首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
A conserved family of herpesvirus protein kinases plays a crucial role in herpesvirus DNA replication and virion production. However, despite the fact that these kinases are potential therapeutic targets, no systematic studies have been performed to identify their substrates. We generated an Epstein-Barr virus (EBV) protein array to evaluate the targets of the EBV protein kinase BGLF4. Multiple proteins involved in EBV lytic DNA replication and virion assembly were identified as previously unrecognized substrates for BGLF4, illustrating the broad role played by this protein kinase. Approximately half of the BGLF4 targets were also in vitro substrates for the cellular kinase CDK1/cyclin B. Unexpectedly, EBNA1 was identified as a substrate and binding partner of BGLF4. EBNA1 is essential for replication and maintenance of the episomal EBV genome during latency. BGLF4 did not prevent EBNA1 binding to sites in the EBV latency origin of replication, oriP. Rather, we found that BGLF4 was recruited by EBNA1 to oriP in cells transfected with an oriP vector and BGLF4 and in lytically induced EBV-positive Akata cells. In cells transfected with an oriP vector, the presence of BGLF4 led to more rapid loss of the episomal DNA, and this was dependent on BGLF4 kinase activity. Similarly, expression of doxycycline-inducible BGLF4 in Akata cells led to a reduction in episomal EBV genomes. We propose that BGLF4 contributes to effective EBV lytic cycle progression, not only through phosphorylation of EBV lytic DNA replication and virion proteins, but also by interfering with the EBNA1 replication function.Herpesviruses encode two families of serine/threonine protein kinases, one of which, the BGLF4 (Epstein-Barr virus [EBV])/UL97 (human cytomegalovirus)/UL13 (herpes simplex virus)/ORF36 (Kaposi''s sarcoma-associated herpesvirus)/ORF47 (varicella-zoster virus) family, is the sole protein kinase encoded by beta and gamma herpesviruses. The protein kinases phosphorylate both viral and host proteins (16, 21, 42) and are necessary for efficient virus lytic replication. Consequently, these kinases have been of interest as potential targets for antiviral drug development (37), and the compound 1263W94 (maribavir), which inhibits the cytomegalovirus UL97 protein (3), has been used in phase I clinical trials (27, 31, 47).EBV infection is prevalent worldwide, and primary infection in adolescence or early adulthood is associated in 30 to 40% of cases with infectious mononucleosis. EBV efficiently infects B cells in the lymphoid tissues of the Waldeyer ring (43). EBV infection of B cells is biased toward establishment of latency with limited viral-gene expression (49). During latent infection, EBV genomes are maintained as extrachromosomal episomes. Replication of episomal genomes utilizes the latency origin of replication, oriP. The only EBV-encoded protein required is the origin binding protein EBNA1. All other essential replication factors are provided by the cell. Expression of the EBV replicative cycle and production of progeny virus take place in terminally differentiated plasma B cells (11, 29), and epithelial cells may also contribute to the cycle of virus replication and spread that is an important component of both persistent infection of the individual and transmission of virus from one individual to the next (4, 22). Lytic DNA replication initiates at separate origins, oriLyt. EBV encodes a set of six core lytic replication proteins, along with ancillary proteins, such as thymidine kinase (TK), that are involved in nucleotide metabolism (13, 44).Several substrates have been described for the EBV BGLF4 protein kinase, including the core lytic EBV replication protein BMRF1, the polymerase processivity factor (8, 17). BGLF4 has also been found to locate to sites of lytic viral replication (46), to be required for efficient lytic DNA replication and release of nucleocapsids from the nucleus (18), and to contribute to the compaction of cell chromatin seen in cells undergoing lytic replication (32). Protein chip technology provides a new tool for global analysis of activities for biologically important enzymes, such as ubiquitin ligases, DNA repair enzymes, and kinases (7, 19, 36, 38, 52). Using an EBV protein array for unbiased screening, we identified multiple new BGLF4 substrates involved in lytic DNA replication, capsid assembly, and DNA packaging. Unexpectedly, we also identified EBNA1 as a substrate and binding partner for BGLF4. The data suggest that the contribution of BGLF4 to the EBV lytic cycle extends beyond the previously recognized contributions to lytic DNA replication and virion production and includes facilitating the switch from latent to lytic DNA replication by downregulating the EBNA1 replication function.  相似文献   

4.
5.
6.
