首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract

Double helices, since the discovery of the DNA structure by Watson and Crick, represent the single most important secondary structural form of nucleic acids. The secondary structures of a variety of polynucleotide helices have now been well characterised with hydrogen- bonded base-pairs as building blocks. We wish to propose here the possibility, in a specific case, of a double stranded helical structure without any base-pair, but having a repeat unit of two nucleotides with their bases stacked through intercalation. The proposal comes from the initial models we have built for poly(dC) using the stacking patterns found in the crystal structures of 5′-dCMPNa2 which crystallises in two forms depending on the degree of hydration. These structures have pairs of nucleotides with the cytosine rings partially overlapping and separated by 3.3Å. Using these as repeat units one could generate a model for poly(dC) with parallel strands, having a turn angle of 30° and a base separation of 6.6Å along each strand. Both right and left handed models with these parameters can be built in a smooth fashion without any obviously unreasonable stereochemical contacts. The helix diameter is about 13.5Å, much smaller than that of normal helices with base-pair repeats. The changes in the sugar-phosphate backbone conformation in the present models compared to normal duplexes only reflect the torsional flexibility available for extension of polynucleotide chains as manifested by the crystal structures of drug-inserted oligonucleotide complexes. Intercalation proposed here could have some structural relevance elsewhere, for instance to the base-mismatched regions on the double helix and the packing of noncomplementary single strands as found in the filamentous bacteriophage Pf1.  相似文献   

2.
Double helices, since the discovery of the DNA structure by Watson and Crick, represent the single most important secondary structural form of nucleic acids. The secondary structures of a variety of polynucleotide helices have now been well characterised with hydrogen-bonded base-pairs as building blocks. We wish to propose here the possibility, in a specific case, of a double stranded helical structure without any base-pair, but having a repeat unit of two nucleotides with their bases stacked through intercalation. The proposal comes from the initial models we have built for poly(dC) using the stacking patterns found in the crystal structures of 5'-dCMPNa2 which crystallises in two forms depending on the degree of hydration. These structures have pairs of nucleotides with the cytosine rings partially overlapping and separated by 3.3A. Using these as repeat units one could generate a model for poly(dC) with parallel strands, having a turn angle of 30 degrees and a base separation of 6.6A along each strand. Both right and left handed models with these parameters can be built in a smooth fashion without any obviously unreasonable stereochemical contacts. The helix diameter is about 13.5A, much smaller than that of normal helices with base-pair repeats. The changes in the sugar-phosphate backbone conformation in the present models compared to normal duplexes only reflect the torsional flexibility available for extension of polynucleotide chains as manifested by the crystal structures of drug-inserted oligonucleotide complexes. Intercalation proposed here could have some structural relevance elsewhere, for instance to the base-mismatched regions on the double helix and the packing of noncomplementary single strands as found in the filamentous bacteriophage Pf1.  相似文献   

3.
The acid-base titration (pH 8 --> pH 2.5 --> pH 8) of eleven mixing curve samples of the poly(dG) plus poly(dC) system has been performed in 0.15 M NaCl. Upon protonation, poly(dG).poly(dC) gives rise to an acid complex, in various amounts according to the origin of the sample. We have established that the hysteresis of the acid-base titration is due to the non-reversible formation of an acid complex, and the liberation of the homopolymers at the end of the acid titration and during the base titration: the homopolymer mixtures remain stable up to pH 7. A 1G:1C stoichiometry appears to be the most probable for the acid complex, a 1G:2C stoichiometry, as found in poly(C(+)).poly(I).poly(C) or poly(C(+)).poly(G).poly(C), cannot be rejected. In the course of this study, evidence has been found that the structural consequences of protonation could be similar for both double stranded poly(dG).poly(dC) and G-C rich DNA's: 1) protonation starts near pH 6, dissociation of the acid complex of poly(dG).poly(dC) and of protonated DNA take place at pH 3; 2) the CD spectrum computed for the acid polymer complex displays a positive peak at 255 nm as found in the acid spectra of DNA's; 3) double stranded poly(dG).poly(dC) embedded in triple-stranded poly(dG).poly(dG).poly(dC) should be in the A-form and appears to be prevented from the proton induced conformational change. The neutral triple stranded poly(dG).poly(dG).poly(dC) appears therefore responsible, although indirectly, for the complexity and variability of the acid titration of poly(dG).poly(dC) samples.  相似文献   

