首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 783 毫秒
1.
Intact adipocytes exhibit ectoprotein kinase activity as reflected by their ability to catalyze the transfer of the terminal phosphate of (γ-32P) ATP to histone added to a cell suspension. This activity is substrate, time and cell number dependent. Lineweaver-Burk plots gave Km and Vmax values for ATP of 5 × 10?5 M and 7.14 pmoles/min/1.5 × 105 cells. Cyclic AMP but not cyclic GMP in μM concentrations stimulates ectoprotein kinase activity. The controlled tryptic digestion of intact cells results in reduction of ectoprotein kinase activity. This activity is not due to leakage of intracellular protein kinases during the preparative procedure nor to penetration of histone into the cells. Additional phosphoproteins not accessible to endogenous protein kinase activity are also localized on the external surface of the intact fat cell.  相似文献   

2.
Protein kinase activity was detected in osmotically lysed mitochondria isolated from etiolated seedlings of corn, pea, soybean, and wheat, as well as from potato tubers. Ther kinase(s) phosphorylated both endogenous polypeptides and exogenous, nonmitochondrial proteins when supplied with ATP and Mg2+. Eight to fifteen endogenous mitochondrial polypeptides were phosphorylated. The major mitochondrial polypeptide labeled in all species migrated during denaturing electrophoresis with an apparent monomeric molecular weight of 47,000. Incorporation of phosphate into endogenous proteins appeared to be biphasic, being most rapid during the first 1 to 2 minutes but slower thereafter. The kinase activity was greatest at neutral and alkaline pH values and utilized ATP with a Km of approximately 200 micromolar. The kinase was markedly inhibited by CaCl2 but was essentially unaffected by NaF, calmodulin, oligomycin, or cAMP. These data suggest that plant mitochondrial protein phosphorylation may be similar to protein phosphorylation in animal mitochondria.  相似文献   

3.
Sarcoplasmic reticulum, isolated from canine cardiac muscle, was phosphorylated in the presence of exogenous cAMP-dependent protein kinase or calmodulin. This phosphorylation has been shown previously to activate sarcoplasmic reticulum calcium uptake (LePeuch et al. (1979) Biochemistry18, 5150–5157). Calmodulin appeared to activate an endogenous protein kinase present in sarcoplasmic reticulum membranes. The incorporation of phosphate increased with time. However, once all the ATP was consumed, the level of phosphorylated protein started to decrease due to the action of an endogenous protein phosphatase. Dephosphorylation occurred even when the level of phosphorylated sarcoplasmic reticulum remained constant at high ATP concentrations. The phosphorylation of sarcoplasmic reticulum in the presence of calmodulin, increased as the pH was increased from pH 5.5 to 8.5. This phosphorylation was only inhibited by KCl concentrations greater than 100 mm. The apparent Km of cAMP-dependent protein kinase for ATP was 5.2 ± 0.2 × 10?5m, and of the calmodulin-dependent protein kinase for ATP was 3.67 ± 0.29 × 10?5m. Phosphorylation was maximally activated by 5–10 mm MgCl2; higher MgCl2 concentrations inhibited this phosphorylation. Thus the calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum could be maximally activated at sarcoplasmic concentrations of K+, Mg2+, and ATP. The calmodulindependent phosphorylation was half-maximally activated at Ca2+ concentrations that were significantly greater than those required to promote the formation of the sarcoplasmic reticulum Ca-activated ATPase phosphoprotein intermediate. Thus at sarcoplasmic Ca2+ concentrations that might be expected during systole, the sarcoplasmic reticulum calcium pump would be fully activated before any significant calmodul-independent sarcoplasmic reticulum phosphorylation occurred. However, under certain pathological conditions when the sarcoplasmic Ca2+ becomes elevated (e.g., in ischemia) the kinase could be activated so that the sarcoplasmic reticulum would be phosphorylated and calcium uptake augmented. Thus, the calmodulin-dependent protein kinase may only function when the heart needs to rescue itself from a possibly fatal calcium overload.  相似文献   

