首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The pro-inflammatory lipid mediator platelet activating factor (PAF: 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) accumulates in ischemia, epilepsy, and human immunodeficiency virus-1-associated dementia and is implicated in neuronal loss. The present study was undertaken to establish a role for its G-protein coupled receptor in regulating neurotoxicity. PC12 cells do not express PAF receptor mRNA as demonstrated by northern analysis and RT-PCR. In the absence of the G-protein coupled receptor, PAF (0.1-1 micro m) triggered chromatin condensation, DNA strand breaks, oligonucleosomal fragmentation, and nuclear disintegration characteristic of apoptosis. Lyso-PAF (0.001-1 micro m), the immediate metabolite of PAF, did not elicit apoptotic death. Concentrations of PAF or lyso-PAF that exceeded critical micelle concentration had physicochemical effects on plasma membrane resulting in necrosis. Apoptosis but not necrosis was inhibited by the PAF antagonist BN52021 (1-100 micro m) but not CV3988 (0.2-20 micro m). Ectopic PAF receptor expression protected PC12 transfectants from ligand-induced apoptosis. PAF receptor-mediated protection was inhibited by CV3988 (1 micro m). These data provide empirical evidence that: (i) PAF can initiate apoptosis independently of its G-protein coupled receptor; (ii) PAF signaling initiated by its G-protein coupled receptor is cytoprotective to PC12 cells; (iii) the pro- and anti-apoptotic effects of PAF on PC12 cells can be pharmacologically distinguished using two different PAF antagonists.  相似文献   

2.
3.
Intermittent hypoxia (IH) during sleep, a hallmark of sleep apnea, is associated with neurobehavioral impairments, regional neurodegeneration and increased oxidative stress and inflammation in rodents. Platelet-activating factor (PAF) is an important mediator of both normal neural plasticity and brain injury. We report that mice deficient in the cell surface receptor for PAF (PAFR-/-), a bioactive mediator of oxidative stress and inflammation, are protected from the spatial reference learning deficits associated with IH. Furthermore, PAFR-/- exhibit attenuated elevations in inflammatory signaling (cyclo-oxygenase-2 and inducible nitric oxide synthase activities), degradation of the ubiquitin-proteasome pathway and apoptosis observed in wild-type littermates (PAFR+/+) exposed to IH. Collectively, these findings indicate that inflammatory signaling and neurobehavioral impairments induced by IH are mediated through PAF receptors.  相似文献   

4.
The platelet-activating factor (PAF) family of glycerophospholipids accumulates in damaged brain tissue following injury. Little is known about the role of individual isoforms in regulating neuronal survival. Here, we compared the neurotoxic and neuroprotective activities of 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C(16)-PAF) and 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (C(18)-PAF) in cerebellar granule neurons. We find that both C(16)-PAF and C(18)-PAF cause PAF receptor-independent death but signal through different pathways. C(16)-PAF activates caspase-7, whereas C(18)-PAF triggers caspase-independent death in PAF receptor-deficient neurons. We further show that PAF receptor signaling is either pro- or anti-apoptotic, depending upon the identity of the sn-1 fatty acid of the PAF ligand. Activation of the PAF G-protein-coupled receptor (PAFR) by C(16)-PAF stimulation is anti-apoptotic and inhibits caspase-dependent death. Activation of PAFR by C(18)-PAF is pro-apoptotic. These results demonstrate the importance of the long-chain sn-1 fatty acid in regulating PAF-induced caspase-dependent apoptosis, caspase-independent neurodegeneration, and neuroprotection in the presence or absence of the PAF receptor.  相似文献   

5.
Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator involved in a broad range of physiological and pathophysiological processes. The receptor of PAF (PAFR) is a heptahelical G-protein-coupled receptor. We have shown previously that upon agonist stimulation, PAFR internalised through clathrin-coated vesicles in an arrestin-dependent, but G-protein-coupling-independent manner. In the current report, we demonstrate that PAF stimulates Erk1/2 phosphorylation and: (1). dominant negative mutants of arrestins and dynamin do not influence Erk1/2 activation, (2). hypertonic conditions do not decrease the extent of Erk1/2 phosphorylation, (3). internalisation-deficient and/or G-protein-coupling-deficient mutants of PAFR activate Erk1/2 as efficiently as the wild-type PAFR, and (4). inhibition of epidermal growth factor receptor (EGFR) does not block Erk1/2 activation. Taken together, our results suggest that PAFR-mediated activation of mitogen-activated protein kinases Erk1/2 does not require receptor endocytosis, receptor tyrosine kinase transactivation or G-protein activation. In addition, our studies reveal that PAFR-mediated signals of G-protein activation, receptor internalisation and MAPK activation are differentially regulated by receptor structure and/or conformation.  相似文献   

