首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
A major question about cytokinesis concerns the role of the septin proteins, which localize to the division site in all animal and fungal cells but are essential for cytokinesis only in some cell types. For example, in Schizosaccharomyces pombe, four septins localize to the division site, but deletion of the four genes produces only a modest delay in cell separation. To ask if the S. pombe septins function redundantly in cytokinesis, we conducted a synthetic-lethal screen in a septin-deficient strain and identified seven mutations. One mutation affects Cdc4, a myosin light chain that is an essential component of the cytokinetic actomyosin ring. Five others cause frequent cell lysis during cell separation and map to two loci. These mutations and their dosage suppressors define a signaling pathway (including Rho1 and a novel arrestin) for repairing cell-wall damage. The seventh mutation affects the poorly understood RNA-binding protein Scw1 and severely delays cell separation when combined either with a septin mutation or with a mutation affecting the septin-interacting, anillin-like protein Mid2, suggesting that Scw1 functions in a pathway parallel to that of the septins. Taken together, our results suggest that the S. pombe septins participate redundantly in one or more pathways that cooperate with the actomyosin ring during cytokinesis and that a septin defect causes septum defects that can be repaired effectively only when the cell-integrity pathway is intact.THE fission yeast Schizosaccharomyces pombe provides an outstanding model system for studies of cytokinesis (McCollum and Gould 2001; Balasubramanian et al. 2004; Pollard and Wu 2010). As in most animal cells, successful cytokinesis in S. pombe requires an actomyosin ring (AMR). The AMR begins to assemble at the G2/M transition and involves the type II myosin heavy chains Myo2 and Myp2 and the light chains Cdc4 and Rlc1 (Wu et al. 2003). Myo2 and Cdc4 are essential for cytokinesis under all known conditions, Rlc1 is important at all temperatures but essential only at low temperatures, and Myp2 is essential only under stress conditions. As the AMR constricts, a septum of cell wall is formed between the daughter cells. The primary septum is sandwiched by secondary septa and subsequently digested to allow cell separation (Humbel et al. 2001; Sipiczki 2007). Because of the internal turgor pressure of the cells, the proper assembly and structural integrity of the septal layers are essential for cell survival.Septum formation involves the β-glucan synthases Bgs1/Cps1/Drc1, Bgs3, and Bgs4 (Ishiguro et al. 1997; Le Goff et al. 1999; Liu et al. 1999, 2002; Martín et al. 2003; Cortés et al. 2005) and the α-glucan synthase Ags1/Mok1 (Hochstenbach et al. 1998; Katayama et al. 1999). These synthases are regulated by the Rho GTPases Rho1 and Rho2 and the protein kinase C isoforms Pck1 and Pck2 (Arellano et al. 1996, 1997, 1999; Nakano et al. 1997; Hirata et al. 1998; Calonge et al. 2000; Sayers et al. 2000; Ma et al. 2006; Barba et al. 2008; García et al. 2009b). The Rho GTPases themselves appear to be regulated by both GTPase-activating proteins (GAPs) and guanine-nucleotide-exchange factors (GEFs) (Nakano et al. 2001; Calonge et al. 2003; Iwaki et al. 2003; Tajadura et al. 2004; Morrell-Falvey et al. 2005; Mutoh et al. 2005; García et al. 2006, 2009a,b). In addition, septum formation and AMR function appear to be interdependent. In the absence of a normal AMR, cells form aberrant septa and/or deposit septal materials at random locations, whereas a mutant defective in septum formation (bgs1) is also defective in AMR constriction (Gould and Simanis 1997; Le Goff et al. 1999; Liu et al. 1999, 2000). Both AMR constriction and septum formation also depend on the septation initiation network involving the small GTPase Spg1 (McCollum and Gould 2001; Krapp and Simanis 2008). Despite this considerable progress, many questions remain about the mechanisms and regulation of septum formation and its relationships to the function of the AMR.One major question concerns the role(s) of the septins. Proteins of this family are ubiquitous in fungal and animal cells and typically localize to the cell cortex, where they appear to serve as scaffolds and diffusion barriers for other proteins that participate in a wide variety of cellular processes (Longtine et al. 1996; Gladfelter et al. 2001; Hall et al. 2008; Caudron and Barral 2009). Despite the recent progress in elucidating the mechanisms of septin assembly (John et al. 2007; Sirajuddin et al. 2007; Bertin et al. 2008; McMurray and Thorner 2008), the details of septin function remain obscure. However, one prominent role of the septins and associated proteins is in cytokinesis. Septins concentrate at the division site in every cell type that has been examined, and in Saccharomyces cerevisiae (Hartwell 1971; Longtine et al. 1996; Lippincott et al. 2001; Dobbelaere and Barral 2004) and at least some Drosophila (Neufeld and Rubin 1994; Adam et al. 2000) and mammalian (Kinoshita et al. 1997; Surka et al. 2002) cell types, the septins are essential for cytokinesis. In S. cerevisiae, the septins are required for formation of the AMR (Bi et al. 1998; Lippincott and Li 1998). However, this cannot be their only role, because the AMR itself is not essential for cytokinesis in this organism (Bi et al. 1998; Korinek et al. 2000; Schmidt et al. 2002). Moreover, there is no evidence that the septins are necessary for AMR formation or function in any other organism. A further complication is that in some cell types, including most Caenorhabditis elegans cells (Nguyen et al. 2000; Maddox et al. 2007) and some Drosophila cells (Adam et al. 2000; Field et al. 2008), the septins do not appear to be essential for cytokinesis even though they localize to the division site.S. pombe has seven septins, four of which (Spn1, Spn2, Spn3, and Spn4) are