4.
A cyclic nucleotide-independent, polyamine-responsive protein kinase from the cytosol of Morris hepatoma 3924A, which phosphorylated heat-stable endogenous substrates and casein in the presence of polyamines (Criss, W.E., Yamamoto, M., Takai, Y., Nishizuka, Y. and Morris, H.P. (1978) Cancer Res. 38, 3540–3545) was observed to be stimulated by an endogenous protein activator. This protein activator was identified to be calmodulin. the polyamine-responsive protein kinase was also stimulated by purified calmodulin, but only in the presence of polyamines such as polylysine. This action of cadmodulin did not require Ca2+ for activation of the enzyme; and activation occured in the presence of EGTA. DNA and RNA inhibited the polyamine-responsive protein kinase, either in the presence or absence of Ca2+. Purified calmodulin, in the presence of cyclic AMP or cyclic GMP, did not activate the protein kinase. Therefore, polyamines such as polylysine are an absolute requirement for this expression of calmodulin action. The increased enzyme activity by calmodulin was accompanied with an increased Vmax and with no changes in the Fm (ATP). High levels of cation, up to 100 mM Mg2+, did not effect the action of cadmodulin. These results indicate that tumor cytosolic polyamine-responsive protein kinase is regulated by calmodulin, the latter being increased in the tumor tissue.  相似文献   

5.
Endogenous phosphorylation of platelet membrane proteins.   总被引:1,自引:0,他引:1  
The characteristics of the phosphorylating activity of platelet membranes have been studied. Plasma membranes of human platelets isolated by the glycerol lysis technique were shown to incorporate significant amounts of [32P]phosphate into specific membrane proteins. This activity was only partially cyclic 3′:5′-monophosphate (cyclic AMP)-dependent but had most of the other characteristics of protein kinases derived from other sources. Maximal stimulation of endogenous phosphorylation was obtained at 1 × 10?7, m cyclic AMP and exceeded by approximately 30% the [32P]phosphate incorporation in the absence of this cyclic nucleotide. The platelet membrane protein kinase was able to phosphorylate exogenous proteins, e.g., histone, fibrinogen etc., as well as endogenous membrane proteins. The latter solubilized by sodium dodecyl sulfate and separated by dodecyl sulfate-polyacrylamide gel electrophoresis incorporated [32P]phosphate into three polypeptides of apparent molecular weights 52,000, 31,000, and 20,000. The phosphorylation of the polypeptide of molecular weight 52,000 was cyclic AMP-dependent.  相似文献   

6.
The existence of two cyclic nucleotide-independent protein kinases in the cytosolic extract of mouse mammary gland has been determined via DEAE-cellulose and Sephacryl column chromatography. Both enzymes phosphorylated casein in the absence of the exogenous cyclic nucleotides, cAMP and cGMP. One protein kinase was found to have a molecular weight of approx. 30 000, while the other was found to have a molecular weight in the range 150 000-250 000. The activity of the larger species was enhanced by polyamines and inhibited by heparin. This enzyme utilized both ATP and GTP as phosphate donors; the apparent Km values were 10 and 16 microM, respectively. The lower molecular weight protein kinase was not affected by either polyamines or heparin and utilized only ATP (Km = 8 microM) as the phosphate donor. The polyamine-responsive protein kinase activity in the mammary gland varied as a function of the reproductive development of the mouse. The activity was relatively low in the virgin and primiparous stages, increased during pregnancy and peaked during lactation. Studies using mammary organ culture indicated that the combination of insulin (5 micrograms/ml), cortisol (1 micrograms/ml) and prolactin (5 micrograms/ml) maintained the polyamine-responsive protein kinase activity that was present in noncultured tissue. In the absence of prolactin, however, the kinase activity was significantly lower than that observed in the three-hormone system. When dibutyryl cyclic AMP (0.5 mM) was added to the medium along with the three hormones, a significant decrease in enzyme activity was found. Slab gel electrophoresis and autoradiography showed that the majority of the phosphorylated endogenous substrates in the cytosolic fraction were caseins. The results of this study suggest that the polyamine-responsive protein kinase may play an important role in the growth and development of the mammary gland.  相似文献   

