首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the yeast Kluyveromyces marxianus two forms of inulinase were present, namely, an inulinase secreted into the culture fluid and an inulinase retained in the cell wall. Both forms were purified and analyzed by denaturing and nondenaturing polyacrylamide gel electrophoresis. With the use of endo-beta-N-acetyl-glucosaminidase H, it was established that the enzyme retained in the cell wall and the enzyme secreted into the culture fluid have similar subunits consisting of a 64-kDa polypeptide with varying amounts of carbohydrate (26 to 37% of the molecular mass). The two forms of inulinase differed in size because of their differences in subunit aggregation. The enzyme present in the culture fluid was a dimer, and the enzyme retained in the cell wall was a tetramer. The differences in oligomerization did not affect the apparent Km values towards the substrates sucrose and raffinose. These findings support the hypothesis that the retention of glycoproteins in the yeast cell wall may be caused by a permeability barrier towards larger glycoproteins. The amino-terminal end of inulinase was determined and compared with the amino terminus of the closely related invertase. The kinetic and structural evidence indicates that in yeasts two distinct beta-fructosidases exist, namely, invertase and inulinase.  相似文献   

2.
Export and accumulation of various forms of invertase (EC 3.2.1.26) in the cell wall and culture medium of the yeast Candida utilis was investigated. It was found that there is the high-molecular-weight invertase in the cell wall (CW-form). This form is not exported into the culture medium, and it is by a third more glycosylated than the previously described exported S-form. It was shown that one of the two forms of invertase exported into the culture medium—the glycosylated S-form—is retained in the cell wall, while the other one-the nonglycosylated F-form—was not detected in the cell wall. Based on these results, as well as data on the distribution dynamics of the enzyme in the culture medium and in the cell wall during different growth stages of a yeast culture, we suggested that the nonglycosylated form was exported into the culture medium via the zone of abnormal cell wall permeability and the glycosylated forms of this enzyme (both exported and nonexported) did not use this pathway and the degree of N-glycosylation is an important factor determining the final localization of the enzyme.  相似文献   

3.
Localization of inulinase and invertase in Kluyveromyces species   总被引:5,自引:0,他引:5  
In vivo hydrolysis of inulin and sucrose was examined in selected yeasts of the genus Kluyveromyces. Cells, grown in sucrose-limited chemostat cultures, were subjected to treatments for the removal of inulinase, the enzyme responsible for the hydrolysis of both inulin and sucrose. The effects of these treatments were studied by measurement of inulin-dependent and sucrose-dependent oxygen consumption by cell suspensions. In Kluyveromyces marxianus var. marxianus, inulinase was partially secreted into the culture fluid. Removal of culture fluid inulinase by washing had no effect on sucrose-dependent oxygen consumption by this yeast. However, this treatment drastically reduced inulin-dependent oxygen consumption. Treatment of washed cells with sulfhydryls removed part of the cell wall-retained inulinase and reduced inulin-dependent oxygen consumption by another 80%. Sucrose-dependent oxygen consumption was less affected, decreasing by 40%. Cell suspensions of K. marxianus var. drosophilarum, K. marxianus var. vanudenii, and Saccharomyces kluyveri rapidly utilized sucrose but not inulin. This is in accordance with the classification of these yeasts as inulin negative. Supernatants of cultures grown at pH 5.5 did not catalyze the hydrolysis of inulin and sucrose. This suggested that these yeasts contained a strictly cell-bound invertase, an enzyme not capable of inulin hydrolysis. However, upon washing, cells became able to utilize inulin. The inulin-dependent oxygen consumption further increased after treatment of the cells with sulfhydryls. These treatments did not affect the sucrose-dependent oxygen consumption of the cells. Apparently, these treatments removed a permeability barrier for inulin that does not exist for sucrose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary Intercompartmental transport of secreted proteins in yeast was analysed using invertase mutants. Deletions and insertions at the BamHI (position +787) or the Asp718 (position +1159) sites of the SUC2 gene led to mutant proteins with different behaviour regarding secretion, localization and enzyme activity. The deletion mutants showed accumulation of core glycosylated material in the endoplasmic reticulum (ER) a decrease of secreted protein by 5%–30% and loss of enzyme activity. The secreted material was localized in the culture medium and not — as is normal for invertase-in the cell wall. No delay in transport from the Golgi to the cell surface was observed, indicating that the rate-limiting step for secretion is at the ER-Golgi stage. Two insertion mutants, pIPA and pIPB, retained enzyme activity. Mutant pIPB showed 10% secretion, while 60%–70% secretion was observed for pIPA. While the non-secreted material accumulated in the ER, the secreted material was present in the cell wall. The results suggest that the presence of structures incompatible with secretion leads to ER accumulation of mutated invertase.  相似文献   