6.
7.
Pseudomonas aeruginosa is a major cause of nosocomial pneumonia, which is associated with high morbidity and mortality. Because of its ubiquitous nature and its ability to develop resistance to antibiotics, it is a problematic pathogen from a treatment perspective. Platelet-activating factor receptor (PAFR) is involved in phagocytosis of several pathogens. To determine the role of PAFR in the innate immune response to P. aeruginosa pneumonia, pafr gene-deficient (PAFR-/-) mice and normal wild-type (Wt) mice were intranasally inoculated with P. aeruginosa. PAFR deficiency impaired host defense as reflected by increased bacterial outgrowth and dissemination in mice with a targeted deletion of the PAFR gene. PAFR-/- neutrophils showed a diminished phagocytosing capacity of P. aeruginosa in vitro. Relative to Wt mice, PAFR-/- mice demonstrated increased lung inflammation and injury as reflected by histopathology, relative lung weights and total protein concentrations in bronchoalveolar lavage fluid, which was accompanied by higher levels of proinflammatory cytokines in lung homogenates and plasma. In addition, PAFR deficiency was associated with exaggerated local and systemic activation of coagulation as determined by fibrin staining of lung tissue and pulmonary and plasma concentrations of thrombin-antithrombin complexes and D-dimer. These data suggest that PAFR is an essential component of an effective host response to P. aeruginosa pneumonia, at least partly via its contribution to the phagocytic properties of professional granulocytes. Additionally, our results indicate that PAFR signaling is not essential for the induction of a local and systemic inflammatory and procoagulant response to Pseudomonas pneumonia.  相似文献   

8.
Platelet-activating factor receptor (PAFR) is a member of G-protein coupled receptor (GPCR) superfamily. Understanding the regulation mechanisms of PAFR by its agonists and antagonists at the atomic level is essential for designing PAFR antagonists as drug candidates for treating PAF-mediated diseases. In this study, a 3D model of PAFR was constructed by a hierarchical approach integrating homology modeling, molecular docking and molecular dynamics (MD) simulations. Based on the 3D model, regulation mechanisms of PAFR by agonists and antagonists were investigated via three 8-ns MD simulations on the systems of apo-PAFR, PAFR-PAF and PAFR-GB. The simulations revealed that binding of PAF to PAFR triggers the straightening process of the kinked helix VI, leading to its activated state. In contrast, binding of GB to PAFR locks PAFR in its inactive state.  相似文献   

9.
Although influenza infection alone may lead to pneumonia, secondary bacterial infections are a much more common cause of pneumonia. Streptococcus pneumoniae is the most frequently isolated causative pathogen during postinfluenza pneumonia. Considering that S. pneumoniae utilizes the platelet-activating factor receptor (PAFR) to invade the respiratory epithelium and that the PAFR is upregulated during viral infection, we here used PAFR gene-deficient (PAFR-/-) mice to determine the role of this receptor during postinfluenza pneumococcal pneumonia. Viral clearance was similar in wild-type and PAFR-/- mice, and influenza virus was completely removed from the lungs at the time mice were inoculated with S. pneumoniae (day 14 after influenza infection). PAFR-/- mice displayed a significantly reduced bacterial outgrowth in their lungs, a diminished dissemination of the infection, and a prolonged survival. Pulmonary levels of IL-10 and KC were significantly lower in PAFR-/- mice, whereas IL-6 and TNF-alpha were only trendwise lower. These data indicate that the pneumococcus uses the PAFR leading to severe pneumonia in a host previously exposed to influenza A.  相似文献   