expressed in vegetative cells and localize to the division site shortly before AMR constriction and septum formation (Longtine et al. 1996; Berlin et al. 2003; Tasto et al. 2003; Wu et al. 2003; An et al. 2004; Petit et al. 2005; Pan et al. 2007; Onishi et al. 2010). Spn1 and Spn4 appear to be the core members of the septin complex (An et al. 2004; McMurray and Thorner 2008), and mutants lacking either of these proteins do not assemble the others at the division site. Assembly of a normal septin ring also depends on the anillin-like protein Mid2, which colocalizes with the septins (Berlin et al. 2003; Tasto et al. 2003). Surprisingly, mutants lacking the septins are viable and form seemingly complete septa with approximately normal timing. These mutants do, however, display a variable delay in separation of the daughter cells, suggesting that the septins play some role(s) in the proper completion of the septum or in subsequent processes necessary for cell separation (Longtine et al. 1996; An et al. 2004; Martín-Cuadrado et al. 2005).It is possible that the septins localize to the division site and yet are nonessential for division in some cell types because their role is redundant with that of some other protein(s) or pathway(s). To explore this possibility in S. pombe, we screened for mutations that were lethal in combination with a lack of septins. The results suggest that the septins cooperate with the AMR during cytokinesis and that, in the absence of septin function, the septum is not formed properly, so that an intact system for recognizing and repairing cell-wall damage becomes critical for cell survival.  相似文献   

2.
3.
Yield is the most important and complex trait for the genetic improvement of crops. Although much research into the genetic basis of yield and yield-associated traits has been reported, in each such experiment the genetic architecture and determinants of yield have remained ambiguous. One of the most intractable problems is the interaction between genes and the environment. We identified 85 quantitative trait loci (QTL) for seed yield along with 785 QTL for eight yield-associated traits, from 10 natural environments and two related populations of rapeseed. A trait-by-trait meta-analysis revealed 401 consensus QTL, of which 82.5% were clustered and integrated into 111 pleiotropic unique QTL by meta-analysis, 47 of which were relevant for seed yield. The complexity of the genetic architecture of yield was demonstrated, illustrating the pleiotropy, synthesis, variability, and plasticity of yield QTL. The idea of estimating indicator QTL for yield QTL and identifying potential candidate genes for yield provides an advance in methodology for complex traits.YIELD is the most important and complex trait in crops. It reflects the interaction of the environment with all growth and development processes that occur throughout the life cycle (Quarrie et al. 2006). Crop yield is directly and multiply determined by yield-component traits (such as seed weight and seed number). Yield-related traits (such as biomass, harvest index, plant architecture, adaptation, resistance to biotic and abiotic constraints) may also indirectly affect yield by affecting the yield-component traits or by other, unknown mechanisms. Increasing evidence suggests that “fine-mapped” quantitative trait loci (QTL) or genes identified as affecting crop yield involve diverse pathways, such as seed number (Ashikari et al. 2005; Tian et al. 2006b; Burstin et al. 2007; Xie et al. 2008; Xing et al. 2008; Xue et al. 2008), seed weight (Ishimaru 2003; Song et al. 2005; Shomura et al. 2008; Wang et al. 2008; Xie et al. 2006, 2008; Xing et al. 2008; Xue et al. 2008), flowering time (Cockram et al. 2007; Song et al. 2007; Xie et al. 2008; Xue et al. 2008), plant height (Salamini 2003; Ashikari et al. 2005; Xie et al. 2008; Xue et al. 2008), branching (Clark et al. 2006; Burstin et al. 2007; Xing et al. 2008), biomass yield (Quarrie et al. 2006; Burstin et al. 2007), resistance and tolerance to biotic and abiotic stresses (Khush 2001; Brown 2002; Yuan et al. 2002; Waller et al. 2005; Zhang 2007; Warrington et al. 2008), and root architecture (Hochholdinger et al. 2008).Many experiments have explored the genetic basis of yield and yield-associated traits (yield components and yield-related traits) in crops. Summaries of identified QTL have been published for wheat (MacCaferri et al. 2008), barley (Von Korff et al. 2008), rice, and maize (http://www.gramene.org/). The results show several common patterns. First, QTL for yield and yield-associated traits tend to be clustered in the genome, which suggests that the QTL of the yield-associated traits have pleiotropic effects on yield. Second, this kind of pleiotropy has not been well analyzed genetically. The QTL for yield (complicated factor), therefore, have not been associated with any yield-associated traits (relatively simple factors, such as plant height). Therefore, they are unlikely to predict accurately potential candidate genes for yield. Third, only a few loci (rarely >10) have been found for each of these traits. Thus, the genetic architecture of yield has remained ambiguous. Fourth, trials were carried out in a few environments and how the mode of expression of QTL for these complex traits might respond in different environments is unclear.In this study, the genetic architecture of crop yield was analyzed through the QTL mapping of seed yield and eight yield-associated traits in two related populations of rapeseed (Brassica napus) that were grown in 10 natural environments. The complexity of the genetic architecture of seed yield was demonstrated by QTL meta-analysis. The idea of estimating indicator QTL (QTL of yield-associated traits, which are defined as the potential genetic determinants of the colocalized QTL for yield) for yield QTL in conjunction with the identification of candidate genes is described.  相似文献   

4.