7.
A soluble rat liver nuclear extract containing total RNA polymerase activities also exhibits appreciable amounts of protein kinase activity. This unfractionated protein kinase catalyzes the phosphorylation of both endogenous proteins and exogenous lysine-rich histone in the presence of [γ-32P]ATP and Mg2+. The optimal concentration of Mg2+ is 5 mm for histone phosphorylation and 25 mm for the phosphorylation of endogenous proteins. Cyclic AMP has no effect on the phosphorylation of lysine-rich histone by this unfractionated nuclear protein kinase. However, addition of cyclic AMP causes a reduction in the 32P-labeling of an endogenous protein (CAI) which can be characterized by its mobility during SDS-acrylamide gel electrophoresis and elution in the unbound fraction of a DEAESephadex column. If CAI is first labeled with 32P and then incubated with 10?6m cyclic AMP under conditions where protein kinase activity is inhibited, the presence of the cyclic nucleotide causes a loss of the 32P-labeling of this protein, implying the activation of a substrate-specific protein phosphatase. When rat liver RNA polymerases are purified by DEAE-Sephadex chromatography, protein kinase activity is found in the unbound fraction and in those column fractions containing RNA polymerase I and II. The fractionated protein kinases exhibit different responses to cyclic AMP, the unbound protein kinase being stimulated and the RNA polymerase-associated protein kinases being dramatically inhibited. A second protein (CAII) whose phosphorylated state is modified by cyclic AMP is found within the DEAE-Sephadex column fractions containing RNA polymerase II. The cyclic nucleotide in this case appears to reduce labeling of CAII by inhibition of the protein kinase activity which co-chromatographs with both CAII and RNA polymerase II. Based on molecular weight estimates, neither CAI nor CAII appears to be an RNA polymerase subunit. The identity of CAI as a protein factor whose phosphorylated state influences nuclear RNA synthesis is suggested by the fact that addition of fractions containing CAI to purified RNA polymerase II inhibits the activity of this enzyme, but only if CAI has been previously incubated in the presence of cyclic AMP.  相似文献   

8.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weight between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [γ-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [γ-32P]ATP and cyclic AMP-dependent protein kinase form calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

9.
A heat-stable, soluble component of brown adipose tissue from newborn rats was found to be readily phosphorylated by protein kinase of the same subcellular fraction. The concentration of this component in brown fat decreased with the age of the animals. A boiled crude microsomal preparation from rat liver was also phosphorylated by brown fat protein kinase. The GTP-linked phosphorylation of the endogenous heat-stable protein was not stimulated by ATP (in contrast to phosphorylation of histone). The maximum velocity of phosphorylation achieved with GTP was about 2.5 times higher than that with ATP as nucleotide substrate. This difference was not due to ATPase activity in the assay. With histone as the protein acceptor both activities were the same. The affinity of protein kinase(s) for ATP was lower with the endogenous heat-stable brown-fat protein and with boiled microsomes (Km of 0.21 mM and 0.17 mM, respectively) than with histone (Km of 0.05 M). No detecable ATPase activity was present in either acceptor protein. It is concluded that the 100 000 × g supernatant fraction from brown fat of infant rats contains two protein kinase activities. One preferentially uses ATP and histone as substrates and the other uses endogenous heat-stable soluble proteins and either ATP or GTP.  相似文献   

10.
L-929 cell surface membranes have been assayed in vitro and found to contain significant protein kinase activity. A steady-state kinetic analysis indicated that at least two distinct protein kinases were present. Plots of reaction velocity (v) against substrate (ATP) concentration were distinctly biphasic, as were Lineweaver-Burk plots of 1v versus 1ATP. Michaelis constants of the two enzymes were calculated to be 22 and 173 μm, respectively. Sodium dodecyl sulfate polyacrylamide gel analysis of the phosphorylated membrane proteins provided additional support for the existence of more than one protein kinase. Different endogenous proteins were phosphorylated at 1 μm ATP compared to 1 μm ATP. Further studies of the low Km (22 μm) enzyme suggested that it is a typical cyclic 3′,5′-AMP-independent protein kinase. Its activity was dependent on the presence of Mg2+, but it was not affected by cyclic 3′,5′-AMP, cyclic 3′,5′-GMP, or the heat-stable inhibitor of cyclic 3′,5′-AMP-dependent protein kinases. ATP and GTP, but not other nucleoside triphosphates, could serve as phosphoryl donor and maximum kinase activity was expressed at pH 7.0. Phosvitin and casein were superior to histones as exogenous substrates for the low Km enzyme.  相似文献   

