首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The permeation of monovalent cations through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions. For monovalent cations presented on the cytoplasmic side of the channel, the permeability ratios with respect to extracellular Na followed the sequence NH4 > K > Li > Rb = Na > Cs while the conductance ratios at +50 mV followed the sequence Na approximately NH4 > K > Rb > Li = Cs. These patterns are broadly similar to the amphibian rod channel. The symmetry of the channel was tested by presenting the test ion on the extracellular side and using Na as the common reference ion on the cytoplasmic side. Under these biionic conditions, the permeability ratios with respect to Na at the intracellular side followed the sequence NH4 > Li > K > Na > Rb > Cs while the conductance ratios at +50 mV followed the sequence NH4 > K approximately Na > Rb > Li > Cs. Thus, the channel is asymmetric with respect to external and internal cations. Under symmetrical 120 mM ionic conditions, the single-channel conductance at +50 mV ranged from 58 pS in NH4 to 15 pS for Cs and was in the order NH4 > Na > K > Rb > Cs. Unexpectedly, the single-channel current-voltage relation showed sufficient outward rectification to account for the rectification observed in multichannel patches without invoking voltage dependence in gating. The concentration dependence of the reversal potential for K showed that chloride was impermeant. Anomalous mole fraction behavior was not observed, nor, over a limited concentration range, were multiple dissociation constants. An Eyring rate theory model with a single binding site was sufficient to explain these observations.  相似文献   

2.
As a prototype for binding and interaction in biological Na and K channels, the single channel conductances for Li, Na, K, Rb, Cs, H, and Tl and the membrane potentials for Tl-K mixtures are characterized for gramicidin A over wider concentration rangers than previously and analyzed using an "equilibrium domain" model that assumes a central rate-determining barrier. Peculiarities in the conductance-concentration relationship for TlF, TlNO3, and TlAc suggest that anions bind to Tl-loaded channels, and the theory is extended to allow for this. For concreteness, the selectivity of cation permeation is characterized in terms of individual binding and rate constants of this model, with the conclusions that the strongest site binds Cs greater than Rb greater than K greater than Na greater than Li, while the next strongest binds Na greater than K greater than Li greater than Rb greater than Cs. However, because Schagina, Grinfeldt, and Lev''s recent finding of single filing (personal communication) indicates that the channel sites in gramicidin cannot be at equilibrium with the solution, and work in progress with Hägglund and Enos (Biophys. J. 21:26a. [Abstr.]) indicates that the simplest model adequate to account for the observed concentration-dependences of flux-ratio, conductance, I--V characteristic, and permeability has three barriers and four sites, some implications of additional rate-determining barriers at the mouth of the channel are discussed. The results are summarized using phenomenological "experimental" parameters that provide a model-independent way to represent that data concisely and which can be interpreted physically in terms of any desired model.  相似文献   

3.
The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel.  相似文献   

4.
Summary A potassium-39 NMR study of potassium ion interaction with the gramicidin transmembrane channel in phospholipid bilayers at high ion activity is reported which allows determination of a weak binding constant, K b w 8.3/m, and an off-rate constant for the weak site,k off w 2.6×107/sec. These values are interpreted with the aid of additional NMR data as the binding constant for formation of the doubly occupied channel state and the rate constant for an ion leaving the doubly occupied state. Considering the singly occupied channel state for the potassium ion to be electrically silent at 1 molar ion activity, as with the sodium ion, the single-channel conductance for 100 mV and 30°C calculated to be 29 pS, and using the same approximation with previous NMR results on the sodium and rubidium ions, reasonable conductance ratios were calculated. Further experimental estimates of the other three constants with the experimental location of binding sites and Eyring rate theory to introduce voltage dependence allowed a more complete calculation of the two-site channel. The single-channel conductance for potassium ion is calculated to be 24 pS at 1m activity and 26 pS at 0.6m activity, which compares for diphytanoyl phosphatidylcholine membranes to an experimental most probable single-channel conductance of 25 pS and a mean channel conductance of 20 pS. The calculated conductance ratios using NMR-derived constants were (K)/(Na)=2.0 and (Rb)/(Na)=4.3. These results are close to the experimental values and provide further basis for the use of NMR of quadrupolar ions to provide information on the ionic mechanism of channel transport.  相似文献   