5.
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase localized in the cell wall. However, the amount of enzyme invertase present in the culture liquid remained constant throughout the budding cycle. Also, in asynchronous continuous cultures of S. cerevisiae, the production and localization of invertase showed significant fluctuation. The overall invertase production in an asynchronous culture was two to three times higher than in synchronous cultures. This could be due to more-severe invertase-repressive conditions in a synchronous chemostat culture. Both the intracellular glucose-6-phosphate concentration and residual glucose concentration were significantly higher in synchronous chemostat cultures than in asynchronous chemostat cultures. In the asynchronous and synchronous continuous cultures of S. cerevisiae, about 40% of the invertase was released into the culture liquid; it has generally been believed that S. cerevisiae releases only about 5% of its invertase. In contrast to invertase production and localization in the chemostat cultures of S. cerevisiae, no significant changes in inulinase (EC 3.2.1.7) production and localization were observed in chemostat cultures of Kluyveromyces maxianus CBS 6556. In cultures of K. marxianus about 50% of the inulinase was present in the culture liquid.  相似文献   

6.
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase localized in the cell wall. However, the amount of enzyme invertase present in the culture liquid remained constant throughout the budding cycle. Also, in asynchronous continuous cultures of S. cerevisiae, the production and localization of invertase showed significant fluctuation. The overall invertase production in an asynchronous culture was two to three times higher than in synchronous cultures. This could be due to more-severe invertase-repressive conditions in a synchronous chemostat culture. Both the intracellular glucose-6-phosphate concentration and residual glucose concentration were significantly higher in synchronous chemostat cultures than in asynchronous chemostat cultures. In the asynchronous and synchronous continuous cultures of S. cerevisiae, about 40% of the invertase was released into the culture liquid; it has generally been believed that S. cerevisiae releases only about 5% of its invertase. In contrast to invertase production and localization in the chemostat cultures of S. cerevisiae, no significant changes in inulinase (EC 3.2.1.7) production and localization were observed in chemostat cultures of Kluyveromyces maxianus CBS 6556. In cultures of K. marxianus about 50% of the inulinase was present in the culture liquid.  相似文献   

7.
Alpha-amylase from Bacillus amyloliquefaciens, synthesized in yeast Saccharomyces cerevisiae without substitution of the signal sequence, is efficiently secreted from yeast cells: 60-70% of the overall amount of the enzyme is found in the culture fluid. In contrast to many yeast secretory proteins, which accumulate in the periplasmic space and in the cell wall, intracellular alpha-amylase is localized mainly in the cytoplasm. Obviously, transfer across the cell wall is not a rate-limiting step in alpha-amylase export from the cell. The glycosylated forms of proteins are predominantly found both inside the cell and in the culture medium.  相似文献   