10.
Peripheral tissue injury causes the release of various mediators from damaged and inflammatory cells, which in turn activates and sensitizes primary sensory neurons and thereby produces persistent pain. The present study investigated the role of platelet-activating factor (PAF), a phospholipid mediator, in pain signaling using mice lacking PAF receptor (pafr-/- mice). Here we show that pafr-/- mice displayed almost normal responses to thermal and mechanical stimuli but exhibit attenuated persistent pain behaviors resulting from tissue injury by locally injecting formalin at the periphery as well as capsaicin pain and visceral inflammatory pain without any alteration in cytoarchitectural or neurochemical properties in dorsal root ganglion (DRG) neurons and a defect in motor function. However, pafr-/- mice showed no alterations in spinal pain behaviors caused by intrathecally administering agonists for N-methyl-d-aspartate (NMDA) and neurokinin(1) receptors. A PAFR agonist evoked an intracellular Ca(2+) response predominantly in capsaicin-sensitive DRG neurons, an effect was not observed in pafr-/- mice. By contrast, the PAFR agonist did not affect C- or Adelta-evoked excitatory post-synaptic currents in substantia gelatinosa neurons in the dorsal horn. Interestingly, mice lacking PAFR showed reduced phosphorylation of extracellular signal-related protein kinase (ERK), an important kinase for the sensitization of primary sensory neurons, in their DRG neurons after formalin injection. Furthermore, U0126, a specific inhibitor of the ERK pathway suppressed the persistent pain by formalin. Thus, PAFR may play an important role in both persistent pain and the sensitization of primary sensory neurons after tissue injury.  相似文献   

11.
Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). Electrophysiology, immunofluorescence, Western blot analysis, and RT-PCR were used to study the action of PAF and the expression of PAF receptor (PAFR) in the ENS. PAFR immunoreactivity (IR) was expressed by 6.9% of the neurons in the myenteric plexus and 14.5% of the neurons in the submucosal plexus in all segments of the guinea pig intestinal tract as determined by double staining with anti-human neuronal protein antibody. PAFR IR was found in 6.1% of the neurons with IR for calbindin, 35.8% of the neurons with IR for neuropeptide Y (NPY), 30.6% of the neurons with IR for choline acetyltransferase (ChAT), and 1.96% of the neurons with IR for vasoactive intestinal peptide (VIP) in the submucosal plexus. PAFR IR was also found in 1.5% of the neurons with IR for calbindin, 51.1% of the neurons with IR for NPY, and 32.9% of the neurons with IR for ChAT in the myenteric plexus. In the submucosal plexus, exposure to PAF (200-600 nM) evoked depolarizing responses (8.2 +/- 3.8 mV) in 12.4% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.5% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology, whereas in the myenteric preparations, depolarizing responses were elicited by a similar concentration of PAF in 9.5% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.0% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology. The results suggest that subgroups of secreto- and musculomotor neurons in the submucosal and myenteric plexuses express PAFR. Coexpression of PAFR IR with ChAT IR in the myenteric plexus and ChAT IR and VIP IR in the submucosal plexus suggests that PAF, after release in the inflamed bowel, might act to elevate the excitability of submucosal secretomotor and myenteric musculomotor neurons. Enhanced excitability of motor neurons might lead to a state of neurogenic secretory diarrhea.  相似文献   