5.
M2, an integral membrane protein of influenza A virus, was purified from either influenza A virus-infected CV-1 cells or from Spodoptera frugiperda (Sf9) cells infected with a recombinant-M2 baculovirus. The purified protein, when incorporated into phospholipid bilayer membranes, produced ion-permeable channels with the following characteristics: (1) The channels appeared in bursts during which unit conductances of diverse magnitudes (25–500 pS) were observed. (2) The most probable open state was usually the lowest unit conductance (25–90 pS). (3) The channels were selective for cations; t Na = 0.75 when 150 mm NaCl bathed both sides of the membrane. (4) Amantadine reduced the probability of opening of the high conductance state and also the conductance of the most probable state. (5) Reducing pH increased the mean current through the open channel as well as the conductance of the most probable state. (6) The sequence of selectivity for group IA monovalent cations was Rb > K > Cs ~ Na > Li. The pH activation, amantadine block and ion selectivity of the M2 protein ion channel in bilayers are consistent with those observed on expression of the M2 protein in oocytes of Xenopus laevis as well as for those predicted for the proposed role of an ion channel in the uncoating process of influenza virus. The finding that the M2 protein has intrinsic ion channel activity supports the hypothesis that it has ion channel activity in the influenza virus particle.  相似文献   

6.
Summary This paper describes properties of86Rb fluxes through K channels in luminal membrane vesicles prepared from rabbit renal outer medulla. By measuring86Rb uptake against an opposing chemical gradient of K ions, using membranes loaded with KCl, a transient accumulation of isotope is observed, which is blocked by Ba ions. This is the behavior expected of a conductive Rb flux through a Ba-sensitive K channel. The86Rb accumulation is driven by an electrical diffusion potential as shown in experiments using either vesicles loaded with different anions, or an outwardly directed Li gradient with a Li ionophore. The vesicles containing the channel show a cation selectivity with the order Rb > K > Cs > Li > Na > choline. The Ba-sensitive Rb flux is dependent on Ca within the vesicles, with a very high affinity estimated asK 0.5 10 to 100nm. The vesicles appear to be right-side-out. The Ba-sensitive86Rb uptake is also inhibited by quinineK 0.5 30 m but is insensitive to tetraethyl ammonium ions and apamin. These isotope flux experiments complement electrophysiological experiments in providing independent evidence for the existence of K channels in the luminal surface of cells of this ascending limb of the loop of Henle. The very high Ca affinity suggests that cytoplasmic Ca could play an important role in regulation of transepithelial salt flux in this region of the nephron.  相似文献   

7.
Summary Intracellular Pb2+ ions can replace Ca2+ ions in stimulating the Ca-dependent K permeability of human red blood cells. In metabolically depleted resealed ghosts, the threshold for stimulation of86Rb efflux by internal Pb2+ is around 5×10–10 m, and stimulation is half-maximal at about 2×10–9 m, and maximal at 10–8 m Pb2+. There is no effect on22Na efflux in this concentration range.86Rb efflux is antagonized by internal Mg2+ ions, and by the channel-blocking drugs quinidine and diS-C2(5), as observed for the Ca-dependent K permeability in red cells. In ghosts containing EDTA, which prevents any internal effects of Pb2+ ions, external Pb2+ increases both22Na and86Rb permeability when its concentration exceeds 6×10–7 m. This effect is seemingly unrelated to the Ca-dependent K permeability. This work makes extensive use of Pb2+ ion buffers, and gives information about their preparation and properties.  相似文献   

8.
Two different methods were used to determine the relative permeability and the voltage-dependent conductance of several different cations in excitability-inducing material (EIM)-doped lipid bilayers. In one method, the conductances of individual channels were measured for Li, Na, K, Cs, NH4, and Ca, and in the other method biionic potentials of a membrane with many channels were measured for Li, Na, K, Cs, and Rb. The experimental results for the two methods are in agreement. The relative permeabilities are proportional to the ionic mobilities in free aqueous solution. The voltage dependence of the conductance is the same for all cations measured.  相似文献   