4.
Dietmar Prschke 《Biopolymers》1971,10(10):1989-2013
The properties of oligonucleotide helices of adeuylic- and uridylic acid oligomers have been investigated by measurements of hypo-and hyperchromieity. High ionic strengths favor the formation of triple helices. Thus, the double helix-coil transition can be studied (without interference by triple helices) only at low ionic-strength. A “phase diagram” is given representing the Tm-values of the various transitions at different ionic strengths for the system A(pA)17 + U(pU)17. Oligonucleolides of chain lengths <8 always form both double and triple helices at the nucleotide concentrations required for base pairing. For this reason the double helix-coil transition without coupling of the triple helix equilibrium can only be measured for chain lengths higher than 7. Melting curves corresponding to this transition have been determined for chain lengths 8, 9, 10, 11, 14 and 18 at different concentrations. An increase in nucleotide concentration leads to an increase in melting temperature. The shorter the chain length the lower the Tm-value and the broader the helix-coil transition. The experimental transition curves have been analysed according to a staggering zipper model with consideration of the stacking of the adeuylic acid single strands and the electrostatic repulsion of tlip phosphate charges on opposite strands. The temperature dependence of the nucleation parameter has been accounted for by a slacking factor x. The stacking factor expresses the magnitude of the stacking enthalpy. By curve fitting xwas computed to be 0.7, corresponding to a stacking enthalpy of about S kcal/mole. The model described allows the reproduction of the experimental transition curves with relatively high accuracy. In an appendix the thermodynamic parameters of the stacking equilibrium of poly A and of the helix-coil equilibria of poly A + poly U at neutral pH are calculated (ΔHA = ?7.9 kcal/mole for the poly A stacking and ΔH12 = ?10.9 kcal/mole for the formation of the double helix from the randomly coiled single strands). A formula for the configurational entropy of polymers derived by Flory on the basis of a liquid lattice model is adapted to calculate the stacking entropies of adenylic oligomers.  相似文献   

5.
We have studied by Raman spectroscopy the thermal behavior of associated polyguanylic acid [poly(G)] and polyguanylic–polycytidylic acid [poly(G) · poly(C)] in self‐pressurized aqueous solutions contained in sealed capillary tubes. The associated polynucleotides were found to be very resistant to heat, but evidence of thermal degradation was observed after melting of the helical structures. The cooperative melting transition of the four‐stranded complex of poly(G) was located at 141°C in 0.5M KCl, 135°C in 0.5M NaCl, 129°C in 0.5M LiCl, 123°C in 0.1M tetramethylammonium perchlorate, and 105°C in 0.1M tetraethylammonium bromide solutions. The transition was observed at 130°C in poly(G) · poly(C) (in 0.5M NaCl). The results in this case show that a four‐stranded poly(G) complex is formed following the melting of the double helix. © 1999 John Wiley & Sons, Inc. Biopoly 49: 21–28, 1999  相似文献   

6.
Low energy conformations with dihedral angles similar to those occurring in fibers of the 'A' and 'B' forms of DNAs have been calculated for the deoxydinucleoside phosphates dApdA, dCpdC, dTpdT, dGpdG and dGpdC (1-3). These conformers have been used as building blocks for generating larger single stranded polymers, whose helical parameters we have calculated. We find that single stranded 'A' and 'B' form helices tend to be narrower and more tightly wound than the duplexes obtained in fibers (4,5). This is consistent with experimental observations on single stranded fibers of poly (rC) (6). We also find that the different sequences have different helix geometries. In addition, it is observed that large variations in helix geometry for a given sequence are achievable at little energetic cost.  相似文献   

