首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The chemical stability of abasic RNA compared to abasic DNA   总被引:1,自引:1,他引:0  
We describe the synthesis of an abasic RNA phosphoramidite carrying a photocleavable 1-(2-nitrophenyl)ethyl (NPE) group at the anomeric center and a triisopropylsilyloxymethyl (TOM) group as 2′-O-protecting group together with the analogous DNA and the 2′-OMe RNA abasic building blocks. These units were incorporated into RNA-, 2′-OMe-RNA- and DNA for the purpose of studying their chemical stabilities towards backbone cleavage in a comparative way. Stability measurements were performed under basic conditions (0.1 M NaOH) and in the presence of aniline (pH 4.6) at 37°C. The kinetics and mechanisms of strand cleavage were followed by High pressure liquid chromotography and ESI-MS. Under basic conditions, strand cleavage at abasic RNA sites can occur via β,δ-elimination and 2′,3′-cyclophosphate formation. We found that β,δ-elimination was 154-fold slower compared to the same mechanism in abasic DNA. Overall strand cleavage of abasic RNA (including cyclophosphate formation) was still 16.8 times slower compared to abasic DNA. In the presence of aniline at pH 4.6, where only β,δ-elimination contributes to strand cleavage, a 15-fold reduced cleavage rate at the RNA abasic site was observed. Thus abasic RNA is significantly more stable than abasic DNA. The higher stability of abasic RNA is discussed in the context of its potential biological role.  相似文献   

2.
Fpg is a DNA glycosylase that recognizes and excises the mutagenic 8-oxoguanine (8-oxoG) and the potentially lethal formamidopyrimidic residues (Fapy). Fpg is also associated with an AP lyase activity which successively cleaves the abasic (AP) site at the 3′ and 5′ sides by βδ-elimination. Here, we present the high-resolution crystal structures of the wild-type and the P1G defective mutant of Fpg from Lactococcus lactis bound to 14mer DNA duplexes containing either a tetrahydrofuran (THF) or 1,3-propanediol (Pr) AP site analogues. Structures show that THF is less extrahelical than Pr and its backbone C5′–C4′–C3′ diverges significantly from those of Pr, rAP, 8-oxodG and FapydG. Clearly, the heterocyclic oxygen of THF is pushed back by the carboxylate of the strictly conserved E2 residue. We can propose that the ring-opened form of the damaged deoxyribose is the structure active form of the sugar for Fpg catalysis process. Both structural and functional data suggest that the first step of catalysis mediated by Fpg involves the expulsion of the O4′ leaving group facilitated by general acid catalysis (involving E2), rather than the immediate cleavage of the N-glycosic bond of the damaged nucleoside.  相似文献   

3.
4.
Chen J  Dupradeau FY  Case DA  Turner CJ  Stubbe J 《Biochemistry》2007,46(11):3096-3107
A 4'-oxidized abasic site (X) has been synthesized in a defined duplex DNA sequence, 5'-d(CCAAAGXACCGGG)-3'/3'-d(GGTTTCATGGCCC)-5' (1). Its structure has been determined by two-dimensional NMR methods, molecular modeling, and molecular dynamics simulations. 1 is globally B-form with the base (A) opposite X intrahelical and well-stacked. Only the alpha anomer of X is observed, and the abasic site deoxyribose is largely intrahelical. These results are compared with a normal abasic site (Y) in the same sequence context (2). Y is composed of a 60:40 mixture of alpha and beta anomers (2alpha and 2beta). In both 2alpha and 2beta, the base (A) opposite Y is intrahelical and well-stacked and the abasic site deoxyribose is predominantly extrahelical, consistent with the reported structures of the normal abasic site in a similar sequence context [Hoehn, S. T., Turner, C. J., and Stubbe, J. (2001) Nucleic Acids Res. 29, 3413-3423]. Molecular dynamics simulations reveal that the normal abasic site appears to be conformationally more flexible than the 4'-oxidized abasic site. The importance of the structure and flexibility of the abasic site in the recognition by the DNA repair enzyme Ape1 is discussed.  相似文献   

