首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor for Activated C Kinase, RACK1, is an adaptor protein that regulates signaling via Src and PKC-dependent pathways, and has been implicated in cell migration. In this study we demonstrate novel functions for RACK1 in regulating adhesion dynamics during cell migration. We report that cells lacking RACK1 are less motile and show reduced dynamics of paxillin and talin at focal complexes. To investigate the role of the RACK1/Src interactions in adhesion dynamics, we used RACK1 in which the putative Src binding site has been mutated (RACK Y246F). RACK1-deficient cells showed enhanced c-Src activity that was rescued by expression of wild type RACK1, but not by RACK Y246F. Expression of wild type RACK1, but not RACK Y246F, was also able to rescue the adhesion and migration defects observed in the RACK1-deficient cells. Furthermore, our findings indicate that RACK1 functions to regulate paxillin phosphorylation and that its effects on paxillin dynamics require the Src-mediated phosphorylation of tyrosine 31/118 on paxillin. Taken together, these findings support a novel role for RACK1 as a key regulator of cell migration and adhesion dynamics through the regulation of Src activity, and the modulation of paxillin phosphorylation at early adhesions.  相似文献   

2.
RACK1 is an intracellular receptor for the serine/ threonine protein kinase C. Previously, we demonstrated that RACK1 also interacts with the Src protein-tyrosine kinase. RACK1, via its association with these protein kinases, may play a key role in signal transduction. To further characterize the Src-RACK1 interaction and to analyze mechanisms by which cross-talk occurs between the two RACK1-linked signaling kinases, we identified sites on Src and RACK1 that mediate their binding, and factors that regulate their interaction. We found that the interaction of Src and RACK1 is mediated, in part, by the SH2 domain of Src and by phosphotyrosines in the sixth WD repeat of RACK1, and is enhanced by serum or platelet-derived growth factor stimulation, protein kinase C activation, and tyrosine phosphorylation of RACK1. To the best of our knowledge, this is the first report of tyrosine phosphorylation of a member of the WD repeat family of proteins. We think that tyrosine phosphorylation of these proteins is an important mechanism of signal transduction in cells.  相似文献   

3.
WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway   总被引:1,自引:0,他引:1  
WNK [with no lysine (K)] kinase is a subfamily of serine/threonine kinases. Mutations in two members of this family (WNK1 and WNK4) cause pseudohypoaldosteronism type II featuring hypertension, hyperkalemia, and metabolic acidosis. WNK1 and WNK4 were shown to regulate sodium chloride cotransporter (NCC) activity through phosphorylating SPAK and OSR1. Previous studies including ours have also shown that WNK4 inhibits NCC function and its protein expression. A recent study reported that a phorbol ester inhibits NCC function via activation of extracellular signal-regulated kinase (ERK) 1/2 kinase. In the current study, we investigated whether WNK4 affects NCC via the MAPK ERK1/2 signaling pathway. We found that WNK4 increased ERK1/2 phosphorylation in a dose-dependent manner in mouse distal convoluted tubule (mDCT) cells, whereas WNK4 mutants with the PHA II mutations (E562K and R1185C) lost the ability to increase the ERK1/2 phosphorylation. Hypertonicity significantly increased ERK1/2 phosphorylation in mDCT cells. Knock-down of WNK4 expression by siRNA resulted in a decrease of ERK1/2 phosphorylation. We further showed that WNK4 knock-down significantly increases the cell surface and total NCC protein expressions and ERK1/2 knock-down also significantly increases cell surface and total NCC expression. These data suggest that WNK4 inhibits NCC through activating the MAPK ERK1/2 signaling pathway.  相似文献   