7.
The interaction of the protoberberine alkaloid palmatine with single and double stranded structures of poly(A) was studied by various biophysical techniques. Comparative binding studies were also performed with double stranded DNA, t-RNA, poly(C)·poly(G), poly(U) and poly(C). The results of competition dialysis, fluorescence, and absorption spectral studies converge to reveal the molecular aspects of the strong and specific binding of palmatine to single stranded poly(A). The binding affinity of palmatine to natural DNA, t-RNA and double stranded poly(A) was weaker while no binding was apparent with single stranded poly(U), poly(C) and double stranded poly(C)·poly(G). The strong affinity of the alkaloid to single stranded poly(A) in comparison to the double stranded structure was also revealed from circular dichroic and viscometric studies. The effect of [Na+] ion concentration on the binding process revealed the significant role of electrostatic forces in the complexation. The presence of bound alkaloid also remarkably affected denaturation–renaturation of stacked helical poly(A). The energetics of the strong binding to poly(A) was studied from thermodynamic estimation from van Hoff’ analysis of the temperature dependent binding constants and ultra sensitive isothermal titration calorimertry, both suggesting the binding to be exothermic and enthalpy driven. This study provides detailed insight into the binding specificity of the natural alkaloid to single stranded poly(A) over several other single and double stranded nucleic acid structures suggesting its potential as a lead compound for RNA based drug targeting.  相似文献   

8.
Under various conditions poly(A) exists in different forms such as single-stranded helix, two double-helical forms and others. The formation of double-stranded helices is induced by adenine protonation. Under physiological ionic strengths they are formed at acidic pH, but under the same conditions methylated poly(A) has double-stranded structure at alkaline pH. Since the shift of adenine protonation pKa to alkaline region may be caused not only by chemical modification of poly(A) but also its interaction with proteins, it is quite probable that double oligo(A)-helices are formed in the living cell as well. In this article the hypothesis on possible biological role of poly(A) double-stranded forms has been discussed in details. The models of involvement of double oligo(A)-sequences of RNA in such intracellular processes as termination of mRNA poly(A) tails synthesis and autoregulation of poly(A)-binding protein synthesis are suggested as an example.  相似文献   

9.
Conformational analysis of double helices of DNA with parallel arranged sugar-phosphate chains connected by twofold symmetry has been performed. Homopolymers poly(dA).poly(dA), poly(dC).poly(dC), poly(dG).poly(dG) and poly(dT).poly(dT) were studied. For each of the homopolymers all variants of H-bond pairing were checked. The maps of closing of sugar-phosphate backbone were previously computed. By the optimization of potential energy the dihedral angles and helix parameters of relatively stable conformations of parallel stranded polynucleotides were calculated. The dependence of conformational energy on the nucleic base character and the base pair type were studied. Two main conformational regions for favourable "parallel" helix of polynucleotides were found. The former of these two regions coincide with the region of typical conformational parameters of B-DNA. On an average the conformational energy of "parallel" DNA is close to the energy of canonic "antiparallel" B-DNA.  相似文献   

10.
J M Eyster  E W Prohofsky 《Biopolymers》1974,13(12):2527-2543
The eigenvalues and eigenvectors of 11-fold double-helical poly(rU)·poly(rA) have been calculated. The vibrational potential energy of the double-helical structure is initially considered to be a sum of the vibrational potential energy of the single-helical structures poly(rU) and poly(rA). Coupling between the single helices is introduced by including a stretch force constant for each hydrogen bond between the uracil and adenine base residues. In addition, a model is presented for nonbonded interactions between nearest neighbor base pairs, which is consistent with a previous model for such interactions in the single helices. Because of the simple structural relationship between the uncoupled single helices and the double helix we are able to cast the secular equation for poly(rU)·poly(rA) in a form suitable for the use of perturbation theory using the previously calculated normal modes for the single helices as the unperturbed modes. Perturbation theory was found to be inapplicable for the region of the spectrum ?450 cm?1. In this region an exact Green function technique is used to calculate the strongly coupled modes. We explicitly display one aspect of these double-helical normal modes. The stretching motions of the hydrogen bonds in the region of the spectrum <450 cm?1 have been plotted as bar graphs for each mode.  相似文献   

11.
Arguments are presented in favor of capability of poly(A)-tracts of cellular RNA to form double helices in vivo. It is suggested that formation of the double helix in the mRNA poly(A) tall provides the basis for such processes as polyadenylation termination, PAB I synthesis autoregulation, and stabilization of ARE-containing mRNA by ELAV-like proteins.  相似文献   