12.
Here we explored the mechanisms of secretory phospholipase A2 (sPLA2) and glutamate (glu) in neuronal signalling and cell damage. Rats or primary neuronal cultures were treated with MK‐801 and injected with/exposed to sPLA2 or glu. MK‐801 partially inhibited sPLA2‐ and glu‐induced neuronal death as well as [3H]arachidonic acid release. The involvement of cytosolic PLA2 (cPLA2) and plateletactivating factor (PAF) in sPLA2 or glu signalling was explored by treating cells with the selective cPLA2 inhibitor, AACOCF3, PAF‐acetyl hydrolase (PAF‐AH) or the presynaptic PAF‐receptor antagonist, BN52021. AACOCF3 blocked sPLA2‐ and glu‐induced neuronal death by 26 and 77%, respectively. PAF‐AH ameliorated sPLA2 as well as glu neurotoxicity by 31 and 47%, whereas BN52021 inhibited sPLA2 induced neurotoxicity by 11% but did not significantly protect against glu‐induced neurotoxicity. Expression in neurons of early response genes in response to sPLA2 or glu was further examined. An up‐regulation of COX‐2, c‐fos, and c‐jun, but not COX‐1, was observed at earlier time points after rat striatal injection of glu as compared to sPLA2 injection. Moreover we treated neuronal cells with COX‐2 inhibitors and found that neuronal cell death after sPLA2 and glu exposure was inhibited by 35 and 33%, respectively. Thus sPLA2 activates a neuronal signalling cascade that includes activation of cPLA2, AA‐release, production of PAF and induction of COX‐2. Hence sPLA2 and glu signalling are overlapping, but not identical. Cytosolic PLA2 may primarily drive glutamatergic neurotransmission, whereas PAF plays a more crucial role in sPLA2 neuronal signalling. Acknowledgements: Supported by EPSCoR grant NSF/LEQSF(2001‐04)‐RII‐01 from the National Science Foundation.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) Tat induces neuronal apoptosis. To examine the mechanism(s) that contribute to this process, we studied Tat's effects on glycogen synthase kinase-3beta (GSK-3beta), an enzyme that has been implicated in the regulation of apoptosis. Addition of Tat to rat cerebellar granule neurons resulted in an increase in GSK-3beta activity, which was not associated with a change in protein expression and could be abolished by the addition of an inhibitor of GSK-3beta (lithium). Lithium also enhanced neuronal survival following exposure to Tat. Coprecipitation experiments revealed that Tat can associate with GSK-3beta, but direct addition of Tat to purified GSK-3beta had no effect on enzyme activity, suggesting that Tat's effects might be mediated indirectly. As the activation of platelet activating factor (PAF) receptors is critical for the induction of neuronal death by several candidate HIV-1 neurotoxins, we determined whether PAF can also activate GSK-3beta. Application of PAF to neuronal cultures activated GSK-3beta, and coincubation with lithium ameliorated PAF-induced neuronal apoptosis. These findings are consistent with the existence of one or more pathways that can lead to GSK-3beta activation in neurons, and they suggest that the dysregulation of this enzyme could contribute to HIV-induced neuronal apoptosis.  相似文献   

14.
In most nonneural systems, platelet-activating factor (PAF) receptor effects are mediated by G-proteins that are often pertussis toxin-sensitive. The activation of pertussis toxin-sensitive G-proteins linked to PAF receptors results in the mobilization of intracellular calcium, at least in part, through the second messenger inositol triphosphate. We have sought to determine if a pertussis toxin-sensitive G-protein is involved in the PAF receptor-mediated phenomena of growth cone collapse and of synaptic enhancement in primary neuronal culture. Using infrared differential interference contrast microscopy and patch-clamp recording techniques, pertussis toxin, but not the inactive B oligomer of the toxin, was found to block both the growth cone collapse and the enhanced synaptic release of excitatory transmitter induced by a nonhydrolyzable PAF receptor agonist, making it likely that Go, Gq, or Gi is the G-protein transducer of PAF receptors in primary neurons. We believe that PAF acts directly on neuronal receptors, which are linked to pertussis toxin-sensitive G-proteins, on the tips of developing neurites, and on presynaptic nerve terminals, leading to growth cone collapse and enhanced synaptic release of transmitter.  相似文献   

15.
Here we explored the mechanisms of secretory phospholipase A2 (sPLA2) and glutamate (glu) in neuronal signalling and cell damage. Rats or primary neuronal cultures were treated with MK-801 and injected with/exposed to sPLA2 or glu. MK-801 partially inhibited sPLA2- and glu-induced neuronal death as well as [3H]arachidonic acid release. The involvement of cytosolic PLA2 (cPLA2) and plateletactivating factor (PAF) in sPLA2 or glu signalling was explored by treating cells with the selective cPLA2 inhibitor, AACOCF3, PAF-acetyl hydrolase (PAF-AH) or the presynaptic PAF-receptor antagonist, BN52021. AACOCF3 blocked sPLA2- and glu-induced neuronal death by 26 and 77%, respectively. PAF-AH ameliorated sPLA2 as well as glu neurotoxicity by 31 and 47%, whereas BN52021 inhibited sPLA2 induced neurotoxicity by 11% but did not significantly protect against glu-induced neurotoxicity. Expression in neurons of early response genes in response to sPLA2 or glu was further examined. An up-regulation of COX-2, c-fos, and c-jun, but not COX-1, was observed at earlier time points after rat striatal injection of glu as compared to sPLA2 injection. Moreover we treated neuronal cells with COX-2 inhibitors and found that neuronal cell death after sPLA2 and glu exposure was inhibited by 35 and 33%, respectively. Thus sPLA2 activates a neuronal signalling cascade that includes activation of cPLA2, AA-release, production of PAF and induction of COX-2. Hence sPLA2 and glu signalling are overlapping, but not identical. Cytosolic PLA2 may primarily drive glutamatergic neurotransmission, whereas PAF plays a more crucial role in sPLA2 neuronal signalling.
Acknowledgements:   Supported by EPSCoR grant NSF/LEQSF(2001-04)-RII-01 from the National Science Foundation.  相似文献   