4.
Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration.  相似文献   

5.
6.
7.
We recently identified a novel mechanism for modulation of the phosphorylation state and function of the N-methyl-d-aspartate (NMDA) receptor via the scaffolding protein RACK1. We found that RACK1 binds both the NR2B subunit of the NMDA receptor and the nonreceptor protein-tyrosine kinase, Fyn. RACK1 inhibits Fyn phosphorylation of NR2B and decreases NMDA receptor-mediated currents in CA1 hippocampal slices (Yaka, R., Thornton, C., Vagts, A. J., Phamluong, K., Bonci, A., and Ron, D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5710-5715). Here, we identified the signaling cascade by which RACK1 is released from the NMDA receptor complex and identified the consequences of the dissociation. We found that activation of the cAMP/protein kinase A pathway in hippocampal slices induced the release of RACK1 from NR2B and Fyn. This resulted in the induction of NR2B phosphorylation and the enhancement of NMDA receptor-mediated activity via Fyn. We identified the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP(1-38)), as a ligand that induced phosphorylation of NR2B and enhanced NMDA receptor potentials. Finally, we found that activation of the cAMP/protein kinase A pathway induced the movement of RACK1 to the nuclear compartment in dissociated hippocampal neurons. Nuclear RACK1 in turn was found to regulate the expression of brain-derived neurotrophic factor induced by PACAP(1-38). Taken together our results suggest that activation of adenylate cyclase by PACAP(1-38) results in the release of RACK1 from the NMDA receptor and Fyn. This in turn leads to NMDA receptor phosphorylation, enhanced activity mediated by Fyn, and to the induction of brain-derived neurotrophic factor expression by RACK1.  相似文献   

8.
The scaffolding protein receptor for activated C kinase (RACK1) has been proposed to mediate the integration of insulin-like growth factor I receptor (IGF-IR) and adhesion signaling. Here we investigated the mechanism of this integration of signaling, by using an IGF-IR mutant (Y1250F/Y1251F) that is deficient in anti-apoptotic and transforming function. RACK1 was found to associate with the IGF-IR only in adherent cells and did not associate with the IGF-IR in nonadherent cells, lymphocytic cells, or cells expressing the Y1250F/Y1251F mutant. In R- cells transiently expressing the Y1250F/Y1251F mutant RACK1 became constitutively associated with beta1 integrin and did not associate with Shc, Src, or Shp2. This was accompanied by the loss of formation of a complex containing the IGF-IR, RACK1, and beta1 integrin; loss of migratory capacity; enhanced Src and FAK activity; enhanced Akt phosphorylation; and decreased p38 mitogen-activated protein kinase activity. Shc was not phosphorylated in response to IGF-I in cells expressing the Y1250F/Y1251F mutant and remained associated with protein phosphatase 2A. Similar alterations in signaling were observed in cells that were stimulated with IGF-I in nonadherent cultures. Our data suggest that disruption of RACK1 scaffolding function in cells expressing the Y1250F/Y1251F mutant results in the loss of adhesion signals that are necessary to regulate Akt activity and to promote turnover of focal adhesions and cell migration.  相似文献   

9.
The with-no-lysine kinase 3 (WNK3) is a serine/threonine kinase that modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC). Using the Xenopus laevis oocyte heterologous expression system, it has been shown that WNK3 activates the Na(+)-coupled chloride cotransporters NKCC1, NKCC2, and NCC and inhibits the K(+)-coupled chloride cotransporters KCC1 through KCC4. Interestingly, the effect of catalytically inactive WNK3 is opposite to that of wild type WNK3: inactive WNK3 inhibits NKCCs and activates KCCs. In doing so, wild type and catalytically inactive WNK3 bypass the tonicity requirement for activation/inhibition of the cotransporter. Thus, WNK3 modulation of the electroneutral cotransporters promotes Cl(-) influx and prevents Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". Other kinases that potentially have these properties are the Ste20-type kinases, SPAK/OSR1, which become phosphorylated in response to reductions in intracellular chloride concentration and regulate the activity of NKCC1. It has been demonstrated that WNKs lie upstream of SPAK/OSR1 and that the activity of these kinases is activated by phosphorylation of threonines in the T-loop by WNKs. It is possible that a protein phosphatase is also involved in the WNK3 effects on its associated cotransporters because activation of KCCs and inhibition of NKCCs by inactive WNK3 can be prevented by known inhibitors of protein phosphatases, such as calyculin A and cyclosporine, suggesting that a protein phosphatase is also involved in the protein complex.  相似文献   