5.
The most common lesion in DNA is an abasic site resulting from glycolytic cleavage of a base. In a number of cellular studies, abasic sites preferentially code for dATP insertion (the “A rule”). In some cases frameshifts are also common. X-ray structures with abasic sites in oligonucleotides have been reported for several microbial and human DNA polymerases (pols), e.g. Dpo4, RB69, KlenTaq, yeast pol ι, human (h) pol ι, and human pol β. We reported previously that hpol η is a major pol involved in abasic site bypass (Choi, J.-Y., Lim, S., Kim, E. J., Jo, A., and Guengerich, F. P. (2010 J. Mol. Biol. 404, 34–44). hpol η inserted all four dNTPs in steady-state and pre-steady-state assays, preferentially inserting A and G. In LC-MS analysis of primer-template pairs, A and G were inserted but little C or T was inserted. Frameshifts were observed when an appropriate pyrimidine was positioned 5′ to the abasic site in the template. In x-ray structures of hpol η with a non-hydrolyzable analog of dATP or dGTP opposite an abasic site, H-bonding was observed between the phosphate 5′ to the abasic site and water H-bonded to N1 and N6 of A and N1 and O6 of G nucleoside triphosphate analogs, offering an explanation for what appears to be a “purine rule.” A structure was also obtained for an A inserted and bonded in the primer opposite the abasic site, but it did not pair with a 5′ T in the template. We conclude that hpol η, a major copying enzyme with abasic sites, follows a purine rule, which can also lead to frameshifts. The phenomenon can be explained with H-bonds.  相似文献   

6.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

7.
Higher eukaryotes encode various Y-family DNA polymerases to perform global DNA lesion bypass. To provide complete mutation spectra for abasic lesion bypass, we employed short oligonucleotide sequencing assays to determine the sequences of abasic lesion bypass products synthesized by human Y-family DNA polymerases eta (hPolη), iota (hPolι) and kappa (hPolκ). The fourth human Y-family DNA polymerase, Rev1, failed to generate full-length lesion bypass products after 3 h. The results indicate that hPolι generates mutations with a frequency from 10 to 80% during each nucleotide incorporation event. In contrast, hPolη is the least error prone, generating the fewest mutations in the vicinity of the abasic lesion and inserting dAMP with a frequency of 67% opposite the abasic site. While the error frequency of hPolκ is intermediate to those of hPolη and hPolι, hPolκ has the highest potential to create frameshift mutations opposite the abasic site. Moreover, the time (t50bypass) required to bypass 50% of the abasic lesions encountered by hPolη, hPolι and hPolκ was 4.6, 112 and 1 823 s, respectively. These t50bypass values indicate that, among the enzymes, hPolη has the highest abasic lesion bypass efficiency. Together, our data suggest that hPolη is best suited to perform abasic lesion bypass in vivo.  相似文献   

8.
Clustered damages—two or more closely opposed abasic sites, oxidized bases or strand breaks—are induced in DNA by ionizing radiation and by some radiomimetic drugs. They are potentially mutagenic or lethal. High complexity, multilesion clusters (three or more lesions) are hypothesized as repair-resistant and responsible for the greater biological damage induced by high linear energy transfer radiation (e.g. charged particles) than by low linear energy transfer X- or γ-rays. We tested this hypothesis by assessing human abasic endonuclease Ape1 activity on two- and multiple-lesion abasic clusters. We constructed cluster-containing oligonucleotides using a central variable cassette with abasic site(s) at specific locations, and 5′ and 3′ terminal segments tagged with visually distinctive fluorophores. The results indicate that in two- or multiple-lesion clusters, the spatial arrangement of uni-sided positive [in which the opposing strand lesion(s) is 3′ to the base opposite the reference lesion)] or negative polarity [opposing strand lesion(s) 5′ to the base opposite the reference lesion] abasic clusters is key in determining Ape1 cleavage efficiency. However, no bipolar clusters (minimally three-lesions) were good Ape1 substrates. The data suggest an underlying molecular mechanism for the higher levels of biological damage associated with agents producing complex clusters: the induction of highly repair-resistant bipolar clusters.  相似文献   

9.
DNA lesion bypass is an important cellular response to genomic damage during replication. Human DNA polymerase η (Polη), encoded by the Xeroderma pigmentosum variant (XPV) gene, is known for its activity of error-free translesion synthesis opposite a TT cis-syn cyclobutane dimer. Using purified human Polη, we have examined bypass activities of this polymerase opposite several other DNA lesions. Human Polη efficiently bypassed a template 8-oxoguanine, incorporating an A or a C opposite the lesion with similar efficiencies. Human Polη effectively bypassed a template abasic site, incorporating an A and less frequently a G opposite the lesion. Significant –1 deletion was also observed when the template base 5′ to the abasic site is a T. Human Polη partially bypassed a template (+)-trans-anti-benzo[a]pyrene-N2-dG and predominantly incorporated an A, less frequently a T, and least frequently a G or a C opposite the lesion. This specificity of nucleotide incorporation correlates well with the known mutation spectrum of (+)-trans-anti-benzo[a]pyrene-N2-dG lesion in mammalian cells. These results show that human Polη is capable of error-prone translesion DNA syntheses in vitro and suggest that Polη may bypass certain lesions with a mutagenic consequence in humans.  相似文献   