9.
Summary Permeability constant ratios among monovalent cations were studied in the resting membrane of a giant axon of a Pacific squid,Loligo opalescens, by observing the relationship between the membrane potential and the ion concentration.The average permeability ratios are: Tl, 1.8; K, 1.0; Rb, 0.72; Cs, 0.16; Na, <0.08; Li, <0.08. These permeability ratios suggest that neither valinomycin nor nonactin are adequate models for the sites producing the resting permeability in the axonal membrane.Cyclic polyetherbis(t-butyl cyclohexyl) 18-crown-6 does not increase the permeability ratioP Cs/P K except when applied at concentrations (5×10–5 m) at which the surfactant properties of this molecule may become significant.  相似文献   

10.
Liu W  Toney MD 《Biochemistry》2004,43(17):4998-5010
Dialkylglycine decarboxylase (DGD) is a tetrameric pyridoxal phosphate (PLP)-dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. Its activity is dependent on cations. Metal-free DGD and DGD complexes with seven monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) and three divalent cations (Mg(2+), Ca(2+), and Ba(2+)) have been studied. The catalytic rate constants for cation-bound enzyme (ck(cat) and ck(cat)/bK(AIB)) are cation-size-dependent, K(+) being the monovalent cation with the optimal size for catalytic activity. The divalent alkaline earth cations (Mg(2+), Ca(2+), and Ba(2+)) all give approximately 10-fold lower activity compared to monovalent alkali cations of similar ionic radius. The Michaelis constant for aminoisobutyrate (AIB) binding to DGD-PLP complexes with cations (bK(AIB)) varies with ionic radius. The larger cations (K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) give smaller bK(AIB) ( approximately 4 mM), while smaller cations (Li(+), Na(+)) give larger values (approximately 10 mM). Cation size and charge dependence is also found with the dissociation constant for PLP binding to DGD-cation complexes (aK(PLP)). K(+) and Rb(+) possess the optimal ionic radius, giving the lowest values of aK(PLP). The divalent alkaline earth cations give aK(PLP) values approximately 10-fold higher than alkali cations of similar ionic radius. The cation dissociation constant for DGD-PLP-AIB-cation complexes (betaK(M)z+) was determined and also shown to be cation-size-dependent, K(+) and Rb(+) yielding the lowest values. The kinetics of PLP association and dissociation from metal-free DGD and its complexes with cations (Na(+), K(+), and Ba(2+)) were analyzed. All three cations tested increase PLP association and decrease PLP dissociation rate constants. Kinetic studies of cation binding show saturation kinetics for the association reaction. The half-life for association with saturating Rb(+) is approximately 24 s, while the half-life for dissociation of Rb(+) from the DGD-PLP-AIB-Rb(+) complex is approximately 12 min.  相似文献   

11.
Single high-conductance Ca2+-activated K+ channels from rat skeletal muscle were inserted into planar lipid bilayers, and discrete blocking by the Ba2+ ion was studied. Specifically, the ability of external K+ to reduce the Ba2+ dissociation rate was investigated. In the presence of 150 mM internal K+, 1-5 microM internal Ba2+, and 150 mM external Na+, Ba2+ dissociation is rapid (5 s-1) in external solutions that are kept rigorously K+ free. The addition of external K+ in the low millimolar range reduces the Ba2+ off-rate 20-fold. Other permeant ions, such as Tl+, Rb+, and NH4+ show a similar effect. The half-inhibition constants rise in the order: Tl+ (0.08 mM) less than Rb+ (0.1 mM) less than K+ (0.3 mM) less than Cs+ (0.5 mM) less than NH4+ (3 mM). When external Na+ is replaced by 150 mM N-methyl glucamine, the Ba2+ off-rate is even higher, 20 s-1. External K+ and other permeant ions reduce this rate by approximately 100-fold in the micromolar range of concentrations. Na+ also reduces the Ba2+ off-rate, but at much higher concentrations. The half-inhibition concentrations rise in the order: Rb+ (4 microM) less than K+ (19 microM) much less than Na+ (27 mM) less than Li+ (greater than 50 mM). The results require that the conduction pore of this channel contains at least three sites that may all be occupied simultaneously by conducting ions.  相似文献   