10.
WNK (with no lysine [K]) protein kinases were named for their unique active site organization. Mutations in WNK1 and WNK4 cause a familial form of hypertension by undefined mechanisms. Here, we report that WNK1 selectively binds to and phosphorylates synaptotagmin 2 (Syt2) within its calcium binding C2 domains. Endogenous WNK1 and Syt2 coimmunoprecipitate and colocalize on a subset of secretory granules in INS-1 cells. Phosphorylation by WNK1 increases the amount of Ca2+ required for Syt2 binding to phospholipid vesicles; mutation of threonine 202, a WNK1 phosphorylation site, partially prevents this change. These findings suggest that phosphorylation of Syts by WNK1 can regulate Ca2+ sensing and the subsequent Ca2+-dependent interactions mediated by Syt C2 domains. These findings provide a biochemical mechanism that could lead to the retention or insertion of proteins in the plasma membrane. Interruption of this regulatory pathway may disturb membrane events that regulate ion balance.  相似文献   

11.
The insulin-like growth factor I (IGF-I) receptor (IGF-IR) is known to regulate a variety of cellular processes including cell proliferation, cell survival, cell differentiation, and cell transformation. IRS-1 and Shc, substrates of the IGF-IR, are known to mediate IGF-IR signaling pathways such as those of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K), which are believed to play important roles in some of the IGF-IR-dependent biological functions. We used the cytoplasmic domain of IGF-IR in a yeast two-hybrid interaction trap to identify IGF-IR-interacting molecules that may potentially mediate IGF-IR-regulated functions. We identified RACK1, a WD repeat family member and a Gbeta homologue, and demonstrated that RACK1 interacts with the IGF-IR but not with the closely related insulin receptor (IR). In several types of mammalian cells, RACK1 interacted with IGF-IR, protein kinase C, and beta1 integrin in response to IGF-I and phorbol 12-myristate 13-acetate stimulation. Whereas most of RACK1 resides in the cytoskeletal compartment of the cytoplasm, transformation of fibroblasts and epithelial cells by v-Src, oncogenic IR or oncogenic IGF-IR, but not by Ros or Ras, resulted in a significantly increased association of RACK1 with the membrane. We examined the role of RACK1 in IGF-IR-mediated functions by stably overexpressing RACK1 in NIH 3T3 cells that expressed an elevated level of IGF-IR. RACK1 overexpression resulted in reduced IGF-I-induced cell growth in both anchorage-dependent and anchorage-independent conditions. Overexpression of RACK1 also led to enhanced cell spreading, increased stress fibers, and increased focal adhesions, which were accompanied by increased tyrosine phosphorylation of focal adhesion kinase and paxillin. While IGF-I-induced activation of IRS-1, Shc, PI3K, and MAPK pathways was unaffected, IGF-I-inducible beta1 integrin-associated kinase activity and association of Crk with p130(CAS) were significantly inhibited by RACK1 overexpression. In RACK1-overexpressing cells, delayed cell cycle progression in G(1) or G(1)/S was correlated with retinoblastoma protein hypophophorylation, increased levels of p21(Cip1/WAF1) and p27(Kip1), and reduced IGF-I-inducible Cdk2 activity. Reduction of RACK1 protein expression by antisense oligonucleotides prevented cell spreading and suppressed IGF-I-dependent monolayer growth. Our data suggest that RACK1 is a novel IGF-IR signaling molecule that functions as a positive mediator of cell spreading and contact with extracellular matrix, possibly through a novel IGF-IR signaling pathway involving integrin and focal adhesion signaling molecules.  相似文献   

