首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R B Dodd  K Drickamer 《Glycobiology》2001,11(5):71R-79R
Classes of intracellular lectins that recognize core-type structures and mediate intracellular glycoprotein trafficking are present in vertebrates, model invertebrates such as Caenorhabditis elegans and Drosophila melanogaster, plants, and yeasts. Lectins that recognize more complex structures at the cell surface, such as C-type lectins and galectins, are also found in invertebrate organisms as well as vertebrates, but the functions of these proteins have evolved differently in different animal lineages.  相似文献   

2.
Drickamer K  Dodd RB 《Glycobiology》1999,9(12):1357-1369
Protein modules related to the C-type carbohydrate-recognition domains of animal lectins are found in at least 125 proteins encoded in the Caenorhabditis elegans genome. Within these proteins, 183 C-type lectin-like domains (CTLDs) have been identified. The proteins have been classified based on the overall arrangement of modules within the polypeptides and based on sequence similarity between the CTLDs. The C.elegans proteins generally have different domain organization from known mammalian proteins containing CTLDs. Most of the CTLDs are divergent in sequence from those in mammalian proteins. However, 19 show conservation of most of the amino acid residues that ligate Ca(2+)to form a carbohydrate-binding site in vertebrate C-type carbohydrate-recognition domains. Seven of these domains are particularly similar in sequence to mannose- and N-acetylglucosamine-binding domains in the vicinity of this Ca(2+)site.  相似文献   

3.
无脊椎动物先天免疫模式识别受体研究进展   总被引:6,自引:0,他引:6  
免疫系统的基本功能是“自己”与“非己”识别.对入侵物的识别是免疫防御的起始,最终引发效应物反应系统,包括吞噬作用、包被作用、激活蛋白酶级联反应和黑化作用以及诱导抗菌肽的合成等,从而清除或消灭入侵物.研究证明,这种“非己”识别是因为存在某些特异性的、可溶的或与细胞膜结合的模式识别受体,可以识别或结合微生物表面保守的、而在宿主中又不存在的病原相关分子模式.模式识别受体通过对病原相关分子的识别启动先天免疫防御.近年来这方面的研究进展很快,已经在无脊椎动物中确定了多种模式识别受体,包括肽聚糖识别蛋白、含硫酯键蛋白、革兰氏阴性菌结合蛋白、清除受体、C型凝集素、硫依赖型凝集素、Toll样受体和血素等,并对其性质和功能进行了研究.  相似文献   

4.
The genome of Drosophila melanogaster encodes several proteins that are predicted to contain Ca(2+)-dependent, C-type carbohydrate-recognition domains. The CG2958 gene encodes a protein containing 359 amino acid residues. Analysis of the CG2958 sequence suggests that it consists of an N-terminal domain found in other Drosophila proteins, a middle segment that is unique, and a C-terminal C-type carbohydrate-recognition domain. Expression studies show that the full-length protein is a tetramer formed by noncovalent association of disulfide-linked dimers that are linked through cysteine residues in the N-terminal domain. The expressed protein binds to immobilized yeast invertase through the C-terminal carbohydrate-recognition domain. Competition binding studies using monosaccharides demonstrate that CG2958 interacts specifically with fucose and mannose. Fucose binds approximately 5-fold better than mannose. Blotting studies reveal that the best glycoprotein ligands are those that contain N-linked glycans bearing alpha1,3-linked fucose residues. Binding is enhanced by the additional presence of alpha1,6-linked fucose. It has previously been proposed that labeling of the Drosophila neural system by anti-horseradish peroxidase antibodies is a result of the presence of difucosylated N-linked glycans. CG2958 is a potential endogenous receptor for such neural-specific carbohydrate epitopes.  相似文献   

5.
The C-type carbohydrate-recognition domains of E-selectin and rat serum mannose-binding protein have similar structures. Selectin/mannose-binding protein chimeras created by transfer of key sequences from E-selectin into mannose-binding protein have previously been shown to bind the selectin ligand sialyl-Lewis(X) through a Ca(2+)-dependent subsite, common to many C-type lectins, and an accessory site containing positively charged amino acid residues. Further characterization of these chimeras as well as analysis of novel constructs containing additional regions of E-selectin demonstrate that selectin-like interaction with sialyl-Lewis(X) can be faithfully reproduced even though structural evidence indicates that the mechanisms of binding to E-selectin and the chimeras are different. Selectin-like binding to the nonfucosylated sulfatide and sulfoglucuronyl glycolipids can also be reproduced with selectin/mannose-binding protein chimeras that contain the two subsites involved in sialyl-Lewis(X) binding. These results indicate that binding of structurally distinct anionic glycans to C-type carbohydrate-recognition domains can be mediated by the Ca(2+)-dependent subsite in combination with a positively charged region that forms an ionic strength-sensitive subsite.  相似文献   