12.
Ion binding at the extracellular face of the Na,K-ATPase is electrogenic and can be monitored by the styryl dye RH 421 in membrane fragments containing a high density of the Na,K-pumps. The fluorescent probe is noncovalently bound to the membrane and responds to changes of the local electric field generated by binding or release of cations inside the protein. Due to the fact that K+ binding from the extracellular side is an electrogenic reaction, it is possible to detect the amount of ions bound to the pump as function of the aqueous concentration. The results are in contradiction to a second order reaction, i.e., a simultaneous binding of two K+ ions. A mathematical model is presented to discuss the nature of the two step binding process. On the basis of this model the data allow a quantitative distinction between binding of the first and the second K+ ion. The temperature dependence of ion binding has been investigated. At low temperatures the apparent dissociation constants differ significantly. In the temperature range above 20°C the resulting apparent dissociation constants for both K+ ions merge and have values between 0.2 and 0.3 mm, which is consistent with previous experiments. The activation energy for the half saturating concentration of K+ is 22 kJ/mol. Additional analysis of the titration curve of K+ binding to the state P — E2 by the Hill equation yields a Hill coefficient, nHill, of 1.33, which is in agreement with previously published data.The authors would like to thank G. Witz for technical assistance. This work has been financially supported by the Deutsche Forschungsgemeinschaft (SFB 156).  相似文献   

13.
The equilibrium binding constants of the Group I metal cations with gramicidin A in aqueous dispersions of lyso-PC have been determined using a combination of competitive binding with the T1+ ion and T1-205 NMR spectroscopy. The values of the binding constants at 34 degrees C are Li (32.2 M-1), Na (36.9 M-1), K (52.6 M-1), Rb (55.9 M-1), and Cs (54.0 M-1). The equilibrium binding constant for the T1+ ion at this temperature is 582 M-1. The relationships between the binding constants, the free energy of the binding process, and the cation selectivity of the gramicidin A channel are discussed.  相似文献   

14.
Phenothiazines (PTZ) such as chlorpromazine (CPZ) or trifluoperazine (TPZ) induced a sustained divalent cation-permeable channel activity when applied on either side of inside-out patches or on external side of cell-attached patches of adult rat ventricular myocytes. The percentage of active patches was 20%. In the case of CPZ, the K dof the dose-response curve was 160 m. CPZ-activated channels were potential-independent in the physiological range of membrane potential and were permeable to several divalent ions (Ba2+, Ca2+, Mg2+, Mn2+). At least three levels of currents were usually detected with conductances of 23, 50 and 80 pS in symmetrical 96 mm Ba2+ solution and 17, 36 and 61 pS in symmetrical 96 mm Ca2+ solution. Saturation curves corresponding to the three main conductances determined in Ba2+ symmetrical solutions (tonicity compensated with choline-Cl) gave maximum conductances of 36, 81 and 116 pS (with corresponding half-saturating concentration constants of 31.5, 38 and 34.5 mm). The corresponding conductance values were estimated to 1.7, 3.3 and 5.2 pS in symmetrical 1.8 mm Ba2+ and to 1.1, 2.4 and 3.7 pS in symmetrical 1.8 mm Ca2+ (the value in normal Tyrode solution). Channels were poorly permeable to monovalent cations, such as Na, with a P Ba/P Na ratio of 10. A PTZ-induced channel activity similar to that described in cardiac cells was also observed in cultured rat aortic smooth muscle cells but not in cultured neuroblastoma cells.PTZ-activated channels described in cardiac cells appear very similar to the sporadically active divalent ion permeable channels described in a previous paper (Coulombe et al., 1989). Surprisingly, when 100 m CPZ were applied to myocytes studied in the whole-cell configuration, and maintained at a holding potential of –80 mV in the presence of 24 mm external Ca2+ or Ba2+, no detectable macroscopic inward current could be observed, whereas the L-type Ca2+ current triggered by depolarizing pulses was markedly and reversibly reduced. The possible reasons are discussed.  相似文献   