12.
Insulin signaling through protein kinase Akt/protein kinase B (PKB), a downstream element of the phosphatidylinositol 3-kinase (PI3K) pathway, regulates diverse cellular functions including metabolic pathways, apoptosis, mitogenesis, and membrane trafficking. To identify Akt/PKB substrates that mediate these effects, we used antibodies that recognize phosphopeptide sites containing the Akt/PKB substrate motif (RXRXX(p)S/T) to immunoprecipitate proteins from insulin-stimulated adipocytes. Tryptic peptides from a 250-kDa immunoprecipitated protein were identified as the protein kinase WNK1 (with no lysine) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, consistent with a recent report that WNK1 is phosphorylated on Thr60 in response to insulin-like growth factor I. Insulin treatment of 3T3-L1 adipocytes stimulated WNK1 phosphorylation, as detected by immunoprecipitation with antibody against WNK1 followed by immunoblotting with the anti-phosphoAkt substrate antibody. WNK1 phosphorylation induced by insulin was unaffected by rapamycin, an inhibitor of p70 S6 kinase pathway but abolished by the PI3K inhibitor wortmannin. RNA interference-directed depletion of Akt1/PKB alpha and Akt2/PKB beta attenuated insulin-stimulated WNK1 phosphorylation, but depletion of protein kinase C lambda did not. Whereas small interfering RNA-induced loss of WNK1 protein did not significantly affect insulin-stimulated glucose transport in 3T3-L1 adipocytes, it significantly enhanced insulin-stimulated thymidine incorporation by about 2-fold. Furthermore, depletion of WNK1 promoted serum-stimulated cell proliferation of 3T3-L1 preadipocytes, as evidenced by a 36% increase in cell number after 48 h in culture. These data suggest that WNK1 is a physiologically relevant target of insulin signaling through PI3K and Akt/PKB and functions as a negative regulator of insulin-stimulated mitogenesis.  相似文献   

13.
The novel isoform of protein kinase C (PKC), PKCepsilon, is an important regulator of ciliated cell function in airway epithelial cells, including cilia motility and detachment of ciliated cells after environmental insult. However, the mechanism of PKCepsilon signaling in the airways and the potential role of the PKCepsilon-interacting protein, receptor for activated C kinase 1 (RACK1), has not been widely explored. We used immunohistochemistry and Western blot analysis to show that RACK1 is localized exclusively to basal, non-ciliated (and non-goblet) bovine and human bronchial epithelial cells. Our immunohistochemistry experiments used the basal body marker pericentrin, a marker for cilia, beta-tubulin, and an airway goblet cell marker, MUC5AC, to confirm that RACK1 was excluded from differentiated airway cell subtypes and is only expressed in the basal cells. These results suggest that PKCepsilon signaling in the basal airway cell may involve RACK1; however, PKCepsilon regulation in ciliated cells uses RACK1-independent pathways.  相似文献   

14.
The insulin receptor and insulin-like growth factor 1 receptor (IGF-1R), activated by their ligands, control metabolism, cell survival, and proliferation. Although the signaling pathways activated by these receptors are well characterized, regulation of their activity is poorly understood. To identify regulatory proteins we undertook a two-hybrid screen using the IGF-1R beta-chain as bait. This screen identified Receptor for Activated C Kinases (RACK1) as an IGF-1R-interacting protein. RACK1 also interacted with the IGF-1R in fibroblasts and MCF-7 cells and with endogenous insulin receptor in COS cells. Interaction with the IGF-1R did not require tyrosine kinase activity or receptor autophosphorylation but did require serine 1248 in the C terminus. Overexpression of RACK1 in either R+ fibroblasts or MCF-7 cells inhibited IGF-1-induced phosphorylation of Akt, whereas it enhanced phosphorylation of Erks and Jnks. Src, the p85 subunit of phosphatidylinositol 3-kinase, and SHP-2 were all associated with RACK1 in these cells. Interestingly, the proliferation of MCF-7 cells was enhanced by overexpression of RACK1, whereas IGF-1-mediated protection from etoposide killing was greatly reduced. Altogether the data indicate that RACK1 is an IGF-1R-interacting protein that can modulate receptor signaling and suggest that RACK1 has a particular role in regulating Akt activation and cell survival.  相似文献   