5.
Mechanisms of neuronal mRNA localization and translation are of considerable biological interest. Spatially regulated mRNA translation contributes to cell-fate decisions and axon guidance during development, as well as to long-term synaptic plasticity in adulthood. The Fragile-X Mental Retardation protein (FMRP/dFMR1) is one of the best-studied neuronal translational control molecules and here we describe the identification and early characterization of proteins likely to function in the dFMR1 pathway. Induction of the dFMR1 in sevenless-expressing cells of the Drosophila eye causes a disorganized (rough) eye through a mechanism that requires residues necessary for dFMR1/FMRP''s translational repressor function. Several mutations in dco, orb2, pAbp, rm62, and smD3 genes dominantly suppress the sev-dfmr1 rough-eye phenotype, suggesting that they are required for dFMR1-mediated processes. The encoded proteins localize to dFMR1-containing neuronal mRNPs in neurites of cultured neurons, and/or have an effect on dendritic branching predicted for bona fide neuronal translational repressors. Genetic mosaic analyses indicate that dco, orb2, rm62, smD3, and dfmr1 are dispensable for translational repression of hid, a microRNA target gene, known to be repressed in wing discs by the bantam miRNA. Thus, the encoded proteins may function as miRNA- and/or mRNA-specific translational regulators in vivo.THE subcellular localization and regulated translation of stored mRNAs contributes to cellular asymmetry and subcellular specialization (Lecuyer et al. 2007; Martin and Ephrussi 2009). In mature neurons, local protein synthesis at active synapses may contribute to synapse-specific plasticity that underlies persistent forms of memory (Casadio et al. 1999; Ashraf et al. 2006; Sutton and Schuman 2006; Richter and Klann 2009). During this process, synaptic activity causes local translation of mRNAs normally stored in translationally repressed synaptic mRNPs (Sutton and Schuman 2006; Richter and Klann 2009). While specific neuronal translational repressors and microRNAs have been implicated in this process, their involvement in local translation that underlies memory, as well as the underlying mechanisms, are generally not well understood (Schratt et al. 2006; Keleman et al. 2007; Kwak et al. 2008; Li et al. 2008; Richter and Klann 2009). Furthermore, it remains possible that there are neuron-specific, mRNA-specific, and stimulus-pattern specific pathways for neuronal translational control (Raab-Graham et al. 2006; Giorgi et al. 2007).The Fragile-X Mental Retardation protein (FMRP) is among the best studied of neuronal translational repressors, in part due to its association with human neurodevelopmental disease (Pieretti et al. 1991; Mazroui et al. 2002; Gao 2008). Consistent with function in synaptic translation required for memory formation, mutations in FMRP are associated with increased synaptic translation, enhanced LTD, increased synapse growth, and also with enhanced long-term memory (Zhang et al. 2001; Huber et al. 2002; Bolduc et al. 2008; Dictenberg et al. 2008).FMRP co-immunoprecipitates with components of the RNAi and miRNA machinery and appears to be required for aspects of miRNA function in neurons (Caudy et al. 2002; Ishizuka et al. 2002; Jin et al. 2004b; Gao 2008). In addition, FMRP associates with neuronal polyribosomes as well as with Staufen-containing ribonucleoprotein (mRNP) granules easily observed in neurites of cultured neurons (Feng et al. 1997; Krichevsky and Kosik 2001; Mazroui et al. 2002; Kanai et al. 2004; Barbee et al. 2006; Bramham and Wells 2007; Bassell and Warren 2008; Dictenberg et al. 2008). FMRP-containing neuronal mRNPs contain not only several ubiquitous translational control molecules, but also CaMKII and Arc mRNAs, whose translation is locally controlled at synapses (Rook et al. 2000; Krichevsky and Kosik 2001; Kanai et al. 2004; Barbee et al. 2006). Thus, FMRP-containing RNA particles are probably translationally repressed and transported along microtubules from the neuronal cell body to synaptic sites in dendrites where local synaptic activity can induce their translation (Kiebler and Bassell 2006; Dictenberg et al. 2008).The functions of FMRP/dFMR1 in mRNA localization as well as miRNA-dependent and independent forms of translational control is likely to require several other regulatory proteins. To identify such proteins, we used a previously designed and validated genetic screen (Wan et al. 2000; Jin et al. 2004a; Zarnescu et al. 2005). The overexpression of dFMR1 in the fly eye causes a “rough-eye” phenotype through a mechanism that requires (a) key residues in dFMR1 that mediate translational repression in vitro; (b) Ago1, a known components of the miRNA pathway; and (c) a DEAD-box helicase called Me31B, which is a highly conserved protein from yeast (Dhh1p) to humans (Rck54/DDX6) functioning in translational repression and present on neuritic mRNPs (Wan et al. 2000; Laggerbauer et al. 2001; Jin et al. 2004a; Coller and Parker 2005; Barbee et al. 2006; Chu and Rana 2006). To identify other Me31B-like translational repressors and neuronal granule components, we screened mutations in 43 candidate proteins for their ability to modify dFMR1 induced rough-eye phenotype. We describe the results of this genetic screen and follow up experiments to address the potential cellular functions of five genes identified as suppressors of sev-dfmr1.  相似文献   

6.
7.
8.