11.
Cyclic nucleotide-independent protein kinase activity bound to cytoplasmic and nuclear polyribsomes from non-infected and adenovirus-infected HeLa cells was compared. The enzymes catalysed the incorporation of phosphate from gamma-(32)P-labelled ATP or GTP into acid-precipitable material in the absence of exogenous substrates. Their activity was not affected by cyclic AMP or cyclic GMP and was not inhibited by a cyclic nucleotide-dependent protein kinase-inhibitor protein. The kinases are tightly bound to polyribosomes of either origin from infected and non-infected cells, since treatment with 0.5m-NaCl did not dissociate the activity. The enzymes and the enzyme-associated endogenous substrates of cytoplasmic polyribosomes are significantly different from those of the nucleus, and adenovirus infection of the cells did not alter the nature of the enzymes or the substrates at 18-20h after infection. Nuclear kinases catalysed 3-4-fold more phosphate incorporation than did the cytoplasmic kinases. They did not phosphorylate endogenous substrates in the cytoplasmic preparations, and vice versa, which suggests that such substrates for cytoplasmic and nuclear kinases are specific. Polyacrylamide-gel electrophoresis of the phosphorylated proteins revealed the presence of a higher number of endogenous substrates in the nuclear preparation. The nuclear kinases phosphorylated all histones from HeLa cells, but the cytoplasmic ones phosphorylated predominantly the histone of mol.wt. 12000. Bovine heart kinase phosphorylated several low-molecular-weight cytoplasmic proteins and no nuclear proteins. With a DEAE-cellulose column either enzyme activity could be resolved into a number of peaks. The substrate specificities of these peaks indicate that there are at least two different forms of the enzyme in each preparation of polyribosomes.  相似文献   

12.
Sarcolemmal membranes isolated from guinea pig heart ventricles contained endogenous protein kinase activity and protein substrates for this enzyme. Phosphorylation of sarcolemma was modestly stimulated by cyclic AMP with the half-maximal stimulation at 0.5 μm cyclic AMP. The phosphorylation of sarcolemma due to endogenous kinase was dependent on Mg2+. The apparent affinity for Mg2+ was found to be 1.4 and 0.53 mm in the absence and presence of 1 μm cyclic AMP, respectively. The apparent affinity for ATP was 55 μm. Sarcolemmal membranes were also phosphorylated by exogenous (purified) cyclic AMP-dependent protein kinase(s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of phosphorylated membranes, followed by slicing and determination of the radioactivity in the gel slices, showed that endogenous protein kinase activity promoted the phosphorylation of specific protein peaks, arbitrarily designated a–g in order of increasing relative mobility (relative molecular weights 125,000, 110,000, 86,000, 58,000, 48,000, 22,000, and 16,000, respectively); peak e (48,000) was the major phosphorylated band. Exogenous protein kinase stimulated the phosphorylation of all peaks. However, the degree of stimulation of the low molecular weight peaks f and g was more marked. Results obtained after treatment of phosphorylated membranes with hydroxylamine at acid pH indicated the absence of any significant amount of acyl phosphate-type incorporation of phosphate. Purified phosphoprotein phosphatase from rabbit liver effected dephosphorylation of previously phosphorylated sarcolemma; this treatment resulted in dephosphorylation of all peaks (a–g). Pretreatment of sarcolemma with trypsin (membrane to trypsin ratio of 100) was found to markedly reduce both the total membrane phosphorylation as well as relative phosphorylation of peaks c, f, and g. On the other hand, pretreatment of sarcolemma with phospholipase c slightly stimulated total membrane phosphorylation with nondiscriminatory enhancement of the phosphorylation of all peaks. Microsomal membrane vesicles (enriched in sarcoplasmic reticulum fragments) isolated from guinea pig heart ventricle also contained endogenous protein kinase activity. Cyclic AMP modestly increased the kinase. Polypeptides of molecular weights 56,000, 22,000, and 16,000 were found to be phosphorylated. Exogenous (purified) cyclic AMP-dependent protein kinase increased the phosphorylation of microsomes and of 22,000 and 16,000 molecular weight polypeptides.  相似文献   