6.
C型凝集素     
C型凝集素(C-type lectin)代表一个识别碳水化合物配体依赖于钙离子(Ca2+)参与的糖原结合蛋白家族,含有一个或多个一级结构和二级结构同源的碳水化合物识别结构域。随着研究的深入,越来越多的C型凝集素能够识别体内的非糖类的配体,包括蛋白质和脂类等。这些C型凝集素在维持机体稳态、免疫防御以及免疫监视等重要生理病理过程中发挥着重要作用。就C型凝集素的结构、分类和在免疫系统中的功能作一介绍。  相似文献   

7.
Sugar-binding characteristics of rat serum mannose-binding protein (MBP) were studied using the carbohydrate-recognition domain of this protein expressed from a cloned cDNA. To assess the binding affinity of various test compounds, they were added as inhibitors in a binding assay in which 125I-MBP was incubated with yeast cells and the extent of binding was estimated from the radioactivity associated with the pelleted cells. The results of such inhibition assays suggest that MBP has a small binding site which is probably of the trough-type. The 3- and 4-OH of the target sugar are indispensable, while the 6-OH is not required. These characteristics are shared by the rat hepatic lectin and chicken hepatic lectin, both of which are C-type lectins containing carbohydrate-recognition domains highly homologous to that of MBP. Apparently, the related primary structures of these lectins give rise to similar gross architecture of their binding sites, despite the fact that each exhibits different sugar binding specificities.  相似文献   

8.
9.
10.
Among the sponges (Porifera), the oldest group of metazoans in phylogenetic terms, the Hexactinellida is considered to have diverged earliest from the two other sponge classes, the Demospongiae and Calcarea. The Hexactinellida are unusual among all Metazoa in possessing mostly syncytial rather than cellular tissues. Here we describe the purification of a cell adhesion molecule with a size of 34 kDa (in its native form; 24 kDa after deglycosylation) from the hexactinellid sponge Aphrocallistes vastus. This adhesion molecule was previously found to agglutinate preserved cells and membranes in a non-species-specific manner (Müller, W. E. G., Zahn, R. K, Conrad, J., Kurelec, B., and Uhlenbruck, G. [1984] Cell adhesion molecules in the haxactinellid Aphrocallistes vastus: species-unspecific aggregationfactor. Differentiation, 26, 30--35). The fact that the aggregation process required Ca(2+) and was inhibited by bird's nest glycoprotein and D-galactose but not by D-mannose or N-acetyl-D-galactosamine suggests that this cell adhesion molecule is a C-type lectin. To test this assumption, two highly similar C-type lectins were cloned from A.vastus. The deduced polypeptides of the two cDNA species isolated classified these molecules as C-type lectins. The calculated M(r) of the 191 aa long sequences were 22,022 and 22,064, respectively. The C-type lectins showed highest similarity to C-type lectins (type-II membrane proteins) from higher metazoan phyla; these molecules are absent in non-Metazoa. The two sponge C-type lectins contain the conserved domains known from other C-type lectins (e.g., disulfide bonds, the amino acids known to be involved in Ca(2+)-binding, as well as the amino acids involved in the specificity of binding to D-galactose) and a hydrophobic N-terminal region. The N-terminal part of the purified C-type lectin was identical with the corresponding region of the deduced polypeptide from the cDNA. It is proposed that the A.vastus lectins might bind to the cell membrane by their hydrophobic segment and might interact with carbohydrate units on the surface of the other cells/syncytia.  相似文献   