Piwi proteins and their partner small RNAs play an essential role in fertility, germ-line stem cell development, and the basic control and evolution of animal genomes. However, little knowledge exists regarding piRNA biogenesis. Utilizing microfluidic chip analysis, we present a quantitative profile of zebrafish piRNAs expressed differentially between testis and ovary. The sex-specific piRNAs are derived from separate loci of repeat elements in the genome. Ovarian piRNAs can be categorized into groups that reach up to 92 members, indicating a sex-specific arrangement of piRNA genes in the genome. Furthermore, precursor piRNAs preferentially form a hairpin structure at the 3′end, which seem to favor the generation of mature sex-specific piRNAs. In addition, the mature piRNAs from both the testis and the ovary are 2′-O-methylated at their 3′ ends.SMALL RNAs, ranging from 19 to 30 nucleotides (nt) in length, constitute a large family of regulatory molecules with diverse functions in invertebrates, vertebrates, plants, and fungi (Bartel 2004; Nakayashiki 2005). Two major classes of small RNAs are microRNAs (miRNAs) and small interfering RNAs (siRNAs). The functions of small RNAs have been conserved through evolution; they have been shown to inhibit gene expression at the levels of mRNA degradation, translational repression, chromatin modification, heterochromatin formation, and DNA elimination (Mochizuki et al. 2002; Bartel 2004; Kim et al. 2005; Brodersen and Voinnet 2006; Lee and Collins 2006; Vaucheret 2006).Over the past few years, focus on the genetics of small RNAs has helped clarify the mechanisms behind the regulation of these molecules. While hundreds of small RNAs have been identified from mammalian somatic tissues, relatively little is known about small RNAs in germ cells. A recent breakthrough has been the identification of small RNAs that associate with Piwi proteins (piRNAs) from Drosophila and mammalian gonads (Aravin et al. 2001, 2006; Girard et al. 2006; Grivna et al. 2006; Vagin et al. 2006; Watanabe et al. 2006). piRNAs and their interacting proteins Ziwi/Zili have also been identified in zebrafish (Houwing et al. 2007, 2008). Increasing evidence indicates that piRNAs play roles mainly in germ cell differentiation and genomic stability (Carthew 2006; Lau et al. 2006; Vagin et al. 2006; Brennecke et al. 2007; Chambeyron et al. 2008; Klattenhoff and Theurkauf 2008; Kuramochi-Miyagawa et al. 2008; Kim et al. 2009; Lim et al. 2009; Unhavaithaya et al. 2009). Moreover, although piRNAs are mostly expressed in germ line cells, recent studies showed piRNA expression in nongerm cells, for example, T-cell lines (Jurkat cells and MT4) (Azuma-Mukai et al. 2008; Yeung et al. 2009), indicating other functions such as in the immune system. piRNAs do not appear to be derived from double-stranded RNA precursors, and their biogenesis mechanisms, although unclear, may be distinct from those of siRNA and miRNA. Recently, two distinct piRNA production pathways were further proposed: the “ping-pong” model (Brennecke et al. 2007; Gunawardane et al. 2007) and the Ago3-independent piRNA pathway centered on Piwi in somatic cells (Li et al. 2009; Malone et al. 2009). However, the mechanistic pathways of piRNA activity and their biogenesis are still largely unknown.Teleost fishes comprise >24,000 species, accounting for more than half of extant vertebrate species, displaying remarkable variation in morphological and physiological adaptations (see review in Zhou et al. 2001). Recently, Houwing et al. (2007, 2008) reported findings on Ziwi/Zili and associated piRNAs, implicating roles in germ cell differentiation, meiosis, and transposon silencing in the germline of the zebrafish. However, some of the identified zebrafish piRNAs are nonrepetitive and nontransposon-related piRNAs, suggesting that piRNAs may have additional unknown roles. In this study, we show that for males and females, piRNAs are specifically derived from separate loci of the repeat elements, and that ovarian piRNAs are far more often associated in groups. Genomic analysis of piRNAs indicates a tendency to folding at the 3′ end of the piRNA precursor, which may favor cleavage of the piRNA precursor to generate mature sex-specific piRNAs. Furthermore, methylation modification occurs at the 2′-O-hydroxyl group on the ribose of the final 3′ nucleotide in both the testis and the ovary.  相似文献   

9.
10.
11.