The herpes simplex virus (HSV) virion host shutoff protein (vhs) encoded by gene UL41 is an mRNA-specific RNase that triggers accelerated degradation of host and viral mRNAs in infected cells. We report here that vhs is also able to modulate reporter gene expression without greatly altering the levels of the target mRNA in transient-transfection assays conducted in HeLa cells. We monitored the effects of vhs on a panel of bicistronic reporter constructs bearing a variety of internal ribosome entry sites (IRESs) located between two test cistrons. As expected, vhs inhibited the expression of the 5′ cistrons of all of these constructs; however, the response of the 3′ cistron varied with the IRES: expression driven from the wild-type EMCV IRES was strongly suppressed, while expression controlled by a mutant EMCV IRES and the cellular ApaF1, BiP, and DAP5 IRES elements was strongly activated. In addition, several HSV type 1 (HSV-1) 5′ untranslated region (5′ UTR) sequences also served as positive vhs response elements in this assay. IRES activation was also observed in 293 and HepG2 cells, but no such response was observed in Vero cells. Mutational analysis has yet to uncouple the ability of vhs to activate 3′ cistron expression from its shutoff activity. Remarkably, repression of 5′ cistron expression could be observed under conditions where the levels of the reporter RNA were not correspondingly reduced. These data provide strong evidence that vhs can modulate gene expression at the level of translation and that it is able to activate cap-independent translation through specific cis-acting elements.The virion host shutoff protein (vhs) encoded by herpes simplex virus (HSV) gene UL41 is an endoribonuclease that is packaged into the tegument of mature HSV virions. Once delivered into the cytoplasm of newly infected cells, vhs triggers shutoff of host protein synthesis, disruption of preexisting polysomes, and degradation of host mRNAs (reviewed in reference 62). The vhs-dependent shutoff system destabilizes many cellular and viral mRNAs (36, 46, 67). The rapid decline in host mRNA levels presumably helps viral mRNAs gain access to the cellular translational apparatus. In addition, the relatively short half-lives of viral mRNAs contribute to the sharp transitions between the successive phases of viral protein synthesis by tightly coupling changes in the rates of synthesis of viral mRNAs to altered mRNA levels (46). These effects enhance virus replication and may account for the modest reduction in virus yield displayed by vhs mutants in cultured Vero cells (55, 61).vhs also plays a critical role in HSV pathogenesis: vhs mutants are severely impaired for replication in the corneas and central nervous systems of mice and cannot efficiently establish or reactivate from latency (63, 65, 66). Mounting evidence indicates that this attenuation stems at least in part from an impaired ability to disarm elements of the innate and adaptive host immune responses (reviewed in reference 62). For example, vhs suppresses certain innate cellular antiviral responses, including production of proinflammatory cytokines and chemokines (68); dampens the type I interferon system (11, 45, 49, 78); and blocks activation of dendritic cells (58). Moreover, vhs mutants display enhanced virulence in knockout mice lacking type I interferon (IFN) receptors (37, 45) or Stat1 (48) and are hypersensitive to the antiviral effects of IFN in some cells in tissue culture (11, 49, 68). Thus, vhs is arguably a bona fide virulence factor.vhs present in extracts of HSV virions or purified from bacteria has nonspecific RNase activity capable of degrading all RNA substrates (15, 70, 71, 79). However, vhs is highly selective in vivo, targeting mRNAs and sparing other cytoplasmic RNAs (36, 46). In vivo and in mammalian whole-cell extracts, vhs-induced decay of at least some mRNAs initiates near regions of translation initiation and proceeds in an overall 5′-to-3′ direction (12, 13, 29, 52). Moreover, vhs binds to the translation initiation factors eIF4H, eIF4B, and eIF4A II, all components of the cap recognition factor eIF4F (10, 16, 17). Thus, it has been proposed that vhs selectively targets actively translated mRNAs through interactions with eIF4F components (17). Consistent with this hypothesis, recent data document that eIF4H is required for vhs activity in vivo (59).A previous report from this laboratory documented that the internal ribosome entry sites (IRESs) of the picornaviruses poliovirus and encephalomyocarditis virus (EMCV) strongly target vhs-induced RNA cleavage events to sequences immediately 3′ to the IRES in an in vitro translation system derived from rabbit reticulocyte lysates (RRL) (13). IRES elements are highly structured RNA sequences that are able to direct cap-independent translational initiation (reviewed in references 21, 25, 30, and 64). In the case of the poliovirus and EMCV elements, this is achieved by directly recruiting the eIF4F scaffolding protein eIF4G, thus bypassing the requirement for the cap-binding eIF4F subunit, eIF4E (reviewed in reference 30). Based on these data, we suggested that vhs is strongly targeted to the picornavirus IRES elements via interactions with eIF4 factors.A growing number of cellular mRNAs have been proposed to bear IRES elements in their 5′ untranslated regions (5′ UTRs). These include many that are involved in cellular stress responses, apoptosis, and cell cycle progression (24, 64, 74). Given the striking ability of picornavirus IRES elements to target vhs RNase activity in vitro, we asked whether viral and cellular IRES elements are able to modify the susceptibility of mRNAs to vhs in vivo. During the course of preliminary experiments designed to test this hypothesis, we unexpectedly discovered that vhs is able to strongly activate gene expression controlled by some cellular IRES elements and HSV 5′ UTR sequences in in vivo bicistronic reporter assays. These observations are the subject of the present report.  相似文献   

7.