12.
M M Warshaw  R Noe 《Biopolymers》1972,11(6):1269-1287
The optical rotatory dispersion properties of poly 5MeC, poly diMeC, and 5MeCMP-(5′) in 0.1M Na+ have been studied at various pH values and temperatures. Poly 5MeC and poly diMeC have optical properties which are similar to those for poly C; however, poly 5MeC has a biphasic melting profile in the pH range from 3.8 to 5.4 similar to that observed for poly 51C. Using titration, ionic strength, and pH dependence measuements, the data for poly 5MeC are interpreted in terms of the following scheme at pH 4.0 and 0.1 ionic strength: triple-strand helix 37°C double-strand helix 79°C single-strand coil. Support for this scheme is discussed. The effect of the methyl group is discussed in terms of similar structural possibilities for other polymers of cytidylic acid.  相似文献   

13.
Hydrogen-exchange studies of I · C and G · C double helices were carried out to test the generality of conclusions reached previously in studies of adenine-containing polymers (preceding paper). The cytosine amino group shows hydrogen-exchange behavior similar to the analogous group in adenine; a pH-independent pathway and a parallel general catalysis pathway require prior separation of the base-pair and pre-equilibrium protonation at the ring N. The cytosine amino group does, however, display greater sensitivity to specific and to general catalysis than found for adenine. In the G · C helix, the ring NH proton of guanine exchanges at the opening-limited rate, as does the analogous proton in A · U and A · T pairs, while the guanine amino protons exchange without a prior opening of structure. From the observed exchange rates and the known chemistry for the pH-independent reaction, one can calculate equilibrium opening constants of 4 × 10−3 for poly(rI) · poly(rC) and perhaps one tenth of that for poly(rG) · poly(rC). Also the opening rate constant for the G · C helix is 0.01 s−1.These results, when applied to published exchange curves for DNA, indicate an equilibrium opening constant of 0.005, an opening rate constant of 0.04 s−1, and a closing rate constant of 10 s−1. (All values refer to studies at 0 °C.) These values point to the same kind of traveling-loop model for base-pair opening discussed previously for the opening reactions in adenine-containing double helices.  相似文献   

14.
Asymmetric bulge loop motifs are widely dispersed in all types of functional RNAs. They are frequently occurring structural motifs in folded RNA structures and appear commonly in pre-microRNA and ribosomes, where they are involved in specific RNA–RNA and RNA–protein interactions. It is therefore necessary to understand such motifs from a structural point of view. We analyzed all available RNA structures and identified quite a few fragments of double helices that contain bulges. We found that these discontinuities often introduce kinks into the double helices, which also affects the stacking overlap between the base pairs across the irregularity. In order to understand the influence of these bulges on stability and flexibility, we carried out molecular dynamics simulations of three different single-residue bulge-containing RNA helices using the CHARMM36 force field. The structural variability at the junctions of RNA bulges is expected to differ from that in continuous double-helical stretches. The structural features of the junction region were observed to vary noticeably depending on the orientation of the bulge residue. When the base of the bulge residue is looped out, the RNA stretch behaves like a standard long A-form RNA double helix, whereas the entire RNA behaves differently when the base of the bulge residue is intercalated between base pairs inside the RNA stem. Such single-base intercalation was found to introduce a permanent kink into the composite double helix, which could be a recognition element for Dicer during the maturation of miRNA.  相似文献   