Genomic tools and analyses are now being widely used to understand genome-wide patterns and processes associated with speciation and adaptation. In this article, we apply a genomics approach to the model organism Drosophila melanogaster. This species originated in Africa and subsequently spread and adapted to temperate environments of Eurasia and the New World, leading some populations to evolve reproductive isolation, especially between cosmopolitan and Zimbabwean populations. We used tiling arrays to identify highly differentiated regions within and between North America (the United States and Caribbean) and Africa (Cameroon and Zimbabwe) across 63% of the D. melanogaster genome and then sequenced representative fragments to study their genetic divergence. Consistent with previous findings, our results showed that most differentiation was between populations living in Africa vs. outside of Africa (i.e., “out-of-Africa” divergence), with all other geographic differences being less substantial (e.g., between cosmopolitan and Zimbabwean races). The X chromosome was much more strongly differentiated than the autosomes between North American and African populations (i.e., greater X divergence). Overall differentiation was positively associated with recombination rates across chromosomes, with a sharp reduction in regions near centromeres. Fragments surrounding these high FST sites showed reduced haplotype diversity and increased frequency of rare and derived alleles in North American populations compared to African populations. Nevertheless, despite sharp deviation from neutrality in North American strains, a small set of bottleneck/expansion demographic models was consistent with patterns of variation at the majority of our high FST fragments. Although North American populations were more genetically variable compared to Europe, our simulation results were generally consistent with those previously based on European samples. These findings support the hypothesis that most differentiation between North America and Africa was likely driven by the sorting of African standing genetic variation into the New World via Europe. Finally, a few exceptional loci were identified, highlighting the need to use an appropriate demographic null model to identify possible cases of selective sweeps in species with complex demographic histories.THE study of genetic differentiation between populations and species has recently been empowered by the use of genomic techniques and analysis (e.g., Noor and Feder 2006; Stinchcombe and Hoekstra 2008). In the past decade, genetic studies of adaptation and speciation have taken advantage of emerging molecular techniques to scan the genomes of diverging populations for highly differentiated genetic regions (e.g., Wilding et al. 2001; Emelianov et al. 2003; Beaumont and Balding 2004; Campbell and Bernatchez 2004; Scotti-Saintagne et al. 2004; Achere et al. 2005; Turner et al. 2005; Vasemagi et al. 2005; Bonin et al. 2006, 2007; Murray and Hare 2006; Savolainen et al. 2006; Yatabe et al. 2007; Nosil et al. 2008, 2009; Turner et al. 2008a,b; Kulathinal et al. 2009). As a result, genome scans can identify candidate regions that may be associated with adaptive evolution between diverging populations and, more broadly, are able to describe genome-wide patterns and processes of population differentiation (Begun et al. 2007; Stinchcombe and Hoekstra 2008).Genome scans in well-studied genetic model species such as Drosophila melanogaster gain particular power because differentiated loci are mapped to a well-annotated genome. Moreover, the evolutionary history of D. melanogaster is rich with adaptive and demographic events with many parallels to human evolution. Most notable is the historical out-of-Africa migration and subsequent adaptation to temperate ecological environments of Europe, Asia, North America, and Australia. This has resulted in widespread genetic and phenotypic divergence between African and non-African populations (e.g., David and Capy 1988; Begun and Aquadro 1993; Capy et al. 1994; Colegrave et al. 2000; Rouault et al. 2001; Takahashi et al. 2001; Caracristi and Schlötterer 2003; Baudry et al. 2004; Pool and Aquadro 2006; Schmidt et al. 2008; Yukilevich and True 2008a,b). Further, certain populations in Africa and in the Caribbean vary in their degree of reproductive isolation from populations in more temperate regions (Wu et al. 1995; Hollocher et al. 1997; Yukilevich and True 2008a,b). In particular, the Zimbabwe and nearby populations of southern Africa are strongly sexually isolated from all other populations, designating them as a distinct behavioral race (Wu et al. 1995).D. melanogaster has received a great deal of attention from the population geneticists in studying patterns of sequence variation across African and non-African populations. Many snapshots have been taken of random microsatellite and SNP variants spread across X and autosomes, and these have generated several important conclusions. Polymorphism patterns in European populations are characterized by reduced levels of nucleotide and haplotype diversity, an excess of high frequency-derived polymorphisms, and elevated levels of linkage disequilibrium relative to African populations (e.g., Begun and Aquadro 1993; Andolfatto 2001; Glinka et al. 2003; Haddrill et al. 2005; Ometto et al. 2005; Thornton and Andolfatto 2006; Hutter et al. 2007; Singh et al. 2007). These results have been generally interpreted as compatible with population size reduction/bottlenecks followed by recent population expansions. On the other hand, African populations are generally assumed either to have been relatively constant in size over time or to have experienced population size expansions. They generally show higher levels of nucleotide and haplotype diversity, an excess of rare variants, and a deficit of high frequency-derived alleles (Glinka et al. 2003; Ometto et al. 2005; Pool and Aquadro 2006; Hutter et al. 2007; but see Haddrill et al. 2005 for evidence of bottlenecks in Africa).Previous work also shows that the ratio of X-linked to autosomal polymorphism deviates from neutral expectations in opposite directions in African and European populations with more variation on the X than expected in Africa and less variation on the X than expected in Europe (Andolfatto 2001; Kauer et al. 2002; Hutter et al. 2007; Singh et al. 2007). The deviation from neutrality in the ratio of X-autosome polymorphism may be explained by positive selection being more prevalent on the X in Europe and/or by a combination of bottlenecks and male-biased sex ratios in Europe and female-biased sex ratios in Africa (Charlesworth 2001; Hutter et al. 2007; Singh et al. 2007). The selective explanation stems from the argument that, under the hitchhiking selection model, X-linked loci are likely to be more affected by selective sweeps than autosomal loci (Maynard