8.
Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work, it was isolated into two forms of enzyme from yeast S. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum, and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution. At 60°C, CWI had 1.7 times longer half-life than soluble enzyme, while at 70°C CWI showed 8.7 times longer half-life than soluble enzyme. After 2-hr of incubation in 8?M urea solution, soluble invertase and CWI retained 10 and 60% of its initial activity, respectively. During 22?hr of incubation of both enzymes in 30 and 40% methanol, soluble invertase was completely inactivated, while CWI changed its activity within the experimental error. Therefore, soluble invertase and CWI have not shown any substantial difference, but CWI showed better thermal stability and stability in some of the typical protein-denaturing agents.  相似文献   

9.
Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.  相似文献   

10.
产菊粉酶酵母菌株的筛选及菌种鉴定   总被引:9,自引:0,他引:9  
经过初筛、复筛,得到2株菊粉酶活力较高的酵母菌Y9和Y27,其发酵液酶活分别达到19.4 U/mL和14.1 U/mL,两者胞外菊粉酶分泌较少,主要分布在酵母菌菌体上。通过细胞形态、生理生化特征及Biolog微生物鉴定系统鉴定,将Y9确立为Cryptococcus albidus(浅白隐球酵母),Y27确立为Pichia guilliermondiiA(季也蒙毕赤氏酵母A)。  相似文献   

11.
The inhibition of acid phosphatase activity observed after culture of Rh. rubra in phosphate rich mediums is raised by the culture of this yeast in presence of 2-hydroxybiphenyl (OHph2). The cell wall alkaline phosphatase activity was inhibited by this derivative; When cultivated with OHph2 an intra and a more extracellular acid phosphatase activity appeared. The comparative studies of the two extracellular acid phosphatases secreted in the medium with or without the OHph2 show they have similar characteristics. They are eluated at the same time from Sephadex G-200, DEAE- and CM-cellulose columns, and have the same Km. They are both glycoproteins, with the sugars forming the polyose fragment identical, but the enzyme secreted in the medium containing the OHph2 contains less sugar than the one secreted in the medium without OHph2. The appearance of this acid phosphatase activity was attributed to the alteration of the membrane glycosylating systems or to the important ultra structure modifications of the cell wall of Rh. rubra when this yeast is cultivated with OHph2.  相似文献   

12.
A recombinant human growth hormone (hGH) was expressed as a secretory product in the yeastSaccharomyces cerevisiae. Three different leader sequences derived from the mating factor α1 (MFα1), inulinase and invertase were used to direct the secretion of hGH into the extracellular medium. Among three leader sequences tested, the inulinase leader sequence was found to be the most efficient in the secretory expression of hGH. In contrast, no hGH was detected in the extracellular medium with the invertase leader sequence. After 48 h shake-flask culture, the yields of hGH secreted into the medium by the invertase, MFα1, inulinase and invertase leader sequences were approximately 0, 0.3 and 0.9 mg/L, respectively. The secretion efficiencies were also found to be 0, 3.8 and 13% for the invertase, MFα1 and inulinase leader sequences, respectively.  相似文献   

13.
The intracellular localization of Neurospora invertase, an enzyme partially secreted and partially retained by Neurospora at the cell periphery, was investigated. A cell wall fraction was isolated, to which 24% of the cell-bound invertase was firmly attached. A sensitive osmiophilic stain for invertase was developed and used in conjunction with the technique of indirect immunofluorescence to follow the pattern of invertase localization during the development of Neurospora from the germination of conidia to the mature hypha. These studies revealed that: (i) conidial invertase was uniformly distributed along the cell periphery; (ii) growing hyphal tips of germinating conidia showed pronounced invertase activity as the rest of the conidial cell wall lost its peripheral activity; (iii) hyphae in early log-phase growth had strong enzyme activity associated with the cell wall, and in late log phase the activity became associated with the plasma membrane and points where new hyphal branches were being formed; and (iv) hyphae in early stationary phase had strong fluorescence at incipient branching points, in "dots" close to the plasma membrane, and in the cytoplasm.  相似文献   

