ones. The two morphologically based clades were found to be the same as the ones previously described using molecular analysis. This shows that despite large within-strain variations, morphological characters can be used to differentiate some strains that have diverged within a single morphospecies. We discuss the potential evolutionary interpretations and consequences of these different levels of phenotypic variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号