The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.African swine fever virus (ASFV) (61, 72) is the only known DNA-containing arbovirus and the sole member of the Asfarviridae family (24). Infection by this virus of its natural hosts, the wild swine warthogs and bushpigs and the argasid ticks of the genus Ornithodoros, results in a mild disease, often asymptomatic, with low viremia titers, that in many cases develops into a persistent infection (3, 43, 71). In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which the only available methods of disease control are the quarantine of the affected area and the elimination of the infected animals (51).The ASFV genome is a lineal molecule of double-stranded DNA of 170 to 190 kbp in length with convalently closed ends and terminal inverted repeats. The genome encodes more than 150 open reading frames, half of which lack any known or predictable function (16, 75).The virus particle, with an overall icosahedral shape and an average diameter of 200 nm (11), is organized in several concentric layers (6, 11, 15) containing more than 50 structural proteins (29). Intracellular particles are formed by an inner viral core, which contains the central nucleoid surrounded by a thick protein coat, referred to as core shell. This core is enwrapped by an inner lipid envelope (7, 34) on top of which the icosahedral capsid is assembled (26, 27, 31). Extracellular virions possess an additional membrane acquired during the budding from the plasma membrane (11). Both forms of the virus, intracellular and extracellular, are infective (8).The assembly of ASFV particles occurs in the cytoplasm of the infected cell, in viral factories located close to the cell nucleus (6, 13, 49). ASFV factories possess several characteristics similar to those of the cellular aggresomes (35), which are accumulations of aggregates of cellular proteins that form perinuclear inclusions (44).Current models propose that ASFV assembly begins with the modification of endoplasmic reticulum (ER) membranes, which are subsequently recruited to the viral factories and transformed into viral precursor membranes. These ER-derived viral membranes represent the precursors of the inner viral envelope and are the first morphological evidence of viral assembly (7, 60). ASFV viral membrane precursors evolve into icosahedral intermediates and icosahedral particles by the progressive assembly of the outer capsid layer at the convex face of the precursor membranes (5, 26, 27, 31) through an ATP- and calcium-dependent process (19). At the same time, the core shell is formed underneath the concave face of the viral envelope, and the viral DNA and nucleoproteins are packaged and condensed to form the innermost electron-dense nucleoid (6, 9, 12, 69). However, the assembly of the capsid and the internal envelope appears to be largely independent of the components of the core of the particle, since the absence of the viral polyprotein pp220 during assembly produces empty virus-like particles that do not contain the core (9).Comparative genome analysis suggests that ASFV shares a common origin with the members of the proposed nucleocytoplasmic large DNA viruses (NCLDVs) (40, 41). The reconstructed phylogeny of NCLDVs as well as the similitude in the structures and organizations of the genomes indicates that ASFV is more closely related to poxviruses than to other members of the NCLDVs. A consensus about the origin and nature of the envelope of the immature form of vaccinia virus (VV), the prototypical poxvirus, seems to be emerging (10, 17, 20, 54). VV assembly starts with the appearance of crescent-shaped structures within specialized regions of the cytoplasm also known as viral factories (21, 23). The crescent membranes originate from preexisting membranes derived from some specialized compartment of the ER (32, 37, 52, 53, 67), and an operative pathway from the ER to the crescent membrane has recently been described (38, 39). VV crescents apparently grow in length while maintaining the same curvature until they become closed circles, spheres in three dimensions, called immature virions (IV) (22). The uniform curvature is produced by a honeycomb lattice of protein D13L (36, 70), which attaches rapidly to the membranes so that nascent viral membranes always appear to be coated over their entirety. The D13L protein is evolutionarily related to the capsid proteins of the other members of the NCLDV group, including ASFV, but lacks the C-terminal jelly roll motif (40). This structural difference is probably related to the fact that poxviruses are the only member of this group without an icosahedral capsid; instead, the spherical D13L coat acts as a scaffold during the IV stage but is discarded in subsequent steps of morphogenesis (10, 28, 46, 66). Thus, although crescents in VV and precursors of the inner envelope in ASFV are the first morphogenetic stages discernible in the viral factories of these viruses, they seem to be different in nature. Crescents are covered by the D13L protein and are more akin to the icosahedral intermediates of ASFV assembly, whereas ASFV viral membrane precursors are more similar to the naked membranes seen when VV morphogenesis is arrested by rifampin treatment (33, 47, 48, 50) or when the expression of the D13L and A17L proteins are repressed during infection with lethal conditional VV viruses (45, 55, 56, 68, 74, 76).Although available evidence strongly supports the reticular origin of the ASFV inner envelope (7, 60), the mechanism of acquisition remains unknown, and the number of membranes present in the inner envelope is controversial. The traditional view of the inner envelope as formed by two tightly opposed membranes derived from ER collapsed cisternae (7, 59, 60) has recently been challenged by the careful examination of the width of the internal membrane of viral particles and the single outer mitochondrial membrane, carried out using chemical fixation, cryosectioning, and high-pressure freezing (34). The results suggest that the inner envelope of ASFV is a single lipid bilayer, which raises the question of how such a structure can be