Smith and Haigh 1974; Charlesworth et al. 1987; Vicoso and Charlesworth 2006, 2009).The relative contribution of selective and demographic processes in shaping patterns of genomic variation and differentiation is highly debated (Wall et al. 2002; Glinka et al. 2003; Haddrill et al. 2005; Ometto et al. 2005; Schöfl and Schlötterer 2004; Thornton and Andolfatto 2006; Hutter et al. 2007; Singh et al. 2007; Shapiro et al. 2007; Stephan and Li 2007; Hahn 2008; Macpherson et al. 2008; Noor and Bennett 2009; Sella et al. 2009). This is especially the case in D. melanogaster because derived non-African populations have likely experienced a complex set of demographic events during their migration out of Africa (e.g., Thornton and Andolfatto 2006; Singh et al. 2007; Stephan and Li 2007), making population genetics signatures of demography and selection difficult to tease apart (e.g., Macpherson et al. 2008). Thus it is still unclear what role selection has played in shaping overall patterns of genomic variation and differentiation relative to demographic processes in this species.While there is a long tradition in studying arbitrarily or opportunistically chosen sequences in D. melanogaster, genomic scans that focus particularly on highly differentiated sites across the genome have received much less attention. Such sites are arguably the best candidates to resolve the debate on which processes have shaped genomic differentiation within species (e.g., Przeworski 2002). Recently, a genome-wide scan of cosmopolitan populations in the United States and in Australia was performed to investigate clinal genomic differentiation on the two continents (Turner et al. 2008a). Many single feature polymorphisms differentiating Northern and Southern Hemisphere populations were identified. Among the most differentiated loci in common between continents, 80% were differentiated in the same orientation relative to the Equator, implicating selection as the likely explanation (Turner et al. 2008a). Larger regions of genomic differentiation within and between African and non-African populations have also been discovered, some of them possibly being driven by divergent selection (e.g., Dopman and Hartl 2007; Emerson et al. 2008; Turner et al. 2008a, Aguade 2009). Despite this recent progress, we still know relatively little about large-scale patterns of genomic differentiation in this species, especially between African and non-African populations, and whether most of this differentiation is consistent with demographic processes alone or if it requires selective explanations.In this work, we explicitly focus on identifying differentiated sites across the genome between U.S., Caribbean, West African, and Zimbabwean populations. This allows us to address several fundamental questions related to genomic evolution in D. melanogaster, such as the following: (1) Do genome-wide patterns of differentiation reflect patterns of reproductive isolation? (2) Is genomic differentiation random across and within chromosomes or are some regions overrepresented? (3) What are the population genetics properties of differentiated sites and their surrounding sequences? (4) Can demographic historical processes alone explain most of the observed differentiation on a genome-wide level or is it necessary to involve selection in their explanation?In general, our findings revealed that most genomic differentiation within D. melanogaster shows an out-of-Africa genetic signature. These results are inconsistent with the notion that most genomic differentiation occurs between cosmopolitan and Zimbabwean reproductively isolated races. Further, we found that the X is more differentiated between North American and African populations and more strongly deviates from pure neutrality in North American populations relative to autosomes. Nevertheless, our article shows that much of this deviation from neutrality is broadly consistent with several demographic null models, with a few notable exceptions. Athough this does not exclude selection as a possible alternative mechanism for the observed patterns, it supports the idea that most differentiation in D. melanogaster was likely driven by the sorting of African standing genetic variation into the New World.  相似文献   

12.
Despite the widespread study of genetic variation in admixed human populations, such as African-Americans, there has not been an evaluation of the effects of recent admixture on patterns of polymorphism or inferences about population demography. These issues are particularly relevant because estimates of the timing and magnitude of population growth in Africa have differed among previous studies, some of which examined African-American individuals. Here we use simulations and single-nucleotide polymorphism (SNP) data collected through direct resequencing and genotyping to investigate these issues. We find that when estimating the current population size and magnitude of recent growth in an ancestral population using the site frequency spectrum (SFS), it is possible to obtain reasonably accurate estimates of the parameters when using samples drawn from the admixed population under certain conditions. We also show that methods for demographic inference that use haplotype patterns are more sensitive to recent admixture than are methods based on the SFS. The analysis of human genetic variation data from the Yoruba people of Ibadan, Nigeria and African-Americans supports the predictions from the simulations. Our results have important implications for the evaluation of previous population genetic studies that have considered African-American individuals as a proxy for individuals from West Africa as well as for future population genetic studies of additional admixed populations.STUDIES of archeological and genetic data show that anatomically modern humans originated in Africa and more recently left Africa to populate the rest of the world (Tishkoff and Williams 2002; Barbujani and Goldstein 2004; Garrigan and Hammer 2006; Reed and Tishkoff 2006; Campbell and Tishkoff 2008; Jakobsson et al. 2008; Li et al. 2008). Given the central role Africa has played in the origin of diverse human populations, understanding patterns of genetic variation and the demographic history of populations within Africa is important for understanding the demographic history of global human populations. The availability of large-scale single-nucleotide polymorphism (SNP) data sets coupled with recent advances in statistical methodology for inferring parameters in population genetic models provides a powerful means of accomplishing these goals (Keinan et al. 2007; Boyko et al. 2008; Lohmueller et al. 2009; Nielsen et al. 2009).It is important to realize that studies of African demographic history using genetic data have come to qualitatively different conclusions regarding important parameters. Some recent studies have found evidence for