10.
Replicative DNA polymerases possess 3′ → 5′ exonuclease activity to reduce misincorporation of incorrect nucleotides by proofreading during replication. To examine if this proofreading activity modulates DNA synthesis of damaged templates, we constructed a series of recombinant human DNA polymerase δ (Pol δ) in which one or two of the three conserved Asp residues in the exonuclease domain are mutated, and compared their properties with that of the wild-type enzyme. While all the mutant enzymes lost more than 95% exonuclease activity and severely decreased the proofreading activity than the wild-type, the bypass efficiency of damaged templates was varied: two mutant enzymes, D515V and D402A/D515A, gave higher bypass efficiencies on templates containing an abasic site, but another mutant, D316N/D515A, showed a lower bypass efficiency than the wild-type. All the enzymes including the wild-type inserted an adenine opposite the abasic site, whereas these enzymes inserted cytosine and adenine opposite an 8-oxoguanine with a ratio of 6:4. These results indicate that the exonuclease activity of human Pol δ modulates its intrinsic bypass efficiency on the damaged template, but does not affect the choice of nucleotide to be inserted.  相似文献   

11.
Studies of replicative DNA polymerases have led to the generalization that abasic sites are strong blocks to DNA replication. Here we show that yeast replicative DNA polymerase ϵ bypasses a model abasic site with comparable efficiency to Pol η and Dpo4, two translesion polymerases. DNA polymerase ϵ also exhibited high bypass efficiency with a natural abasic site on the template. Translesion synthesis primarily resulted in deletions. In cases where only a single nucleotide was inserted, dATP was the preferred nucleotide opposite the natural abasic site. In contrast to translesion polymerases, DNA polymerase ϵ with 3′–5′ proofreading exonuclease activity bypasses only the model abasic site during processive synthesis and cannot reinitiate DNA synthesis. This characteristic may allow other pathways to rescue leading strand synthesis when stalled at an abasic site.  相似文献   

12.
The time course of the endplate current is determined by the rate and equilibrium constants for acetylcholine receptor (AChR) activation. We measured these constants in single-channel currents from AChRs with mutations at the neurotransmitter-binding sites, in loop C. The main findings are: (a) Almost all perturbations of loop C generate heterogeneity in the channel open probability (“modes”). (b) Modes are generated by different affinities for ACh that can be either higher or lower than in the wild-type receptors. (c) The modes are stable, in so far as each receptor maintains its affinity for at least several minutes. (d) Different agonists show different degrees of modal activity. With the loop C mutation αP197A, there are four modes with ACh but only two with partial agonists. (e) The affinity variations arise exclusively from the αδ-binding site. (f) Substituting four γ-subunit residues into the δ subunit (three in loop E and one in the β5–β5′ linker) reduces modal activity. (g) At each neurotransmitter-binding site, affinity is determined by a core of five aromatic residues. Modes are eliminated by an alanine mutation at δW57 but not at the other aromatics. (h) Modes are eliminated by a phenylalanine substitution at all core aromatics except αY93. The results suggest that, at the αδ agonist site, loop C and the complementary subunit surface can each adopt alternative conformations and interact with each other to influence the position of δW57 with respect to the aromatic core and, hence, affinity.  相似文献   

13.
Abasic (AP) sites constitute a common form of DNA damage, arising from the spontaneous or enzymatic breakage of the N-glycosyl bond and the loss of a nucleotide base. To examine the effects of such damage on DNA structure, especially in the vicinity of the abasic sugar, four 1.5 ns molecular dynamics simulations of double-helical DNA dodecamers with and without a single abasic (tetrahydrofuran, X) lesion in a 5′-d(CXT) context have been performed and analyzed. The results indicate that the abasic site does not maintain a hole or gap in the DNA, but instead perturbs the canonical structure and induces additional flexibility close to the abasic site. In the apurinic simulations (i.e., when a pyrimidine is opposite the AP site), the abasic sugar flipped in and out of the minor groove, and the gap was water filled, except during the occurrence of a novel non-Watson–Crick C-T base pair across the abasic site. The apyrimidinic gap was not penetrated by water until the abasic sugar flipped out and remained extrahelical. Both AP helices showed kinks of 20–30° at the abasic site. The Watson–Crick hydrogen bonds are more transient throughout the DNA double helices containing an abasic site. The abasic sugar displayed an unusually broad range of sugar puckers centered around the northern pucker. The increased motion of the bases and backbone near the abasic site appear to correlate with sequence-dependent helical stability. The data indicate that abasic DNA contorts more easily and in specific ways relative to unmodified DNA, an aspect likely to be important in abasic site recognition and hydrolysis.  相似文献   