generated and stabilized in the precursors of the ASFV internal envelope. In the case of VV, the coat of the D13L protein has been suggested to play a key role in the stabilization of the single membrane structure of the crescent (10, 17, 36), but the ASFV capsid protein p72 is not a component of the viral membrane precursors. The identification and functional characterization of the proteins involved in the generation of these structures are essential for the understanding of the mechanisms involved in these early stages of viral assembly. For this reason, we are focusing our interest on the study of abundant structural membrane proteins that reside at the inner envelope of the viral particle. We have shown previously that one of these proteins, p54, is essential for the recruitment of ER membranes to the viral factory (59). Repression of protein p54 expression has a profound impact on virus production and leads to an early arrest in virion morphogenesis, resulting in the virtual absence of membranes in the viral factory.Protein p17, encoded by the late gene D117L in the BA71V strain, is an abundant structural protein (60, 65). Its sequence, which is highly conserved among ASFV isolates (16), does not show any significant similarity with the sequences present in the databases. Protein p17 is an integral membrane protein (18) that is predicted to insert in membranes with a Singer type I topology and has been localized in the envelope precursors as well as in both intracellular and extracellular mature particles (60), suggesting that it resides at the internal envelope, the only membranous structure of the intracellular particles.In this work, we analyze the role of protein p17 in viral assembly by means of an IPTG (isopropyl-β-d-thiogalactopyranoside)-dependent lethal conditional virus. The data presented indicate that protein p17 is essential for viral morphogenesis. The repression of this protein appears to block assembly at the level of viral precursor membranes, resulting in their accumulation at the viral factory.From the electron microscopy analysis of serial sections of viral factories at very early times during morphogenesis, we present experimental evidence that suggests that, during assembly, viral precursor membranes and core material organize into large helicoidal intermediates from which icosahedral particles emerge. The possible role of these structures during ASFV morphogenesis is discussed.  相似文献   

8.
9.
10.
11.
12.
KSR1 is a mitogen-activated protein (MAP) kinase scaffold that enhances the activation of the MAP kinase extracellular signal-regulated kinase (ERK). The function of KSR1 in NK cell function is not known. Here we show that KSR1 is required for efficient NK-mediated cytolysis and polarization of cytolytic granules. Single-cell analysis showed that ERK is activated in an all-or-none fashion in both wild-type and KSR1-deficient cells. In the absence of KSR1, however, the efficiency of ERK activation is attenuated. Imaging studies showed that KSR1 is recruited to the immunological synapse during T-cell activation and that membrane recruitment of KSR1 is required for recruitment of active ERK to the synapse.Kinase suppressor of Ras was originally identified in Drosophila melanogaster (53) and Caenorhabditis elegans (19, 32, 52) as a positive regulator of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling pathway. It is thought to function as a MAP kinase scaffold because it can bind to Raf, MEK, and ERK (18, 19, 27, 28, 44, 59). While the exact function of KSR is unknown, preassembling the three components of the ERK MAP kinase cascade could function to enhance the efficiency of ERK activation, potentially regulate the subcellular location of ERK activation, and promote access to specific subcellular substrates (16, 45, 46).While only one isoform of KSR is expressed in Drosophila (53), two KSR isoforms have been identified in C. elegans (19, 32, 52) and most higher organisms. They are referred to as KSR1 and KSR2 (32, 43). While KSR1 mRNA and protein are detectable in a wide variety of cells and tissues, including brain, thymus, and muscle (10, 11, 29), little is known about the expression pattern of KSR2.We previously reported the phenotype of KSR1-deficient mice (30). These mice are born at Mendelian ratios and develop without any obvious defects. Using gel filtration, we showed that KSR1 promotes the formation of large signaling complexes containing KSR1, Raf, MEK, and ERK (30). Using both primary T cells stimulated with antibodies to the T-cell receptor as well as fibroblasts stimulated with growth factors, we showed that KSR1-deficient cells exhibit an attenuation of ERK activation with defects in cell proliferation.Here we explored the role of KSR1 in NK cell-mediated cytolysis. The killing of a target cell by a cytolytic T cell or NK cell is a complicated process that involves cell polarization with microtubule-dependent movement of cytolytic granules to an area that is proximal to the contact surface or immunological synapse (7, 33, 34, 48-50, 54). A variety of different signaling molecules are also involved, including calcium (23), phosphatidylinositol-3,4,5-triphosphate (13, 17), and activation of the ERK MAP kinase (6, 42, 56). Recently, the recruitment of activated ERK to the immunological synapse (IS) has been shown to be a feature of successful killing of a target by cytotoxic T lymphocytes (58).How active ERK is recruited to the synapse is not known. Since KSR1 is known to be recruited to the plasma membrane by Ras activation (24), and since the immunological synapse is one of the major sites of Ras activation (26, 41), it seemed plausible to test the hypothesis that KSR1 recruitment to the plasma membrane functions to recruit ERK to the immunological synapse and facilitate its activation. We found that KSR1 was recruited to the immunological synapse and that KSR1 appeared to be required for the localization of active ERK at the contact site. As KSR1-deficient cells exhibit a defect in killing, this suggests that KSR1 recruitment to the synapse may be important in the cytolytic killing of target cells.  相似文献   

13.