15.
NKCC1 and KCC2, related cation-chloride cotransporters (CCC), regulate cell volume and γ-aminobutyric acid (GABA)-ergic neurotranmission by modulating the intracellular concentration of chloride [Cl(-)]. These CCCs are oppositely regulated by serine-threonine phosphorylation, which activates NKCC1 but inhibits KCC2. The kinase(s) that performs this function in the nervous system are not known with certainty. WNK1 and WNK4, members of the WNK (with no lysine [K]) kinase family, either directly or via the downstream SPAK/OSR1 Ste20-type kinases, regulate the furosemide-sensitive NKCC2 and the thiazide-sensitive NCC, kidney-specific CCCs. What role the novel WNK2 kinase plays in this regulatory cascade, if any, is unknown. Here, we show that WNK2, unlike other WNKs, is not expressed in kidney; rather, it is a neuron-enriched kinase primarily expressed in neocortical pyramidal cells, thalamic relay cells, and cerebellar granule and Purkinje cells in both the developing and adult brain. Bumetanide-sensitive and Cl(-)-dependent (86)Rb(+) uptake assays in Xenopus laevis oocytes revealed that WNK2 promotes Cl(-) accumulation by reciprocally activating NKCC1 and inhibiting KCC2 in a kinase-dependent manner, effectively bypassing normal tonicity requirements for cotransporter regulation. TiO(2) enrichment and tandem mass spectrometry studies demonstrate WNK2 forms a protein complex in the mammalian brain with SPAK, a known phosphoregulator of NKCC1. In this complex, SPAK is phosphorylated at Ser-383, a consensus WNK recognition site. These findings suggest a role for WNK2 in the regulation of CCCs in the mammalian brain, with implications for both cell volume regulation and/or GABAergic signaling.  相似文献   

16.
WNK4 kinase mutations produce the autosomal dominant disorder familial hyperkalemia and hypertension (FHH), also known as pseudohypoaldosteronism type II, by a molecular mechanism that is not completely understood. In vitro experiments in frog oocytes showed that WNK4 affects ion transport systems such as the Na-Cl cotransporter and the renal outer medullary potassium channel. Some features of FHH suggest that long-term effects are involved in WNK4 signaling. In addition, WNK1 and WNK2, paralogs of WNK4, were shown to be involved in MAP kinase signaling. We therefore investigated possible WNK4 involvement in MAP kinase signaling. We stimulated HEK 293 cells overexpressing WNK4 by hypertonicity or using EGF, and measured phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38. WNK4 augmented the phosphorylation of ERK1/2 and p38 in response to both hypertonicity and EGF. The FHH-producing and kinase-deficient mutants behaved similarly to wild-type WNK4. Hypertonicity stimulation was accompanied by cellular relocalization of WNK4 as manifested by its reversible disappearance from the supernatant fraction following extraction with a detergent-containing buffer. Live-cell microscopy showed that the cytoplasmic-soluble WNK4 redistributes rapidly to membrane-bound organelles, which, in the case of WNK1 kinase, were recently shown to represent trans-Golgi network/recycling endosomes. In contrast, EGF stimulation was not accompanied by redistribution of WNK4 as determined by cell fractionation or cell microscopy. The observation that WNK4-induced MAP kinase stimulation caused by hypertonicity, but not that caused by EGF, is associated with WNK4 subcellular redistribution suggests that this redistribution has a role in WNK4 signaling.  相似文献   

17.
The δ-isozyme (type II) of diacylglycerol kinase (DGK) is known to positively regulate growth factor receptor signaling. DGKδ, which is distributed to clathrin-coated vesicles, interacts with DGKδ itself, protein kinase C and AP2α. To search for additional DGKδ-interacting proteins, we screened a yeast two-hybrid cDNA library from HepG2 cells using aa 896–1097 of DGKδ as a bait. We identified aa 184–317 (WD40 repeats 5–7) of receptor for activated C kinase 1 (RACK1), which interacts with various important signaling molecules, as a novel binding partner of DGKδ. Co-immunoprecipitation analysis, using COS-7 cells co-expressing RACK1 and DGKδ, revealed that RACK1 selectively interacted with DGKδ, but not with type I DGKs, in mammalian cells. The interaction was dynamically regulated by phorbol ester. Intriguingly, DGKδ appeared to recruit RACK1 to clathrin-coated vesicles and co-localized with RACK1. These results suggest that DGKδ serves as an adaptor protein to regulate the localization of the versatile scaffold protein, RACK1.  相似文献   