13.
Recently, we described the partial purification and characterization of a novel adrenocortical cyclic nucleotide-independent protein kinase, PK 380, that catalyzes the phosphorylation of an endogenous peptide (120,000 daltons) and a serine residue(s) of the α subunit (38,000 daltons) of the eucaryotic initiation factor eIF-2 (Y. Kuroda, W. C. Merrick, and R. K. Sharma, 1982, Arch. Biochem. Biophys.213, 271–275). In the present communication we describe the purification to apparent homogeneity and characterization of this protein kinase (SPK 380). As shown by sucrose density sedimentation, the native enzyme has a molecular weight of 356,000. The protein is composed of three identical subunits of Mr 120,000. Polyacrylamide-gel isoelectric focusing electrophoresis revealed a single peak with pI 4.5. SPK 380 self-phosphorylated a histidine residue(s) of its 120,000-dalton peptide. This reaction utilized the terminal phosphate of ATP; GTP was inactive. Divalent cations (5 mm Mn2+ or 10 mm Mg2+) were essential for optimum activity. Thiol reagents (N-ethylmaleimide, p-chloromercuriphenylsulfonic acid) inhibited the kinase, indicating a sulfhydryl-group requirement for enzyme activity.  相似文献   

14.
Summary A cyclic nucleotide-independent protein kinase which phoshorylates preferentially acidic proteins such as casein or phosvitin was isolated from cytosol of chick duodenal mucosa. The enzyme was purified more than 633 fold to apparent homogeneity by ammonium sulfate fractionation, column chromatography on DEAE-cellulose, phosphocellulose, hydroxylapatite and by sucrose density gradient centrifugation. The native enzyme has a molecular weight of 131000 as measured by gel filtration. The enzyme is a complex protein containing three polypeptides of molecular weight of 39 000, 36 000 and 27 000. It behaves as a complex throughout its purification and gel filtration but its components are readily separated by electrophoresis in denaturing buffer. The 27 000 molecular weight band was selectively autophosphorylated when the enzyme was incubated in the presence of [-32P]ATP.When casein was used as substrate, physiological concentrations of naturally occurring polyamines such as spermine and spermidine markedly stimulated enzyme activity. However with phosvitin as substrate polyamines were strong inhibitors of the enzyme activity. This contrasting effect on intestinal kinase activity was also apparent using cytoplasmic proteins as endogenous phosphate acceptors. A characterization of this differential effect is presented and some possible physiological implications are discussed.  相似文献   