14.
15.
Although noroviruses cause the vast majority of nonbacterial gastroenteritis in humans, little is known about their life cycle, including viral entry. Murine norovirus (MNV) is the only norovirus to date that efficiently infects cells in culture. To elucidate the productive route of infection for MNV-1 into murine macrophages, we used a neutral red (NR) infectious center assay and pharmacological inhibitors in combination with dominant-negative (DN) and small interfering RNA (siRNA) constructs to show that clathrin- and caveolin-mediated endocytosis did not play a role in entry. In addition, we showed that phagocytosis or macropinocytosis, flotillin-1, and GRAF1 are not required for the major route of MNV-1 uptake. However, MNV-1 genome release occurred within 1 h, and endocytosis was significantly inhibited by the cholesterol-sequestering drugs nystatin and methyl-β-cyclodextrin, the dynamin-specific inhibitor dynasore, and the dominant-negative dynamin II mutant K44A. Therefore, we conclude that the productive route of MNV-1 entry into murine macrophages is rapid and requires host cholesterol and dynamin II.Murine noroviruses (MNV) are closely related to human noroviruses (HuNoV), the causative agent of most outbreaks of infectious nonbacterial gastroenteritis worldwide in people of all ages (4, 8, 19, 31, 43, 46, 83). Although a major public health concern, noroviruses have been an understudied group of viruses due to the lack of a tissue culture system and small animal model. Since the discovery of MNV-1 in 2003 (27), reverse genetics systems (10, 81), a cell culture model (84), and a small animal model (27) have provided the tools necessary for detailed study of noroviruses.One largely unexplored aspect of norovirus biology is the early events during viral infection that are essential during viral pathogenesis. One of these early events is the attachment of the virus particle to the host. Attachment is mediated by the protruding domain of the MNV-1 capsid (29, 30, 73). For at least three strains (MNV-1, WU-11, and S99), the attachment receptor on the cell surface of murine macrophages is terminal sialic acids, including those found on the ganglioside GD1a (72). The use of carbohydrate receptors for cell attachment is shared with HuNoV, which utilize mostly histo-blood group antigens (HBGA) (18, 34, 70, 71). These carbohydrates are present in body fluids (saliva, breast milk, and intestinal contents) and on the surface of red blood cells and intestinal epithelial cells (33). Some HuNoV strains also bind to sialic acid or heparan sulfate (60, 69). However, despite evidence that for HuNoV HBGA are a genetic susceptibility marker (35), the presence of attachment receptors is not sufficient for a productive infection for either HuNoV (24) or MNV-1 (72). Although the cellular tropism of HuNoV is unknown, MNV infects murine macrophages and dendritic cells in vitro and in vivo (80, 84). Following attachment, MNV-1 infection of murine macrophages and dendritic cells can proceed in the presence of the endosome acidification inhibitor chloroquine or bafilomycin A1, suggesting that MNV-1 entry occurs independently of endosomal pH (54). However, the cellular pathway(s) utilized by MNV-1 during entry remains unclear.Viruses are obligate intracellular pathogens that hijack cellular processes to deliver their genome into cells. The most commonly used endocytic pathway during virus entry is clathrin-mediated endocytosis (41). Clathrin-coated vesicles form at the plasma membrane, pinch off by the action of the small GTPase dynamin II, and deliver their contents to early endosomes (12). For example, vesicular stomatitis virus (VSV) enters cells in this manner (66). However, viruses can also use several clathrin-independent pathways to enter cells, some of which require cholesterol-rich microdomains (i.e., lipid rafts) in the plasma membrane (56). The best studied of these is mediated by caveolin and was initially elucidated through studies of simian virus 40 (SV40) entry (1). SV40 uptake occurs via caveolin-containing vesicles that are released from the plasma membrane in a dynamin II-dependent manner and later fuse with pH-neutral caveosomes (28, 48, 53). Although caveolin-mediated endocytosis is a well-characterized form of cholesterol-dependent endocytosis, other entry mechanisms exist that are clathrin and caveolin independent (5, 14, 55, 57-59, 64, 78). In addition, macropinocytosis and/or phagocytosis can also play a role in viral entry (11, 13, 21, 36, 40, 42, 44, 45). However, the requirement for dynamin II in these processes is not fully understood.Viral entry has been addressed primarily by pharmacologic inhibitor studies, immunofluorescence and electron microscopy, transfections of dominant-negative (DN) constructs, and more recently by small interfering RNA (siRNA) knockdown. Each of these approaches has some limitations; thus, a combination of approaches is needed to elucidate the mechanism of viral entry into host cells. For example, using electron and fluorescence microscopy, which require a high particle number, does not allow the differentiation of infectious and noninfectious particles. Alternatively, the use of pharmacological inhibitors can result in off-target effects, including cytotoxicity. A recent approach used the photoreactive dye neutral red (NR) in an infectious focus assay to determine the mechanism of poliovirus entry (6). Cells were infected in the dark in the presence of neutral red, and virus particles passively incorporated the dye. Upon exposure to light, the neutral red dye cross-linked the viral genome to the viral capsid, thus inactivating the virus. Infectious foci were counted several days later. This assay was performed in the presence of various pharmacologic inhibitors of endocytosis. When an inhibitor blocked a productive route of infection, the number of infectious foci was significantly less than that for an untreated control. Major advantages of this technique over traditional assays are the ability to treat cells with pharmacologic inhibitors only during the viral entry process, the reduction of cytotoxicity, and the ability to infect with a low multiplicity of infection (MOI). Furthermore, infectious virus that is prohibited from uncoating is inactivated by illumination. Therefore, only virus particles leading to a productive infection in the presence or absence of the various inhibitors are measured. We successfully adapted this assay for use with MNV-1. Together with the use of pharmacological inhibitors, DN constructs, and siRNA knockdown, we demonstrate that the major MNV-1 entry pathway into murine macrophages resulting in a productive infection occurred by endocytosis and not phagocytosis or macropinocytosis in a manner that was clathrin and caveolin 1, flotillin 1, and GRAF1 independent but required dynamin II and cholesterol.  相似文献   

16.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

17.
Bacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genus Bradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genus Lotus. Two hundred eighty pure cultures of Bradyrhizobium bacteria were isolated and genotyped from wild hosts, including Lotus angustissimus, Lotus heermannii, Lotus micranthus, and Lotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies of Bradyrhizobium isolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.Symbiotic bacteria often encounter hosts from environmental sources (32, 48, 60), which leads to multipartite life histories including host-inhabiting and environmental stages. Research on host-associated bacteria, including pathogens and beneficial symbionts, has focused primarily on infection and proliferation in hosts, and key questions about the ecology and evolution of the free-living stages have remained unanswered. For instance, is host association ubiquitous within a bacterial lineage, or if not, do host-infecting genotypes represent a phylogenetically nonrandom subset? Assuming that host infection and free-living existence exert different selective pressures, do bacterial lineages diverge into specialists for these different lifestyles? Another set of questions addresses the degree to which bacteria associate with specific host partners. Do bacterial genotypes invariably associate with specific host lineages, and is such specificity controlled by one or both partners? Alternatively, is specificity simply a by-product of ecological cooccurrence among bacteria and hosts?Rhizobial bacteria comprise several distantly related proteobacterial lineages, most notably the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (52), that have acquired the ability to form nodules on legumes and symbiotically fix nitrogen. Acquisition of nodulation and nitrogen fixation loci has likely occurred through repeated lateral transfer of symbiotic loci (13, 74). Thus, the term “rhizobia” identifies a suite of symbiotic traits in multiple genomic backgrounds rather than a taxonomic classification. When rhizobia infect legume hosts, they differentiate into specialized endosymbiotic cells called bacteroids, which reduce atmospheric nitrogen in exchange for photosynthates from the plant (35, 60). Rhizobial transmission among legume hosts is infectious. Rhizobia can spread among hosts through the soil (60), and maternal inheritance (through seeds) is unknown (11, 43, 55). Nodule formation on hosts is guided by reciprocal molecular signaling between bacteria and plant (5, 46, 58), and successful infection requires a compatible pairing of legume and rhizobial genotypes. While both host and symbiont genotypes can alter the outcome of rhizobial competition for adsorption (34) and nodulation (33, 39, 65) of legume roots, little is known about how this competition plays out in nature.Rhizobia can achieve reproductive success via multiple lifestyles (12), including living free in the soil (14, 44, 53, 62), on or near root surfaces (12, 18, 19, 51), or in legume nodules (60). Least is known about rhizobia in bulk soil (not penetrated by plant roots). While rhizobia can persist for years in soil without host legumes (12, 30, 61), it appears that growth is often negligible in bulk soil (4, 10, 14, 22, 25). Rhizobia can also proliferate in the rhizosphere (soil near the root zone) of legumes (4, 10, 18, 19, 22, 25, 51). Some rhizobia might specialize in rhizosphere growth and infect hosts only rarely (12, 14, 51), whereas other genotypes are clearly nonsymbiotic because they lack key genes (62) and must therefore persist in the soil. The best-understood rhizobial lifestyle is the root nodule symbiosis with legumes, which is thought to offer fitness rewards that are superior to life in the soil (12). After the initial infection, nodules grow and harbor increasing populations of bacteria until the nodules senesce and the rhizobia are released into the soil (11, 12, 38, 40, 55). However, rhizobial fitness in nodules is not guaranteed. Host species differ in the type of nodules they form, and this can determine the degree to which differentiated bacteroids can repopulate the soil (11, 12, 38, 59). Furthermore, some legumes can hinder the growth of nodules with ineffective rhizobia, thus punishing uncooperative symbionts (11, 27, 28, 56, 71).Here, we investigated the relationships between environmental and host-infecting populations of rhizobia. A main objective was to test the hypothesis that rhizobia exhibit specificity among host species as well as among host microenvironments, specifically symbiotic nodules, root surfaces, and root tips. We predicted that host infection and environmental existence exert different selective pressures on rhizobia, leading to divergent patterns of clustering, diversity, and abundance of rhizobial genotypes.  相似文献   

18.