14.
高产菊粉酶酵母筛选、发酵和酶学性质研究   总被引:18,自引:0,他引:18  
筛选到1株菊粉酶高产克鲁维酵母菌株,采用酵母高密度细胞发酵方法,最高菊粉酶产量达到288.78u/mL,比80~90年代国际上报道的克鲁维酵母菊粉酶最高产量高6.8倍。该酶的菊粉酶/转化酶活性比为1/24.72;菊糖m=13.3mmol/L,蔗糖Km=62.6mmol/L;最适反应pH值为4.4,但在pH3.8~5.6的范围内均保持了较高的活性,相当于最适pH值下活性的90%;最适反应温度为55℃,在50~575℃范围内能够保持较高活性,50℃下酶的半衰期约为16h;外加Mg2+提高酶活性11.28%。  相似文献   

15.
The N-linked glycans from the 52/54-kDa medium protein and cell wall beta-fructosidase, two glycoproteins secreted by carrot suspension culture cells, were characterized. Carrot cells were labelled with [3H]glucosamine or [3H]fucose. The 52/54-kDa medium protein was isolated from the culture medium and beta-fructosidase from cell walls. The purified proteins were digested with trypsin and glycopeptides were isolated and sequenced. Glycans obtained from individual glycopeptides were separated by gel filtration chromatography and characterized by concanavalin A chromatography, by treatments with exoglycosidases and by sugar composition analysis. The 52/54-kDa medium protein and cell wall beta-fructosidase have one high-mannose-type glycan similar to those from yeast and animal glycoproteins. In addition, the 52/54-kDa medium protein has three complex-type and cell wall beta-fructosidase two complex-type glycans per polypeptide. The complex-type glycans isolated from individual glycosylation sites are fairly large and very heterogeneous. The smallest of these glycans has the structure [Xyl](Man)3[Fuc](GlcNAc]2Asn (square brackets indicating branching) whereas the larger ones carry additional sugars like terminal N-acetylglucosamine and possibly rhamnose and arabinose in the case of the 52/54-kDa medium protein and only arabinose in the case of cell wall beta-fructosidase. These terminal sugars are linked to the alpha-mannose residues of the glycan cores. The 52/54-kDa medium protein is secreted with large and homogeneous complex glycans, their heterogeneity originates from slow processing after secretion. The complex glycans from cell wall beta-fructosidase are processed before the enzyme is integrated into the cell wall.  相似文献   

16.
We have examined the pattern of synthesis of the glycoprotein form of invertase and of the smaller carbohydratefree from in synchronous culture to obtain further infromation concerning their biosynthetic relationship. Saccharomyces mutant 1710 was chosen since its invertase production is almost completely derepressed during growth in 0.1 M mannose medium. The large enzyme, unlike the small form, binds to concanavalin A-Sepharose, and on this basis the two types can conveniently be separated for analysis. Large invertase was produced throughout the cell cycle. Synthesis of the small invertase was periodic; the single burst occurred at or close to the budding stage. Tunicamycin, which inhibits the sypthesis of external glycoproteins, halted formation of the large enzyme but not of the small form, and there was no accumulation of invertase activity with the properties of the small enzyme. Hence, it is unlikely that the small form is a precursor of the large one. Despite marked differences in their amino acid compositions, the two enzymes have many similarities. They are probably, in part, the products of the same gene(s), and the differences between them may largely reflect differences in post-translational processing.  相似文献   

17.
In order to gain information on the ability of Schizosaccharomyces pombe to process heterologous glycoproteins, the heterologous invertase, obtained from the expression in Schiz. pombe of the SUC2 gene of Saccharomyces cerevisiae , was characterized. In Schiz. pombe the heterologous invertase is secreted into the cell wall and seems to be firmly bound to this structure. After the isolation of the heterologous invertase the study of its enzymatic characteristics revealed that it is more similar to the Sacch. cerevisiae external invertase than to the Schiz. pombe invertase. However, it is glycosylated like the Schiz. pombe invertase since it reacts with the lectin from Bandeiraea simplicifolia seeds conjugated to fluorescein isothiocyanate, which indicates the presence of terminal galactose residues in the enzyme. Moreover, the presence of galactose in the heterologous invertase has been confirmed after analysis of the sugars present in its carbohydrate moiety by gas liquid chromatography.  相似文献   