15.
Abstract: The phosphorylation of surface proteins by ectoprotein kinase has been proposed to play a role in mechanisms underlying neuronal differentiation and their responsiveness to nerve growth factor (NGF). PC 12 clones represent an optimal model for investigating the mode of action of NGF in a homogeneous cell population. In the present study we obtained evidence that PC12 cells possess ectoprotein kinase and characterized the endogenous phosphorylation of its surface protein substrates. PC12 cells maintained in a chemically defined medium exhibited phosphorylation of proteins by [γ-32P]ATP added to the medium at time points preceding the intracellular phosphorylation of proteins in cells labeled with 32Pi. This activity was abolished by adding apyrase or trypsin to the medium but was not sensitive to addition of an excess of unlabeled Pi. As also expected from ecto-protein kinase activity, PC12 cells catalyzed the phosphorylation of an exogenous protein substrate added to the medium, dephospho-α-casein, and this activity competed with the endogenous phosphorylation for extracellular ATP. Based on these criteria, three protein components migrating in sodium dodecyl sulfate gels with apparent molecular weights of 105K, 39K, and 20K were identified as exclusive substrates of ecto-protein kinase in PC12 cells. Of the phosphate incorporated into these proteins from extracellular ATP, 75–87% was found in phosphothreonine. The phosphorylation of the 39K protein by ecto-protein kinase did not require Mg2+, implicating this activity in the previously demonstrated regulation of Ca2+-dependent, high-affinity norepinephrine uptake in PC12 cells by extracellular ATP. The protein kinase inhibitor K-252a inhibited both intra- and extracellular protein phosphorylation in intact PC12 cells. Its hydrophilic analogue K-252b, had only minimal effects on intracellular protein phosphorylation but readily inhibited the phosphorylation of specific substrates of ecto-protein kinase in PC12 cells incubated with extracellular ATP, suggesting the involvement of ecto-protein kinase in the reported inhibition of NGF-induced neurite extension by K-252b. Preincubation of PC12 cells with 50 ng/ml of NGF for 5 min stimulated the activity of ecto-protein kinase toward all its endogenous substrates. Exposure of PC12 cells to the same NGF concentration for 3 days revealed another substrate of ecto-protein kinase, a 53K protein, whose surface phosphorylation is expressed only after NGF-induced neuronal differentiation. In the concentration range (10–100 μM) at which 6-thioguanine blocked NGF-promoted neurite outgrowth in PC12 cells, 6-thioguanine effectively inhibited the phosphorylation of specific proteins by ecto-protein kinase. This study provides the basis for continued investigation of the involvement of ecto-protein kinase and its surface protein substrates in neuronal differentiation, neuritogenesis, and synaptogenesis.  相似文献   

16.
Isolated, intact dermal fibroblasts can transfer the terminal phosphate of adenosine triphosphate, [γ-32P]ATP, to an exogenously added macromolecule (histone). The incorporation of labeled phosphate to histone is attributed to an extracellularly directed protein kinase activity (ecto-kinase) which cannot be accounted for by soluble cytoplasmic protein kinase that might have been released and become bound to cell membranes during the cell preparation. The addition of soluble cytoplasmic enzyme preparations to the cell suspension was fully recoverable in the supernatant and the first wash. The activity of ectokinase was abolished by incubation of intact cells with trypsin for 5 min, whereas the activity of cytoplasmic enzyme was unaffected by the trypsin treatment. These data suggest that dermal fibroblasts contain protein kinase on the outer surface of plasma membrane which can phosphorylate exogenously added macromolecules. The ecto-protein kinase activity is dependent on cell number, time of incubation, and the concentration of Mg2+ in the reaction mixture. Lineweaver-Burk plot analyses yielded Km values for ATP and histone of 7 × 10?5 and 3 × 10?6m, respectively. The ecto-protein kinase activity of normal fibroblasts and fibrosarcoma cells were also compared. The enzyme activity of normal cells was higher than that of the malignant cells and was not significantly affected by cyclic nucleotides, whereas the activity of the malignant cells were stimulated by the addition of micromolar concentrations of the cyclic nucleotides.  相似文献   

17.
The 10000 X g supernatant fraction of brown fat from newborn rats catalyzed the cyclic AMP-dependent phosphorylation of both histone and a preparation of proteins from the same subcellular fraction (endogenous proteins). The apparent affinity for ATP was lower for the phosphorylation of the endogenous proteins than for the phosphorylation of histone. In order to discover whether the phosphorylation of histone and the endogenous proteins were catalyzed by different enzymes, the 100000 X g supernatant was fractionated by ion-exchange and adsorption chromatography. Three different cyclic AMP-dependent protein kinases and one cyclic AMP-independent protein kinase were separated and partially purified. Each of these enzymes catalyzed the phosphorylation of both substrates, and the difference in apparent Km for ATP remained. Neither affinity chromatography on histone-Sepharose, nor electrophoresis on polyacrylamide gels resulted in the separation of the phosphorylation of histone from that of the endogenous proteins of any of the partially purified kinases. Moreover, experiments in which the phosphorylated substrates were separated by differential precipitation with trichloroacetic acid showed that the endogenous proteins competitively inhibited the phosphorylation of lysine-rich histone. It is concluded that each of the partially purified kinase preparations contains protein kinase, which catalyzes the phosphorylation of both substrates. The difference in apparent Km for ATP was found to be due to the presence in the endogenous protein preparation of a low molecular weight compound which competes with ATP. This was not ATP nor the modulator protein. The ratio of the phosphorylation of endogenous proteins to that of histone was much higher for the cyclic AMP-independent kinase preparation than for the other enzymes. Electrophoresis of the endogenous substrates in the presence of sodium dodecyl sulphate showed that the enzyme phosphorylated a greater number of proteins than did the cyclic AMP-dependent kinases. The phosphorylation of endogenous proteins relative to that of histone was significantly lower for one of the cyclic AMP-dependent kinases than for the other two. This difference was not reflected in a different pattern of phosphorylation of the individual proteins of the endogenous mixture.  相似文献   