The nanATEK-yhcH, yjhATS, and yjhBC operons in Escherichia coli are coregulated by environmental N-acetylneuraminic acid, the most prevalent sialic acid in nature. Here we show that YjhS (NanS) is a probable 9-O-acetyl N-acetylneuraminic acid esterase required for E. coli to grow on this alternative sialic acid, which is commonly found in mammalian host mucosal sites.The coregulated nanATEK-yhcH, yjhATS, and yjhBC operons involved in sialic acid catabolism in Escherichia coli are thought to be induced by the most common sialic acid, N-acetylneuraminic acid (Neu5Ac), through reversible inactivation of the NanR repressor encoded by nanR mapping immediately upstream of nanA (15, 27, 28; http://vetmed.illinois.edu/path/sialobiology/). Sialic acids are a family of over 40 naturally occurring 9-carbon keto sugar acids found mainly in metazoans of the deuterostome (starfish to human) developmental lineage and in some, mostly pathogenic, bacteria, where sialic acids expressed at the microbial cell surface inhibit host innate immunity (27). By contrast, most bacterial commensals and pathogens catabolize sialic acids as sole carbon and nitrogen sources, indicating exploitation of the sialic acid-rich host mucosal environment by a wide range of species (2, 27, 28). Interestingly, in vivo experimental evidence further indicates that sialic acid catabolism functions directly (nutrition) or indirectly (surface decoration and cell signaling) in host-microbe commensal and pathogenic interactions in organisms such as E. coli, Haemophilus influenzae, Pasteurella multocida, Salmonella enterica serovar Typhi, Streptococcus pneumoniae, Vibrio vulnificus, and Vibrio cholerae (1, 3, 5, 6, 10, 14, 23, 24, 26, 29). The animal species used for these studies include rodent models and natural hosts such as cattle and turkeys. The structural diversity of sialic acids at the terminal positions on glycoconjugates (glycoproteins and glycolipids) of mucosal surfaces of these hosts requires sialidases, acetyl esterases, and probably other enzymes that convert alternative or at least minor sialic acids to the more digestible Neu5Ac form (8, 9). We have previously demonstrated that E. coli has an epicurean propensity for metabolizing alternative sialic acids (30, 31). In the current communication, we show that YjhS is required for growth of E. coli on 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2).Because most sialic acids are bound to other sugars, including other sialic acids, as part of the oligosaccharide chains on glycoconjugates, either microbial or endogenous (host) sialidases (NanH, or N-acylneuraminate hydrolases) are needed to release free sugar, which is then transported by NanT in E. coli (15, 16, 26, 31). Once internalized, sialic acid is cleaved by an nanA-encoded aldolase or lyase to yield the 6-carbon hexosamine, N-acetylmannosamine (ManNAc), and pyruvate, with the latter entering the tricarboxylic acid cycle or gluconeogenesis. ManNAc is converted to its 6-phosphate derivative by a specific kinase encoded by nanK and epimerized by NanE to yield N-acetylglucosamine 6-phosphate, which is converted to fructose 6-phosphate by products of the nag operon (15, 17, 31, 32). The functions of the coregulated yjhS, yjhB, yjhC, and yhcH gene products are unknown but are not required for growth on Neu5Ac (15). However, YjhA (NanC) is an outer membrane porin required for diffusion of Neu5Ac in the absence of the major porins (7), while YjhT (NanM) is a mutarotase that catalyzes the conversion of the alpha sialic acid isomer to the more thermodynamically stable beta form (21). Neither nanC nor nanM is required for growth on Neu5Ac (15), suggesting that yjhS, yjhBC, and yhcH are involved in reactions that convert alternative sialic acids to Neu5Ac (22, 23). YhcH was crystallized and has been suggested to be an isomerase or epimerase involved in processing N-glycolylneuraminic acid (Neu5Gc) (25), but deletion of yhcH did not affect growth on this sialic acid as a sole carbon source (16).Computer-assisted analysis indicated that YjhB is a permease similar to NanT (16) whereas YjhC is a likely oxidoreductase or dehydrogenase. Orthologs of yhcH, nanC, nanM, and yjhBC are found in most bacterial species with intact Neu5Ac utilization systems, while yjhS is confined to E. coli and shigellae, either as part of the chromosomes in these strains or integrated with phages or phage remnants. However, a significant match (E value = 0.0007) was found between YjhS and AxeA in Rhodopirellula baltica, where AxeA is an acetyl xylan esterase (11), suggesting YjhS might be a sialate esterase. We propose that YjhS should be designated NanS to indicate its direct participation in utilization of an alternative sialic acid.  相似文献   

19.
20.