18.
Cell wall inulinase (EC 3.2.1.7) was purified from Kluyveromyces marxianus var. marxianus (formerly K. fragilis) and its N-terminal 33-amino acid sequence was established. PCR amplification of cDNA with 2 sets of degenerate primers yielded a genomic probe which was then used to screen a genomic library established in the YEp351 yeast shuttle vector. One of the selected recombinant plasmids allowed an invertase-negative Saccharomyces cerevisiae mutant to grow on inulin. It was shown to contain an inulinase gene (INU 1) encoding a 555-amino acid precursor protein with a typical N-terminal signal peptide. The sequence of inulinase displays a high similarity (67%) to S. cerevisiae invertase, suggesting a common evolutionary origin for yeast beta-fructosidases with different substrate preferences.  相似文献   

19.
From a screening of several Kluyveromyces strains, the yeast Kluyveromyces marxianus CBS 6556 was selected for a study of the parameters relevant to the commercial production of inulinase (EC 3.2.1.7). This yeast exhibited superior properties with respect to growth at elevated temperatures (40 to 45°C), substrate specificity, and inulinase production. In sucrose-limited chemostat cultures growing on mineral medium, the amount of enzyme decreased from 52 U mg of cell dry weight−1 at D = 0.1 h−1 to 2 U mg of cell dry weight−1 at D = 0.8 h−1. Experiments with nitrogen-limited cultures further confirmed that synthesis of the enzyme is negatively controlled by the residual sugar concentration in the culture. High enzyme activities were observed during growth on nonsugar substrates, indicating that synthesis of the enzyme is a result of a derepression/repression mechanism. A substantial part of the inulinase produced by K. marxianus was associated with the cell wall. The enzyme could be released from the cell wall via a simple chemical treatment of cells. Results are presented on the effect of cultivation conditions on the distribution of the enzyme. Inulinase was active with sucrose, raffinose, stachyose, and inulin as substrates and exhibited an S/I ratio (relative activities with sucrose and inulin) of 15 under standard assay conditions. The enzyme activity decreased with increasing chain length of the substrate.  相似文献   

20.
Effect of glycosylation on yeast invertase oligomer stability   总被引:5,自引:0,他引:5  
Yeast external invertase is a glycoprotein that exists as a dimer that can associate to form tetramers, hexamers, and octamers (Chu, F., Watorek, W., and Maley, F. (1983) Arch. Biochem. Biophys. 223, 543-555; Esmon, P. C., Esmon, B. E., Schauer, I. E., Taylor, A., and Schekman, R. (1987) J. Biol. Chem., 262, 4395-4401), a process that is facilitated by the attached oligosaccharide chains. We have studied this association by high performance liquid chromatography on a gel filtration matrix, by which procedure wild-type bakers' yeast invertase gives two peaks, and invertase from a core mutant (mnn1 mnn9) of Saccharomyces cerevisiae X2180 gives three peaks. Concentration of an invertase solution by freezing drives the dimers into higher aggregates that, at 30 degrees C, re-equilibrate to a mixture of smaller forms, the composition of which depends on pH, concentration, and time. The invertase from a mutant, mnn1 mnn9 dpg1, which underglycosylates its glycoproteins and produces invertase with 4-7 oligosaccharide chains, forms oligomers of much lower stability than the mnn1 mnn9 invertase, which has 8-11 carbohydrate chains. Both of these mutants release external invertase from the periplasm into the medium during growth, but we conclude that defects in the cell wall structure may be more important in this release than an altered tendency of the invertases to aggregate. Investigation of aggregate formation by electron microscopy revealed that all invertases, including the internal nonglycosylated enzyme, form octamers under appropriate conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号