11.
Human lithostathine (HLIT) is a pancreatic glycoprotein which inhibits the growth and nucleation of calcium carbonate crystals. The crystal structure of the monomeric 17 kDa HLIT, determined to a resolution of 1.55 angstroms, was refined to a crystallographic R-factor of 18.6%. Structural comparison with the carbohydrate-recognition domains of rat mannose-binding protein and E-selectin indicates that the C-terminal domain of HLIT shares a common architecture with the C-type lectins. Nevertheless, HLIT does not bind carbohydrate nor does it contain the characteristic calcium-binding sites of the C-type lectins. In consequence, HLIT represents the first structurally characterized member of this superfamily which is not a lectin. Analysis of the charge distribution and calculation of its dipole moment reveal that HLIT is a strongly polarized molecule. Eight acidic residues which are separated by regular 6 angstrom spacings form a unique and continuous patch on the molecular surface. This arrangement coincides with the distribution of calcium ions on certain planes of the calcium carbonate crystal; the dipole moment of HLIT may play a role in orienting the protein on the crystal surface prior to the more specific interactions of the acidic residues.  相似文献   

12.
C-type lectins (C-TLs) are a family of carbohydrate-binding proteins intimately involved in diverse processes including vertebrate immune cell signalling and trafficking, activation of innate immunity in both vertebrates and invertebrates, and venom-induced haemostasis. Helminth C-TLs sharing sequence and structural similarity with mammalian immune cell lectins have recently been identified from nematode parasites, suggesting clear roles for these proteins at the host-parasite interface, notably in immune evasion. Here, Alex Loukas and Rick Maizels review the status of helminth lectin research and suggest ways in which parasitic worms might utilize C-TLs during their life history.  相似文献   

13.
C型凝集素作为模式识别分子可以识别部分脂多糖(LPS),进而参与昆虫细胞的防御反应。本文通过RT-PCR和3′/5′RACE技术从亚洲玉米螟Ostriniafurnacalis 5龄幼虫血细胞中克隆得到免疫凝集素基因(OfIML)。OfIMLmRNA全长为1241 bp,其中开放读码框(ORF)为924 bp,编码307个氨基酸(aa),分子量约为34.65 ku。与其它昆虫的C型凝集素比对分析结果显示,OfIML属于鳞翅目免疫凝集素,并且含有一个独特的结构特征,即一前一后2个糖识别域,氨基末端(CRD1,aa#1-135)和羧基末端(CRD2,aa#136-287)。RT-PCR检测OfIML在幼虫组织中的分布结果表明,其在血细胞、表皮、脂肪体、中肠、马氏管和气管中都有表达。OfIML GenBank登录号为ABZ81710。OfIML是一种昆虫免疫凝集素,含有2个糖识别域,根据其分子结构及在组织分布中的结果显示可能在亚洲玉米螟的免疫反应中起重要作用。  相似文献   

14.
Langerin is a type II transmembrane cell surface receptor found on Langerhans cells. The extracellular domain of langerin consists of a neck region containing a series of heptad repeats and a C-terminal C-type carbohydrate-recognition domain (CRD). A role for langerin in processing of glycoprotein antigens has been proposed, but until now there has been little study of the langerin protein. In this study, analytical ultracentrifugation and circular dichroism spectroscopy of recombinant soluble fragments of human langerin have been used to show that the extracellular region of this receptor exists as a stable trimer held together by a coiled coil of alpha-helices formed by the neck region. The langerin CRD shows specificity for mannose, GlcNAc, and fucose, but only the trimeric extracellular domain fragment binds to glycoprotein ligands. Langerin extracellular domain binds mammalian high mannose oligosaccharides, as well mannose-containing structures on yeast invertase but does not bind complex glycan structures. Full-length langerin stably expressed in rat fibroblast transfectants mediates efficient uptake and degradation of a mannosylated neoglycoprotein ligand. pH-dependent ligand release appears to involve interactions between the CRDs or between the CRDs and the neck region in the trimer. The results are consistent with a role for langerin in internalization of both self and nonself glycoprotein antigens.  相似文献   

15.
Yang J  Wang L  Zhang H  Qiu L  Wang H  Song L 《PloS one》2011,6(2):e17089

Background

C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins that play significant diverse roles in nonself-recognition and clearance of invaders. Though they are well characterized in vertebrates, the study of the potential function and mechanism of C-type lectins in invertebrate immunity is still in its infancy.