Influenza A virus buds through the apical plasma membrane, forming enveloped virus particles that can take the shape of pleomorphic spheres or vastly elongated filaments. For either type of virion, the factors responsible for separation of viral and cell membranes are not known. We find that cellular Rab11 (a small GTP-binding protein involved in endocytic recycling) and Rab11-family interacting protein 3 ([FIP3] which plays a role in membrane trafficking and regulation of actin dynamics) are both required to support the formation of filamentous virions, while Rab11 is additionally involved in the final budding step of spherical particles. Cells transfected with Rab11 GTP-cycling mutants or depleted of Rab11 or FIP3 content by small interfering RNA treatment lost the ability to form virus filaments. Depletion of Rab11 resulted in up to a 100-fold decrease in titer of spherical virus released from cells. Scanning electron microscopy of Rab11-depleted cells showed high densities of virus particles apparently stalled in the process of budding. Transmission electron microscopy of thin sections confirmed that Rab11 depletion resulted in significant numbers of abnormally formed virus particles that had failed to pinch off from the plasma membrane. Based on these findings, we see a clear role for a Rab11-mediated pathway in influenza virus morphogenesis and budding.Influenza A virus is a highly infectious respiratory pathogen, causing 3 to 5 million severe cases yearly while the recent H1N1 pandemic has spread to over 200 countries and resulted in over 15,000 WHO-confirmed deaths since its emergence in March 2009 (57). Influenza virus particles are enveloped structures that contain nine identified viral polypeptides. The lipid envelope is derived by budding from the apical plasma membrane and contains the viral integral membrane proteins hemagglutinin (HA) and neuraminidase (NA) as well as the M2 ion channel. Internally, virus particles contain a matrix protein (M1), small quantities of the NS2/NEP polypeptide, and eight genomic segments of negative-sense RNA that are separately encapsidated into ribonucleoprotein (RNP) particles by the viral nucleoprotein (NP) and tripartite polymerase complex (PB1, PB2, and PA). M1 is thought to form a link between the RNPs and the cytoplasmic tails of the viral membrane proteins though M2 may also play a role (39). The minimal viral protein requirements for budding are disputed; while initial studies suggested that M1 was the main driver of budding (21, 34), more recent work proposes that the glycoproteins HA and NA are responsible (8).Further complicating the analysis of influenza A virus budding is the observation that most strains of the virus form two distinct types of virions: spherical particles approximately 100 nm in diameter and much longer filamentous particles up to 30 μm in length (38). Of the viral proteins, M1 is the primary determinant of particle shape (3, 17) although other virus genes also play a role. It is also likely that host factors are involved in the process as cells with fully differentiated apical and basolateral membranes produce more filaments than nonpolarized cell types (42). While it is tempting to speculate that virus morphology and budding are regulated by the same cellular process, the fact that spherical budding occurs in the absence of an intact actin cytoskeleton while filament formation does not (42, 48) indicates some level of divergence in the mechanisms responsible for spherical and filamentous virion morphogenesis.The means by which viral and cellular membranes are separated are also unclear. Unlike many other enveloped viruses, including retroviruses (19, 36, 52) and herpes simplex virus (12), influenza A virus does not utilize the cellular endosomal sorting complex required for transport (ESCRT) pathway (5, 8). However, recent reports indicate that some viruses, including human cytomegalovirus (HCMV) (32), the hantavirus Andes virus (44), and respiratory syncytial virus (RSV) may employ a Rab11-mediated pathway during assembly and/or budding (4, 51). The Rab family of small GTPases is involved in targeting vesicle trafficking, mediating a wide range of downstream processes including endosomal trafficking and membrane fusion/fission events (reviewed in references 53 and 58). Rab11 is involved in trafficking proteins and vesicles between the trans-Golgi network (TGN), recycling endosome, and the plasma membrane (9, 49, 50) as well as playing a role in actin remodeling, cytokinesis, and abscission (27, 41, 55). Apical recycling endosome (ARE) trafficking is of particular interest in the context of viral infection as other negative-sense RNA viruses have been shown to assemble and/or traffic virion components through the ARE prior to final assembly and budding at the plasma membrane (4, 44, 51). Rab11 function is modulated and targeted through interactions with Rab11 family interacting proteins (Rab11-FIPs) that direct it to specific subcellular locations (23, 25, 26) by binding to actin or microtubule-based motor proteins (24, 26, 47). While Rab11-FIPs recognize both isoforms of Rab11 (a and b [Rab11a/b]) through a conserved amphipathic α-helical motif, they differ in their ability to bind either the GTP-bound form of Rab11 (FIP1, FIP3, FIP4, and Rip11) or both the GTP and GDP-bound forms (FIP2) (23, 30). FIP1 and FIP2 have been implicated in RSV budding (4, 51) while FIP4 is important for trafficking of HCMV components (32). FIP3 has not previously been linked with virus budding but plays an important role in both cell motility and cytokinesis, regulating actin dynamics and endosomal membrane trafficking (29, 55).In light of the normal cellular functions of Rab11 and its effectors and of their reported involvement in the budding of other viruses, we examined the role of this cellular pathway in influenza virus budding. We find that Rab11-FIP3 is essential for filamentous but not spherical virion formation while Rab11 is required for both forms of virus budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号