首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
To clarify whether the common -subunit of glycoprotein hormones is involved in photic signal transduction, -subunit mRNA levels in the pars tuberalis (PT) of both hamsters and chickens were estimated at different time points of the day/night cycle by laser capture microdissection (LCM) and real-time quantitative polymerase chain reaction (PCR). Distinct diurnal rhythms were found for -subunit mRNA expression in both species. In the hamster PT, -subunit mRNA levels gradually increased during the dark phase; the diurnal peak was found at time (ZT) 21. The lowest value was obtained at ZT 5 during the day. In the chicken PT, -subunit mRNA levels were maintained at a low constant level at night between ZT 13 and 21. Thus, -subunit mRNA expression in the PT depends on the light–dark cycle and may be controlled by the pineal hormone melatonin. The effect of various photoperiods on the hamster PT was examined by real-time PCR, immunohistochemistry, and electron microscopy. In hamsters kept under short photoperiod (L/D=8 h:16 h) or complete darkness, a dramatic decrease of -subunit mRNA level was induced, and the PT-specific cells accumulated glycogen-like particles and enlarged secretory granules. Under long photoperiods (L/D=16 h:8 h), however, the -subunit mRNA level was elevated and the PT-specific cells exhibited highly active features, i.e., piles of lamellar cisternae of rough endoplasmic reticulum and well-developed Golgi complexes. The -subunit synthesized by the PT-specific cells may therefore participate in the circadian and seasonal regulation of endocrine activities.  相似文献   

2.
In this study, one of Doublesex genes from the common freshwater cladoceran Daphnia carinata, designated DapcaDsx1, was cloned using primers based on homologous sequences and rapid amplification of cDNA ends (RACE). qPCR was employed to quantify differences in DapcaDsx1 expression between the different sexual phases, with expression levels being higher in sexual females. The role of DapcaDsx1 in the reproductive transformation was further investigated in parthenogenetic-phase females and sexual-phase females using whole-mount in situ hybridization. This cellular localization study showed specific expression of DapcaDsx1 in the thoracic segments, second antenna and part of the ventral carapace. Higher expression levels were exhibited in sexual females compared to parthenogenetic females. This suggests that the DapcaDsx1 gene plays significant roles in switching modes of reproduction and during sexual differentiation.  相似文献   

3.
Superoxide dismutase (SOD, EC 1.15.1.1) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned cDNA encoding SOD activated with copper/zinc (CuZn SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of CuZn SOD was 692 bp and had a 465 bp open reading frame encoding 154 amino acids. The deduced amino acid sequence of B. calyciflorus CuZn SOD showed 63.87%, 60.00%, 59.74% and 48.89% similarity with the CuZn SOD of the Ctenopharyn godonidella, Schistosoma japonicum, Drosophila melanogaster and Caenorhabditis elegans, respectively. The phylogenetic tree constructed based on the amino acid sequences of CuZn SODs from B. calyciflorus and other organisms revealed that rotifer is closely related to nematode. Analysis of the expression of CuZn SOD under different temperatures (15, 30 and 37 °C) revealed that its expression was enhanced 4.2-fold (p < 0.001) at 30 °C after 2 h, however, the lower temperature (15 °C) promoted CuZn SOD transiently (4.1-fold, p < 0.001) and then the expression of CuZn SOD decreased to normal level (p > 0.05). When exposed to H2O2 (0.1 mM), CuZn SOD, manganese superoxide dismutase (Mn SOD) and catalase (CAT) gene were upregulated, and in addition, the mRNA expression of CuZn SOD gene was induced instantaneously after exposure to vitamin E. It indicates that the CuZn SOD gene would be an important gene in response to oxidative and temperature stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号