14.
The most frequent DNA lesions in mammalian genomes are removed by the base excision repair (BER) via multiple pathways that involve the replacement of one or more nucleotides at the lesion site. The biological consequences of a BER defect are at present largely unknown. We report here that mouse cells defective in the main BER DNA polymerase β (Pol β) display a decreased rate of DNA single-strand breaks (ssb) rejoining after methyl methanesulfonate damage when compared with wild-type cells. In contrast, Pol β seems to be dispensable for hydrogen peroxide-induced DNA ssb repair, which is equally efficient in normal and defective cells. By using an in vitro repair assay on single abasic site-containing circular duplex molecules, we show that the long-patch BER is the predominant repair route in Pol β-null cell extract. Our results strongly suggest that the Pol β-mediated single nucleotide BER is the favorite pathway for repair of N-methylpurines while oxidation-induced ssb, likely arising from oxidized abasic sites, are the substrate for long-patch BER.  相似文献   

15.
Protein and drug interactions in the minor groove of DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Interactions between proteins, drugs, water and B-DNA minor groove have been analyzed in crystal structures of 60 protein–DNA and 14 drug–DNA complexes. It was found that only purine N3, pyrimidine O2, guanine N2 and deoxyribose O4′ are involved in the interactions, and that contacts to N3 and O2 are most frequent and more polar than contacts to O4′. Many protein contacts are mediated by water, possibly to increase the DNA effective surface. Fewer water-mediated contacts are observed in drug complexes. The distributions of ligands around N3 are significantly more compact than around O2, and distributions of water molecules are the most compact. Distributions around O4′ are more diffuse than for the base atoms but most distributions still have just one binding site. Ligands bind to N3 and O2 atoms in analogous positions, and simultaneous binding to N3 and N2 in guanines is extremely rare. Contacts with two consecutive nucleotides are much more frequent than base–sugar contacts within one nucleotide. The probable reason for this is the large energy of deformation of hydrogen bonds for the one nucleotide motif. Contacts of Arg, the most frequent amino acid ligand, are stereochemically indistinguishable from the binding of the remaining amino acids except asparagine (Asn) and phenylalanine (Phe). Asn and Phe bind in distinct ways, mostly to a deformed DNA, as in the complexes of TATA-box binding proteins. DNA deformation concentrates on dinucleotide regions with a distinct deformation of the δ and backbone torsion angles for the Asn and δ, , ζ and χ for the Phe-contacted regions.  相似文献   

16.
Pentameric ligand-gated ion channels (pLGICs) mediate fast chemoelectrical transduction in the nervous system. The mechanism by which the energy of ligand binding leads to current-conducting receptors is poorly understood and may vary among family members. We addressed these questions by correlating the structural and energetic mechanisms by which a naturally occurring M1 domain mutation (α1Q−26′E) enhances receptor activation in homo- and heteromeric glycine receptors. We systematically altered the charge of spatially clustered residues at positions 19′ and 24′, in the M2 and M2-M3 linker domains, respectively, which are known to be critical to efficient receptor activation, on a background of α1Q−26′E. Changes in the durations of single receptor activations (clusters) and conductance were used to determine interaction coupling energies, which we correlated with conformational displacements as measured in pLGIC crystal structures. Presence of the α1Q−26′E enhanced cluster durations and reduced channel conductance in homo- and heteromeric receptors. Strong coupling between α1−26′ and α119′ across the subunit interface suggests an important role in receptor activation. A lack of coupling between α1−26′ and α124′ implies that 24′ mutations disrupt activation via other interactions. A similar lack of energetic coupling between α1−26′ and reciprocal mutations in the β subunit suggests that this subunit remains relatively static during receptor activation. However, the channel effects of α1Q−26′E on α1β receptors suggests at least one α1-α1 interface per pentamer. The coupling-energy change between α1−26′ and α119′ correlates with a local structural rearrangement essential for pLGIC activation, implying it comprises a key energetic pathway in activating glycine receptors and other pLGICs.  相似文献   