15.
The conductance and selectivity of the Ca-activated K channel in cultured rat muscle was studied. Shifts in the reversal potential of single channel currents when various cations were substituted for Ki+ were used with the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The selectivity was Tl+ greater than K+ greater than Rb+ greater than NH4+, with permeability ratios of 1.2, 1.0, 0.67, and 0.11. Na+, Li+, and Cs+ were not measurably permeant, with permeabilities less than 0.05 that of K+. Currents with the various ions were typically less than expected on the basis of the permeability ratios, which suggests that the movement of an ion through the channel was not independent of the other ions present. For a fixed activity of Ko+ (77 mM), plots of single channel conductance vs. activity of Ki+ were described by a two-barrier model with a single saturable site. This observation, plus the finding that the permeability ratios of Rb+ and NH+4 to K+ did not change with ion concentration, is consistent with a channel that can contain a maximum of one ion at any time. The empirically determined dissociation constant for the single saturable site was 100 mM, and the maximum calculated conductance for symmetrical solutions of K+ was 640 pS. TEAi+ (tetraethylammonium ion) reduced single channel current amplitude in a voltage-dependent manner. This effect was accounted for by assuming voltage-dependent block by TEA+ (apparent dissociation constant of 60 mM at 0 mV) at a site located 26% of the distance across the membrane potential, starting at the inner side. TEAo+ was much more effective in reducing single channel currents, with an apparent dissociation constant of approximately 0.3 mM.  相似文献   

16.
The mechanism of charybdotoxin (CTX) block of single Ca2+-activated K+ channels from rat muscle was studied in planar lipid bilayers. CTX blocks the channel from the external solution, and K+ in the internal solution specifically relieves toxin block. The effect of K+ is due solely to an enhancement of the CTX dissociation rate. As internal K+ is raised, the CTX dissociation rate increases in a rectangular hyperbolic fashion from a minimum value at low K+ of 0.01 s-1 to a maximum value of approximately 0.2 s-1. As the membrane is depolarized, internal K+ more effectively accelerates CTX dissociation. As the membrane is hyperpolarized, the toxin dissociation rate approaches 0.01 s-1, regardless of the K+ concentration. When internal K+ is replaced by Na+, CTX dissociation is no longer voltage dependent. The permeant ion Rb also accelerates toxin dissociation from the internal solution, while the impermeant ions Li, Na, Cs, and arginine do not. These results argue that K ions can enter the CTX-blocked channel from the internal solution to reach a site located nearly all the way through the conduction pathway; when K+ occupies this site, CTX is destabilized on its blocking site by approximately 1.8 kcal/mol. The most natural way to accommodate these conclusions is to assume that CTX physically plugs the channel's externally facing mouth.  相似文献   

17.
Experimental modulation of the apical membrane Na+ conductance or basolateral membrane Na+-K+ pump activity has been shown to result in parallel changes in the basolateral K+ conductance in a number of epithelia. To determine whether modulation of the basolateral K+ conductance would result in parallel changes in apical Na+ conductance and basolateral pump activity, Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that allowed rapid serosal solution changes. Exposure of the basolateral membrane to the K+ channel blockers Ba2+ (0.5 mM/liter), Cs+ (10 mM/liter), or Rb+ (10 mM/liter) increased the basolateral resistance (Rb) by greater than 75% in each case. The increases in Rb were accompanied simultaneously by significant increases in apical resistance (Ra) of greater than 20% and decreases in transepithelial Na+ transport. The increases in Ra, measured as slope resistances, cannot be attributed to nonlinearity of the I-V relationship of the apical membrane, since the measured cell membrane potentials with the K+ channel blockers present were not significantly different from those resulting from increasing serosal K+, a maneuver that did not affect Ra. Thus, blocking the K+ conductance causes a reduction in net Na+ transport by reducing K+ exit from the cell and simultaneously reducing Na+ entry into the cell. Close correlations between the calculated short-circuit current and the apical and basolateral conductances were preserved after the basolateral K+ conductance pathways had been blocked. Thus, the interaction between the basolateral and apical conductances revealed by blocking the basolateral K+ channels is part of a network of feedback relationships that normally serves to maintain cellular homeostasis during changes in the rate of transepithelial Na+ transport.  相似文献   