18.
《Insect Biochemistry》1989,19(8):781-788
Cyclic nucleotide-dependent and cyclic nucleotide-independent protein kinase (PK) activities were quantified in the wing-pad epidermis of Locusta migratoria during the fifth larval instar. A low level of cyclic nucleotide-independent PK activity was detected in this tissue, whereas no PK-C (Ca2+- and phospholipid-dependent enzyme) activity was found. The main cyclic nucleotide-PK activity was cAMP-PK and large changes were observed during the intermoult. Concomitant increases in cAMP-PK activity and cAMP-dependent phosphorylation of several endogenous polypeptide substrates occurred during the last part of the intermoult cycle. The most marked 32P-incorporation was observed in a 43 kDa polypeptide. These changes could be correlated with the peak of 20-OH-ecdysone in both hemolymph and integument.In vitro incubation of wing-pads with 20-OH-ecdysone (48 h) did not change cAMP-PK activity, but there were major changes in the pattern of endogenous phosphoproteins in particular the appearance of 43 and 45 kDa phosphoproteins. Two-dimensional analysis revealed several groups of phosphorylated spots. The results indicate a close relationship between certain cAMP-dependent phosphorylated polypeptides and the action of 20-OH-ecdysone.  相似文献   

19.
The presence of a protein kinase capable of phosphorylating endogenous as well as exogenously added myelin basic proteins has been demonstrated in a myelin-like membrane fraction isolated from reaggregating and surface adhering, primary cultures of cells dissociated from embryonic mouse brain. Only the large and small components of myelin basic proteins were found to be phosphorylated when myelin-like membrane fraction was incubated with [-32P]ATP. The protein kinase endogenous to the myelin-like membrane fraction was mainly of the cyclic AMP independent type. There was very little cyclic AMP dependent or cyclic GMP dependent protein kinase activities in this myelin-like fraction. Although the myelin basic proteins were the only endogenous proteins phosphorylated, protein kinase of the myelin-like membrane was capable of catalyzing the phosphorylation of exogenous substrates, such as histones.  相似文献   

20.
Tyrosine-specific protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) activity was measured in normal human nonadherent peripheral blood lymphocytes using synthetic peptide substrates having sequence homologies with either pp60src or c-myc. A high level of tyrosine-specific protein kinase activity was found associated with the cell particulate fraction (100 000 × g pellet). High-pressure liquid chromatography and phosphoamino acid analysis of the synthetic peptide substrates substantiated the phosphorylation of tyrosine residues by the particulate fraction enzyme. The human enzyme was also capable of phosphorylating a synthetic random polymer of 80% glutamic acid and 20% tyrosine. Enzyme activity was half-maximal with 22 μM Mg·ATP and had apparent Km values for the synthetic peptides from 1.9 to 7.1 mM. The enzyme preferred Mg2+ to Mn2+ for optimal activity and was stimulated 2–5-fold by low levels (0.05%) of some ionic as well as non-ionic detergents including deoxycholate, Nonidet P-40 and Triton X-100. The enzyme activity was not stimulated by N6;O2′-dibutyryl cyclic AMP (100 μM), N6;O2′-dibutyryl cyclic GMP (100 μM), Ca2+ (200 μM), insulin (1 μg/ml) or homogeneous human T-cell growth factor (3 μg/ml) under the conditions used. Alkaline-resistant phosphorylation of particulate proteins in vitro revealed protein bands with Mr 59 000 and 54 000 suggesting that there are endogenous substrates for the human lymphocyte tyrosine protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号