ancient (>100,000 years ago) two- to fourfold growth in African populations (Adams and Hudson 2004; Marth et al. 2004; Keinan et al. 2007; Boyko et al. 2008). Other studies have found evidence of very recent growth (Pluzhnikov et al. 2002; Akey et al. 2004; Voight et al. 2005; Cox et al. 2009; Wall et al. 2009) or could not reject a model with a constant population size (Pluzhnikov et al. 2002; Voight et al. 2005). It is unclear why studies found such different parameter estimates. However, these studies all differ from each other in the amount of data considered, the types of data used (e.g., SNP genotypes vs. full resequencing), the genomic regions studied (e.g., noncoding vs. coding SNPs), and the types of demographic models considered (e.g., including migration vs. not including migration postseparation of African and non-African populations).Another important way in which studies of African demographic history differ from each other is in the populations sampled. Some studies have focused on genetic data from individuals sampled from within Africa (Pluzhnikov et al. 2002; Adams and Hudson 2004; Voight et al. 2005; Keinan et al. 2007; Cox et al. 2009; Wall et al. 2009), while other studies included American individuals with African ancestry (Adams and Hudson 2004; Akey et al. 2004; Marth et al. 2004; Boyko et al. 2008). While there is no clear correspondence between those studies which sampled native African individuals (as opposed to African-Americans) and particular growth scenarios, it is clear from previous studies that African-American populations do differ from African populations in their recent demographic history. In particular, genetic studies suggest that there is wide variation in the degree of European admixture in most African-American individuals in the United States and that they have, on average, ∼80% African ancestry and 20% European ancestry (Parra et al. 1998; Pfaff et al. 2001; Falush et al. 2003; Patterson et al. 2004; Tian et al. 2006; Lind et al. 2007; Reiner et al. 2007; Price et al. 2009; Bryc et al. 2010). Furthermore, both historical records and genetic evidence suggest that the admixture process began quite recently, within the last 20 generations (Pfaff et al. 2001; Patterson et al. 2004; Seldin et al. 2004; Tian et al. 2006). Recent population admixture can alter patterns of genetic variation in a discernible and predictable way. For example, recently admixed populations will exhibit correlation in allele frequencies (i.e., linkage disequilibrium) among markers that differ in frequency between the parental populations. This so-called admixture linkage disequilibrium (LD) (Chakraborty and Weiss 1988) can extend over long physical distances (Lautenberger et al. 2000) and decays exponentially with time the since the admixture process began (i.e., recently admixed populations typically exhibit LD over a longer physical distance than anciently admixed populations).While it is clear that African-American populations have a different recent demographic history than do African populations from within Africa and that admixture tracts can be identified in admixed individuals (Falush et al. 2003; Patterson et al. 2004; Tang et al. 2006; Sankararaman et al. 2008a,b; Price et al. 2009; Bryc et al. 2010), the effect that admixture has on other patterns of genetic variation remains unclear. For example, Xu et al. (2007) found similar LD decay patterns when comparing African-American and African populations. It is also unclear whether the recent admixture affects our ability to reconstruct ancient demographic events (such as expansions that predate the spread of humans out of Africa) from whole-genome SNP data. Most studies of demographic history have summarized the genome-wide SNP data by allele frequency or haplotype summary statistics. If these summary statistics are not sensitive to the recent European admixture, then the African-American samples may yield estimates of demographic parameters that are close to the true demographic parameters for the ancestral, unsampled, African populations. This would suggest that the differences in growth parameter estimates obtained from African populations cannot be explained by certain studies sampling African-American individuals and others sampling African individuals from within Africa. However, if these statistics are sensitive to recent admixture, then they may give biased estimates of growth parameters.Here, we examine the effect of recent admixture on the estimation of population demography. In particular, we estimate growth parameters from simulated data sets using SNP frequencies as well as a recently developed haplotype summary statistic (Lohmueller et al. 2009). We compare the demographic parameter estimates made from the admixed and nonadmixed populations and find that some parameter estimates are qualitatively similar between the two populations when inferred using allele frequencies. Inferences of growth using haplotype-based approaches appear to be more sensitive to recent admixture than inferences based on SNP frequencies. We discuss implications that our results have for interpreting studies of demography in admixed populations.  相似文献   

13.
14.
15.
16.
17.
The importance of genes of major effect for evolutionary trajectories within and among natural populations has long been the subject of intense debate. For example, if allelic variation at a major-effect locus fundamentally alters the structure of quantitative trait variation, then fixation of a single locus can have rapid and profound effects on the rate or direction of subsequent evolutionary change. Using an Arabidopsis thaliana RIL mapping population, we compare G-matrix structure between lines possessing different alleles at ERECTA, a locus known to affect ecologically relevant variation in plant architecture. We find that the allele present at ERECTA significantly alters G-matrix structure—in particular the genetic correlations between branch number and flowering time traits—and may also modulate the strength of natural selection on these traits. Despite these differences, however, when we extend our analysis to determine how evolution might differ depending on the ERECTA allele, we find that predicted responses to selection are similar. To compare responses to selection between allele classes, we developed a resampling strategy that incorporates uncertainty in estimates of selection that can also be used for statistical comparisons of G matrices.THE structure of the genetic variation that underlies phenotypic traits has important consequences for understanding the evolution of quantitative traits (Fisher 1930; Lande 1979; Bulmer 1980; Kimura 1983; Orr 1998; Agrawal et al. 2001). Despite the infinitesimal model''s allure and theoretical tractability (see Orr and Coyne 1992; Orr 1998, 2005a,b for reviews of its influence), evidence has accumulated from several sources (artificial selection experiments, experimental evolution, and QTL mapping) to suggest that genes of major effect often contribute to quantitative traits. Thus, the frequency and role of genes of major effect in evolutionary quantitative genetics have been a subject of intense debate and investigation for close to 80 years (Fisher 1930; Kimura 1983; Orr 1998, 2005a,b). Beyond the conceptual implications, the prevalence of major-effect loci also affects our ability to determine the genetic basis of adaptations and species differences (e.g., Bradshaw et al. 1995, 1998).Although the existence of genes of major effect is no longer in doubt, we still lack basic empirical data on how segregating variation at such genes affects key components of evolutionary process (but see Carrière and Roff 1995). In other words, How does polymorphism at genes of major effect alter patterns of genetic variation and covariation, natural selection, and the likely response to selection? The lack of data stems, in part, from the methods used to detect genes of major effect: experimental evolution (e.g., Bull et al. 1997; Zeyl 2005) and QTL analysis (see Erickson et al. 2004 for a review) often detect such genes retrospectively after they have become fixed in experimental populations or the species pairs used to generate the mapping population. The consequences of polymorphism at these genes on patterns of variation, covariation, selection, and the response to selection—which can be transient (Agrawal et al. 2001)—are thus often unobserved.A partial exception to the absence of data on the effects of major genes comes from artificial selection experiments, in which a substantial evolutionary response to selection in the phenotype after a plateau is often interpreted as evidence for the fixation of a major-effect locus (Frankham et al. 1968; Yoo 1980a,b; Frankham 1980; Shrimpton and Robertson 1988a,b; Caballero et al. 1991; Keightley 1998; see Mackay 1990 and Hill and Caballero 1992 for reviews). However, many of these experiments report only data on the selected phenotype (e.g., bristle number) or, alternatively, the selected phenotype and some measure of fitness (e.g., Frankham et al. 1968, Yoo 1980b; Caballero et al. 1991; Mackay et al. 1994; Fry et al. 1995; Nuzhdin et al. 1995; Zur Lage et al. 1997), making it difficult to infer how a mutation will affect variation, covariation, selection, and evolutionary responses for a suite of traits that might affect fitness themselves. One approach is to document how variation at individual genes of major effect affects the genetic variance–covariance matrix (“G matrix”; Lande 1979), which represents the additive genetic variance and covariance between traits.Although direct evidence for variation at major-effect genes altering patterns of genetic variation, covariation, and selection is rare, there is abundant evidence for the genetic mechanisms that could produce these dynamics. A gene of major effect could have these consequences due to any of at least three genetic mechanisms: (1) pleiotropy, where a gene of major effect influences several traits, including potentially fitness, simultaneously, (2) physical linkage or linkage disequilibrium (LD), in which a gene of major effect is either physically linked or in LD with other genes that influence other traits under selection, and (3) epistasis, in which the allele present at a major-effect gene alters the phenotypic effect of other loci and potentially phenotypes under selection. Evidence for these three evolutionary genetic mechanisms leading to changes in suites of traits comes from a variety of sources, including mutation accumulation experiments (Clark et al. 1995; Fernandez and Lopez-Fanjul 1996), mutation induction experiments (Keightley and Ohnishi 1998), artificial selection experiments (Long et al. 1995), and transposable element insertions (Rollmann et al. 2006). For pleiotropy in particular, major-effect genes that have consequences on several phenotypic traits are well known from the domestication and livestock breeding literature [e.g., myostatin mutations in Belgian blue cattle and whippets (Arthur 1995; Grobet et al. 1997; Mosher et al. 2007), halothane genes in pigs (Christian and Rothschild 1991; Fujii et al. 1991), and Booroola and Inverdale genes in sheep (Amer et al. 1999; Visscher et al. 2000)]. While these data suggest that variation at major-effect genes could—and probably does—influence variation, covariation, and selection on quantitative traits, data on the magnitude of these consequences remain lacking.Recombinant inbred line (RIL) populations are a promising tool for investigating the influence of major-effect loci. During advancement of the lines from F2''s to RILs, alternate alleles at major-effect genes (and most of the rest of the genome) will be made homozygous, simplifying comparisons among genotypic classes. Because of the high homozygosity, individuals within RILs are nearly genetically identical, facilitating phenotyping of many genotypes under a range of environments. In addition, because of recombination, alternative alleles are randomized across genetic backgrounds—facilitating robust comparisons between sets of lines differing at a major-effect locus.Here we investigate how polymorphism at an artificially induced mutation, the erecta locus in Arabidopsis thaliana, affects the magnitude of these important evolutionary genetic parameters under ecologically realistic field conditions. We use the Landsberg erecta (Ler) × Columbia (Col) RIL population of A. thaliana to examine how variation at a gene of major effect influences genetic variation, covariation, and selection on quantitative traits in a field setting. The Ler × Col RIL population is particularly suitable, because it segregates for an artificially induced mutation at the erecta locus, which has been shown to influence a wide variety of plant traits. The Ler × Col population thus allows a powerful test of the effects of segregating variation at a gene—chosen a priori—with numerous pleiotropic effects. The ERECTA gene is a leucine-rich receptor-like kinase (LRR-RLK) (Torii et al. 1996) and has been shown to affect plant growth rates (El-Lithy et al. 2004), stomatal patterning and transpiration efficiency (Masle et al. 2005; Shpak et al. 2005), bacterial pathogen resistance (Godiard et al. 2003), inflorescence and floral organ size and shape (Douglas et al. 2002; Shpak et al. 2003, 2004), and leaf polarity (Xu et al. 2003; Qi et al. 2004).Specifically, we sought to answer the following questions: (1) Is variation at erecta significantly associated with changes to the G matrix? (2) Is variation at erecta associated with changes in natural selection on genetically variable traits? And (3) is variation at erecta associated with significantly different projected evolutionary responses to selection?  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号