18.
Cyclo(L-Lac-L-Val-D-Pro-D-Val)3 (PV-Lac) a structural analogue of the ion-carrier valinomycin, increases the cation permeability of lipid bilayer membranes by forming a 1:1 ion-carrier complex. The selectively sequence for PV-Lac is identical to that of valinomycin; i.e., Rb+ greater than K+ greater than Cs+ greater than or equal to NH+4 greater than Na+ greater than Li+. The steady-state zero-voltage conductance, G(0), is a saturating function of KCl concentration. A similar behavior was found for Rb+, Cs+, and NH+4. However, the ion concentration at which G(0) reaches a plateau strongly depends on membrane composition. The current-voltage curves present saturating characteristics, except at low ion concentrations of Rb+, K+, or Cs+. The ion concentration at which the saturating characteristics appear depends on membrane composition. These and other results presented in this paper agree with a model that assumes complexation between carrier and ion at the membrane-water interface. Current relaxation after voltage-jump studies were also performed for PV-Lac. Both the time constant and the amplitude of the current after a voltage jump strongly depend on ion concentration and membrane composition. These results, together with the stationary conductance data, were used to evaluate the rate constants of the PV-Lac-mediated K+ transport. In glycerolmonooleate they are: association rate constant, 2 x 10(6) M-1 s-1; dissociation rate constant, 4 x 10(5) s-1; translocation rate constant for complex, 5 x 10(4) s-1; and the rate of translocation of the free carrier (ks), 55 s-1. ks is much smaller for PV-Lac than for valinomycin and thus limits the efficiency with which the carrier is able to translocate cations across the membrane.  相似文献   

19.
G Akk  A Auerbach 《Biophysical journal》1996,70(6):2652-2658
The properties of adult mouse recombinant nicotinic acetylcholine receptors activated by acetylcholine (ACh+) or tetramethylammonium (TMA+) were examined at the single-channel level. The midpoint of the dose-response curve depended on the type of monovalent cation present in the extracellular solution. The shifts in the midpoint were apparent with both inward and outward currents, suggesting that the salient interaction is with the extracellular domain of the receptor. Kinetic modeling was used to estimate the rate constants for agonist binding and channel gating in both wild-type and mutant receptors exposed to Na+, K+, or Cs+. The results indicate that in adult receptors, the two binding sites have the same equilibrium dissociation constant for agonists. The agonist association rate constant was influenced by the ionic composition of the extracellular solution whereas the rate constants for agonist dissociation, channel opening, and channel closing were not. In low-ionic-strength solutions the apparent association rate constant increased in a manner that suggests that inorganic cations are competitive inhibitors of ACh+ binding. There was no evidence of an electrostatic potential at the transmitter binding site. The equilibrium dissociation constants for inorganic ions (Na+, 151 mM; K+, 92 mM; Cs+, 38 mM) and agonists (TMA+, 0.5 mM) indicate that the transmitter binding site is hydrophobic. Under physiological conditions, about half of the binding sites in resting receptors are occupied by Na+.  相似文献   

20.
Relative permeabilities to the alkali cations were determined, from the reversal potential (VRev), for the Na channel of internally perfused voltage-clamped Myxicola giant axons. PLi/PNa and PK/PNa are 0.94 and 0.076, respectively. Rb and Cs are not measurably permeant. VRev vs. the internal Na activity was well described by the constant field equation over a 300-fold range of internal Na concentrations. In agreement with findings on squid axons, the PK/PNa was found to increase when the K content of the internal perfusate was reduced (equivalent per equivalent substitution with TMA). Internal Rb and Cs also decreased the PK/PNa. The order of effectiveness of internal K, Rb, and Cs in increasing the Na selectivity of the Na channel was Cs greater than Rb greater than or equal to K. External Li increases the PK/PNa but this may be due to the formation of LiF internally. It may be that substances do not have to traverse the channel in order to affect the selectivity filter. Evidence is presented which suggests that the selectivity of the Na channel may be higher for Na in intact as compared to perfused giant axons. It was concluded that the channel selectivity properities do not reflect only some fixed structural features of the channel, but the selectivity filter has a labile organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号