16.
Platelet-activating factor (PAF) is a potent phospholipid mediator involved in various disease states such as allergic asthma, atherosclerosis and psoriasis. The human PAF receptor (PAFR) is a member of the G protein-coupled receptor family. Following PAF stimulation, cells become rapidly desensitized; this refractory state can be maintained for hours and is dependent on PAFR phosphorylation, internalization, and down-regulation. In this report, we characterized ligand-induced, long term PAFR desensitization, and pathways leading to its degradation. Some GPCRs are known to be targeted to proteasomes for degradation while others traffic via the early/late endosomes toward lysosomes. Specific inhibitors of lysosomal proteases and inhibitors of the proteasome were effective in reducing the ligand-induced PAFR down-regulation by 40 and 25%, respectively, indicating the importance of receptor targeting to both lysosomes and proteasomes in long term cell desensitization to PAF. The effects of the proteasome and lysosomal protease inhibitors were additive and, together, completely blocked ligand-induced degradation of PAFR. Using dominant-negative Rab5 and 7 and colocalization of the PAFR with the early endosome autoantigen I (EEAI) or transferrin, we confirmed that ligand-induced PAFR down-regulation was Rab5/7-dependent and involved lysosomal degradation. In addition, we also demonstrated that PAFR was ubiquitinated in an agonist-independent manner. However, a dominant negative ubiquitin ligase (NCbl) reduced PAFR ubiquitination and inhibited ligand-induced but not basal receptor degradation. Our results indicate that PAFR degradation can occur via both the proteasome and lysosomal pathways and ligand-stimulated degradation is ubiquitin-dependent.  相似文献   

17.
During hypoxia, release of platelet-activating factor (PAF) and activation of its cognate receptor (PAFR) regulate neural transmission and are required for full expression of peak hypoxic ventilatory response (pHVR) but not hypercapnic ventilatory response. However, it is unclear whether PAFR underlie components of long-term ventilatory adaptations to hypoxia. To examine this issue, adult male PAFR(+/+) and PAFR(-/-) mice were exposed to intermittent hypoxia (IH) consisting of 90 s 21% O(2) and 90 s 10% O(2) for 30 days, and normoxic and hypoxic ventilatory patterns were assessed using whole body plethysmography. Starting at day 14 of IH, normoxic ventilation in PAFR(-/-) was reduced significantly compared with PAFR(+/+) mice (P < 0.001), the latter exhibiting a prominent long-term ventilatory facilitation (LTVF). However, IH-exposed PAFR(-/-) mice had markedly enhanced pHVR and hypoxic ventilatory decline that became similar to those of IH-exposed PAFR(+/+) mice. Thus we postulate that PAFR expression and/or function underlies critical components of IH-induced LTVF but does not play a role in the potentiation of the hypoxic ventilatory response after IH exposures.  相似文献   

18.
The neurotoxicity of amyloid-β (Aβ) involves caspase-dependent and -independent programmed cell death. The latter is mediated by the nuclear translocation of the mitochondrial flavoprotein apoptosis inducing factor (AIF). Nicotine has been shown to decrease Aβ neurotoxicity via inhibition of caspase-dependent apoptosis, but it is unknown if its neuroprotection is mediated through caspase-independent pathways. In the present study, pre-treatment with nicotine in rat cortical neuronal culture markedly reduced Aβ(1-42) induced neuronal death. This effect was accompanied by a significant reduction of mitochondrial AIF release and its subsequent nuclear translocation as well as significant inhibition of cytochrome c release and caspase 3 activation. Pre-treatment with selective α7nicotinic acetylcholine receptor(nAChR) antagonist (methyllycaconitine), but not the α4 nAChR antagonist (dihydro-β-erythroidine), could prevent the neuroprotective effect of nicotine on AIF release/translocation, suggesting that nicotine inhibits the caspase-independent death pathway in a α7 nAChR-dependent fashion. Furthermore, the neuroprotective action of nicotine on AIF release/translocation was suppressed by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Pre-treatment with nicotine significantly restored Akt phosphorylation, an effector of PI3K, in Aβ(1-42) -treated neurons. These findings indicate that the α7 nAChR activation and PI3K/Akt transduction signaling contribute to the neuroprotective effects of nicotine against Aβ-induced cell death by modulating caspase-independent death pathways.  相似文献   