18.
19.
《Cellular signalling》2014,26(1):9-18
RACK1 binds proteins in a constitutive or transient manner and supports signal transmission by engaging in diverse and distinct signalling pathways. The emerging theme is that RACK1 functions as a signalling switch, recruiting proteins to form distinct molecular complexes. In focal adhesions, RACK1 is required for the regulation of FAK activity and for integrating a wide array of cellular signalling events including the integration of growth factor and adhesion signalling pathways. FAK is required for cell adhesion and migration and has a well-established role in neurite outgrowth and in the developing nervous system. However, the mechanism by which FAK activity is regulated in neurons remains unknown. Using neuronal cell lines, we determined that differentiation of these cells promotes an interaction between the scaffolding protein RACK1 and FAK. Disruption of the RACK1/FAK interaction leads to decreased neurite outgrowth suggesting a role for the interaction in neurite extension. We hypothesised that RACK1 recruits proteins to FAK, to regulate FAK activity in neuronal cells. To address this, we immunoprecipitated RACK1 from rat hippocampus and searched for interacting proteins by mass spectrometry. We identified AGAP2 as a novel RACK1-interacting protein. Having confirmed the RACK1–AGAP2 interaction biochemically, we show RACK1–AGAP2 to localise together in the growth cone of differentiated cells, and confirm that these proteins are in complex with FAK. This complex is disrupted when RACK1 expression is suppressed using siRNA or when mutants of RACK1 that do not interact with FAK are expressed in cells. Similarly, suppression of AGAP2 using siRNA leads to increased phosphorylation of FAK and increased cell adhesion resulting in decreased neurite outgrowth. Our results suggest that RACK1 scaffolds AGAP2 to FAK to regulate FAK activity and cell adhesion during the differentiation process.  相似文献   

20.
Mutations in the WNK [with no lysine (K) kinase] family instigate hypertension and pain perception disorders. Of the four WNK isoforms, much of the focus has been on WNK1, which is activated in response to osmotic stress by phosphorylation of its T-loop residue (Ser382). WNK isoforms phosphorylate and activate the related SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) protein kinases. In the present study, we first describe the generation of double-knockin ES (embryonic stem) cells, where SPAK and OSR1 cannot be activated by WNK1. We establish that NKCC1 (Na+/K+/2Cl- co-transporter 1), a proposed target of the WNK pathway, is not phosphorylated or activated in a knockin that is deficient in SPAK/OSR1 activity. We also observe that activity of WNK1 and WNK3 are markedly elevated in the knockin cells, demonstrating that SPAK/OSR1 significantly influences WNK activity. Phosphorylation of another regulatory serine residue, Ser1261, in WNK1 is unaffected in knockin cells, indicating that this is not phosphorylated by SPAK/OSR1. We show that WNK isoforms interact via a C-terminal CCD (coiled-coil domain) and identify point mutations of conserved residues within this domain that ablate the ability of WNK isoforms to interact. Employing these mutants, we demonstrate that interaction of WNK isoforms is not essential for their T-loop phosphorylation and activation, at least for overexpressed WNK isoforms. Moreover, we finally establish that full-length WNK1, WNK2 and WNK3, but not WNK4, are capable of directly phosphorylating Ser382 of WNK1 in vitro. This supports the notion that T-loop phosphorylation of WNK isoforms is controlled by trans-autophosphorylation. These results provide novel insights into the WNK signal transduction pathway and provide genetic evidence confirming the essential role that SPAK/OSR1 play in controlling NKCC1 function. They also reveal a role in which the downstream SPAK/OSR1 enzymes markedly influence the activity of the upstream WNK activators. The knockin ES cells lacking SPAK/OSR1 activity will be useful in validating new targets of the WNK signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号