17.
Transmitter molecules bind to synaptic acetylcholine receptor channels (AChRs) to promote a global channel-opening conformational change. Although the detailed mechanism that links ligand binding and channel gating is uncertain, the energy changes caused by mutations appear to be more symmetrical between subunits in the transmembrane domain compared with the extracellular domain. The only covalent connection between these domains is the pre-M1 linker, a stretch of five amino acids that joins strand β10 with the M1 helix. In each subunit, this linker has a central Arg (Arg3′), which only in the non-α-subunits is flanked by positively charged residues. Previous studies showed that mutations of Arg3′ in the α-subunit alter the gating equilibrium constant and reduce channel expression. We recorded single-channel currents and estimated the gating rate and equilibrium constants of adult mouse AChRs with mutations at the pre-M1 linker and the nearby residue Glu45 in non-α-subunits. In all subunits, mutations of Arg3′ had similar effects as in the α-subunit. In the ϵ-subunit, mutations of the flanking residues and Glu45 had only small effects, and there was no energy coupling between ϵGlu45 and ϵArg3′. The non-α-subunit Arg3′ residues had Φ-values that were similar to those for the α-subunit. The results suggest that there is a general symmetry between the AChR subunits during gating isomerization in this linker and that the central Arg is involved in expression more so than gating. The energy transfer through the AChR during gating appears to mainly involve Glu45, but only in the α-subunits.  相似文献   

18.
We report that photo-excitation of one-electron-oxidized adenine [A(-H)•] in dAdo and its 2′-deoxyribonucleotides leads to formation of deoxyribose sugar radicals in remarkably high yields. Illumination of A(-H)• in dAdo, 3′-dAMP and 5′-dAMP in aqueous glasses at 143 K leads to 80-100% conversion to sugar radicals at C5′ and C3′. The position of the phosphate in 5′- and 3′-dAMP is observed to deactivate radical formation at the site of substitution. In addition, the pH has a crucial influence on the site of sugar radical formation; e.g. at pH ~5, photo-excitation of A(-H)• in dAdo at 143 K produces mainly C5′• whereas only C3′• is observed at high pH ~12. 13C substitution at C5′ in dAdo yields 13C anisotropic couplings of (28, 28, 84) G whose isotropic component 46.7 G identifies formation of the near planar C5′•. A β-13C 16 G isotropic coupling from C3′• is also found. These results are found to be in accord with theoretically calculated 13C couplings at C5′ [DFT, B3LYP, 6-31(G) level] for C5′• and C3′•. Calculations using time-dependent density functional theory [TD-DFT B3LYP, 6-31G(d)] confirm that transitions in the near UV and visible induce hole transfer from the base radical to the sugar group leading to sugar radical formation.  相似文献   

19.
Base excision repair (BER) is the major pathway for the repair of simple, non-bulky lesions in DNA that is initiated by a damage-specific DNA glycosylase. Several human DNA glycosylases exist that efficiently excise numerous types of lesions, although the close proximity of a single strand break (SSB) to a DNA adduct can have a profound effect on both BER and SSB repair. We recently reported that DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB are resistant to DNA glycosylase activity and this study further examines the processing of these ‘complex’ lesions. We first demonstrated that the damaged base should be excised before SSB repair can occur, since it impaired processing of the SSB by the BER enzymes, DNA ligase IIIα and DNA polymerase β. Using human whole cell extracts, we next isolated the major activity against DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB and identified it as DNA polymerase δ (Pol δ). Using recombinant protein we confirmed that the 3′-5′-exonuclease activity of Pol δ can efficiently remove these DNA lesions. Furthermore, we demonstrated that mouse embryonic fibroblasts, deficient in the exonuclease activity of Pol δ are partially deficient in the repair of these ‘complex’ lesions, demonstrating the importance of Pol δ during the repair of DNA lesions in close proximity to a DNA SSB, typical of those induced by ionizing radiation.  相似文献   

20.
Mutagenesis at abasic sites was investigated in E.coli and simian kidney (COS) cells using a duplex shuttle vector containing synthetic analogs of deoxyribose on the phosphodiester backbone. Lesions were positioned on opposite strands of the vector. When the tetrahydrofuranyl analog was used as the abasic site, AT or TA pairs (65-80%) were introduced at the site of the bistrand lesion. Mutagenesis occurred in the absence of SOS induction. Single base deletions (> 80%) dominated the mutational spectra for propanyl and ethanyl analogs of abasic sites lacking a ring structure. For all abasic site analogs, a small proportion of G/C and C/G pairs (6-10%) were observed. dAMP was incorporated predominantly opposite tetrahydrofuranyl sites positioned in the single strand region of a gapped duplex vector. We conclude from these studies that abasic sites positioned in a bistrand configuration are highly mutagenic in E.coli and COS cells. Repair DNA synthesis may be involved in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号