19.
Lipoteichoic acid (LTA) is a major outer cell wall component of Gram-positive bacteria that has been implicated as an important factor in the inflammatory response following bacterial infection. In vitro data indicate roles for TLR2, platelet-activating factor receptor (PAFR), CD14, and LPS-binding protein (LBP) in cellular responsiveness to LTA, whereas the mechanisms contributing to LTA effects in vivo have never been investigated. Using mice deficient for LBP, CD14, TLR2, TLR4, or PAFR, we now examined the role of these molecules in pulmonary inflammation induced by highly purified LTA in vivo. Although pulmonary LBP increased dose-dependently following administration of LTA, the inflammatory response was unaltered in LBP-/- mice. TLR2 proved to be indispensable for the initiation of an inflammatory response, as polymorphonuclear cell influx, TNF-alpha, keratinocyte-derived chemokine, and MIP-2 release were abolished in TLR2-/- mice. Minor effects such as moderately decreased TNF-alpha and MIP-2 levels were observed in the absence of CD14, indicating a role for CD14 as a coreceptor. Quite surprisingly, the absence of TLR4 greatly diminished pulmonary inflammation and the same phenotype was observed in PAFR-/- animals. In contrast to all other mice studied, only TLR4-/- and PAFR-/- mice displayed significantly elevated IL-10 pulmonary concentrations. These data suggest that TLR2 is the single most important receptor signaling the presence of LTA within the lungs in vivo, whereas TLR4 and PAFR may influence lung inflammation induced by LTA either by sensing LTA directly or through recognition and signaling of endogenous mediators induced by the interaction between LTA and TLR2.  相似文献   

20.
Clathrin-mediated endocytosis (CME) is a common pathway used by G protein-linked receptors to transduce extracellular signals. We hypothesize that platelet-activating factor (PAF) receptor (PAFR) ligation requires CME and causes engagement of beta-arrestin-1 and recruitment of a p38 MAPK signalosome that elicits distinct actin rearrangement at the receptor before endosomal scission. Polymorphonuclear neutrophils were stimulated with buffer or 2 microM PAF (1 min), and whole cell lysates or subcellular fractions were immunoprecipitated or slides prepared for colocalization and fluorescent resonance energy transfer analysis. In select experiments, beta-arrestin-1 or dynamin-2 were neutralized by intracellular introduction of specific Abs. PAFR ligation caused 1) coprecipitation of the PAFR and clathrin with beta-arrestin-1, 2) fluorescent resonance energy transfer-positive interactions among the PAFR, beta-arrestin-1, and clathrin, 3) recruitment and activation of the apoptosis signal-regulating kinase-1/MAPK kinase-3/p38 MAPK (ASK1/MKK3/p38 MAPK) signalosome, 4) cell polarization, and 5) distinct actin bundle formation at the PAFR. Neutralization of beta-arrestin-1 inhibited all of these cellular events, including PAFR internalization; conversely, dynamin-2 inhibition only affected receptor internalization. Selective p38 MAPK inhibition globally abrogated actin rearrangement; however, inhibition of MAPK-activated protein kinase-2 and its downstream kinase leukocyte-specific protein-1 inhibited only actin bundle formation and PAFR internalization. In addition, ASK1/MKK3/p38 MAPK signalosome assembly appears to occur in a novel manner such that the ASK1/p38 MAPK heterodimer is recruited to a beta-arrestin-1 bound MKK3. In polymorphonuclear neutrophils, leukocyte-specific protein-1 may play a role similar to fascin for actin bundle formation. We conclude that PAF signaling requires CME, beta-arrestin-1 recruitment of a p38 MAPK signalosome, and specific actin bundle formation at the PAFR for transduction before endosomal scission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号