Methodology

A C-type lectin (CfLec-1) from scallop Chlamys farreri, a dominant cultured mollusk species in China, was selected to investigate its mRNA expression, localization and the possible functions in innate immunity in the present study. After scallop was stimulated by three typical PAMPs, the mRNA expression of CfLec-1 in hemocytes was poles apart. It was significantly up-regulated (p<0.01) after scallops were stimulated by LPS or β-glucan, but significantly down-regulated (p<0.01) after PGN stimulation. The binding ability of recombinant CfLec-1 (designated as rCfLec-1) towards eight PAMPs was investigated subsequently by PAMPs microarray, which revealed rCfLec-1 could bind LPS, PGN and mannan in vitro, indicating CfLec-1 served as a PRR involved in the pathogen recognition. Immunofluorescence assay with polyclonal antibody specific for CfLec-1 revealed that CfLec-1 was mainly located in the mantle and gill of the scallop. CfLec-1 could bind to the surface of scallop hemocytes and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-1 antibody. Meanwhile, rCfLec-1 could also enhance the phagocytic activity of scallop hemocytes against Escherichia coli.

Conclusions

The results clearly suggested that CfLec-1 in C. farreri not only served as a PRR involved in the PAMPs recognition, but also functioned as an opsonin participating in the clearance of invaders. It is therefore suspected that CfLec-1 could be an attachment-molecule to nonself-agents acting as an alternative to immunoglobulin in vertebrates.  相似文献   

16.
Receptors for laminin on mammalian cells.   总被引:13,自引:0,他引:13  
R P Mecham 《FASEB journal》1991,5(11):2538-2546
Early in development, cells produce an extracellular matrix that provides important cues that regulate gene expression, cell division, and morphogenesis. Interactions with the extracellular matrix are mediated by cell-surface receptors providing a transmembrane link between extracellular and intracellular compartments. Laminin, a large, multichain glycoprotein found in basement membranes, is involved in various biological activities, including promotion of cell adhesion, growth, migration, differentiation, neurite outgrowth, and tumor metastases. To date, several classes of binding proteins have been found to interact with laminin, including a high-affinity 67-kDa receptor, galactoside-binding lectins, galactosyltransferase, sulfatides, and integrins. This review will summarize our current understanding of some of these laminin-binding proteins, and where possible, integrate the biochemistry and cell biology of ligand and receptor expression.  相似文献   

17.
Perlucin isolated from abalone nacre consists of 155 amino acids including a glycosylated asparagine. The sequence of the first 130 amino acids shows a high similarity to the C-type carbohydrate-recognition domains of asialoglycoprotein receptors and other members of the group of C-type lectins but also a weaker similarity to related proteins without carbohydrate-binding activity. This C-type module is followed by a short C-terminal domain containing two almost identical sequence repeats with a length of 10 amino acids. Solid phase assays show a divalent metal ion-dependent binding of perlucin to (neo)glycoproteins containing D-galactose or D-mannose/D-glucose indicating that perlucin is a functional C-type lectin with broad carbohydrate-binding specificity. Our results also indicate that it may be difficult to predict carbohydrate-binding specificity and the occurrence of alternative binding configurations by amino-acid sequence comparisons and homology modeling.  相似文献   

18.
Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.  相似文献   

19.
C-type lectins are Ca(2+)-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a 5'-terminal untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7- and 4.9-fold at 6h after injury and 8h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury healing and the immune response in A. irradians.  相似文献   

20.
LSECtin is a member of the C-type lectin family of glycan-binding receptors that is expressed on sinusoidal endothelial cells of the liver and lymph nodes. To compare the sugar and pathogen binding properties of LSECtin with those of related but more extensively characterized receptors, such as DC-SIGN, a soluble fragment of LSECtin consisting of the C-terminal carbohydrate-recognition domain has been expressed in bacteria. A biotin-tagged version of the protein was also generated and complexed with streptavidin to create tetramers. These forms of the carbohydrate-recognition domain were used to probe a glycan array and to characterize binding to oligosaccharide and glycoprotein ligands. LSECtin binds with high selectivity to glycoproteins terminating in GlcNAcbeta1-2Man. The inhibition constant for this disaccharide is 3.5 microm, making it one of the best low molecular weight ligands known for any C-type lectin. As a result of the selective binding of this disaccharide unit, the receptor recognizes glycoproteins with a truncated complex and hybrid N-linked glycans on glycoproteins. Glycan analysis of the surface glycoprotein of Ebola virus reveals the presence of such truncated glycans, explaining the ability of LSECtin to facilitate infection by Ebola virus. High mannose glycans are also present on the viral glycoprotein, which explains why DC-SIGN also binds to this virus. Thus, multiple receptors interact with surface glycoproteins of enveloped viruses that bear different types of relatively poorly processed glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号