15.
Electro-optical studies of conformation and interaction of polynucleotides   总被引:1,自引:0,他引:1  
Measurements by the technique of electric birefringence with pulsed sinusoidal electric fields on polyriboadenylic acid (poly-A) and polyribouridylic acid (poly-U) indicate that the kinetics of the double-stranded helix formation of poly (A + U) in the presence of Mg2+ is second order and consists of two steps: nucleation and propagation of base pairs from nuclei. The nucleation involves approximately 7 base pairs. It seems that the requirement of 7 base pairs to start the formation of a double-stranded helix is not peculiar to poly (A + U) but is associated with double-stranded helices of polynucleotides in general. This implies that it may be associated with spatial requirements of the phosphate-sugar backbone, rather than with the particular bases linked to the backbone. The decline in rate of poly (A + U) formation observed above a critical temperature is the consequence of changes in the poly-A conformation setting in at this critical temperature, rather than resulting from an increase in the reversibility of the base-pair propagation step of double-stranded helix formation. The dominant role of the conformation of poly-A in the double-stranded helix formation of poly (A + U) is further borne out by the pH dependence of the rate which completely parallels the conformation changes known to occur in poly-A as a function of pH. This indirectly suggests that at neutral pH poly-A is a single-stranded helix. The rotary diffusion coefficients attest to the flexibility of this helix, while the stacked nature of the base pairs at low temperatures is revealed by the identical increments in the specific Kerr constant on going from poly-A to poly (A + U) and from poly (A + U) to poly (A + 2U) helices. Results suggest that Mg2+ binds to the phosphate part of the backbone. Poly-U binds Mg2+ more strongly than poly-A; this difference in binding strength is attributed to differences in conformation (random coil versus helix). It is also borne out by the present results that the degree of order in the structure of poly-U, even at low temperatures and neutral pH, is at best an order of magnitude smaller than that of poly-A under similar conditions. Furthermore, the earlier proposed double-stranded structure of poly-U is called into question. A hairpinlike structure seems to agree with results of this investigation. Finally, the results support the contention that the ion atmosphere polarization is responsible for orientation of polyelectrolytes in the presence of alternating electric fields in the neighborhood of 25 kc./sec. frequency.  相似文献   

16.
Hydrodynamics predicts that swimming bacteria generate a propulsion force when a helical flagellum rotates because rotating helices necessarily translate at a low Reynolds number. It is generally believed that the flagella of motile bacteria are semirigid helices with a fixed pitch determined by hydrodynamic principles. Here, we report the characterization of three mutations in laboratory strains of Escherichia coli that produce different steady-state flagella without losing cell motility. E. coli flagella rotate counterclockwise during forward swimming, and the normal form of the flagella is a left-handed helix. A single amino acid exchange A45G and a double mutation of A48S and S110A change the resting flagella to right-handed helices. The stationary flagella of the triple mutant were often straight or slightly curved at neutral pH. Deprotonation facilitates the helix formation of it. The helical and curved flagella can be transformed to the normal form by torsion upon rotation and thus propel the cell. These mutations arose in the long-term laboratory cultivation. However, flagella are under strong selection pressure as extracellular appendages, and similar transformable flagella would be common in natural environments.  相似文献   

17.
The photoaddition of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) to different conformational states of RNA was studied. Poly(U), poly(A,U) (random copolymer), poly(A-U) (alternating copolymer), poly(A) . poly(U) (double stranded), and poly(U) . poly(A) . poly(U) (triple stranded) were reacted with HMT at different temperatures and salt concentrations. The conformation of the polymers was monitored by UV absorption and circular dichroism. It was found that the rate of HMT photoaddition changed dramatically at structural transitions in the RNA. The alternating copolymer poly(A-U) was found to have the highest rate of addition. Low salt and temperature produced maximal incorporation.  相似文献   

18.
Physical studies of enzymioally synthesized oligoribonucleotides of defined sequence are used to evaluate quantitatively the destabilizing influence of mismatched bases in a double helix. The series (A-)4G(-C)n(-U)4, N = 1 to 6, exist as imperfect dimer helices when N is equal to or less than 4, and as monomolecular hairpin helices when N is 5 and 6. Internal loops become progressively more destabilizing as their size increases from 2 to 4 to 6 nucleotides resulting from 1, 2 and 3 consecutive mismatched base pairs. However, the stability of a helix will generally be greater if a given number of mismatched pairs occur consecutively rather than in isolation from one another.These data may be used for improved calculations of stability of RNA secondary structure, to estimate the frequency of structural fluctuations in a double helix and to assess the stability of modified polynucleotide helices. An unmodified double helix of one million randomly arranged base pairs should contain on the time average approximately 10 G.C and 500 A.U pairs in non-hydrogen bonded, unstacked conformations at 25 °C. Our estimate of the effect of mismatching on Tm values of high polymers is less precise because of the long temperature extrapolation required. However, we estimate that DNA or RNA treated with mutagens which interrupt up to 20% of the nucleotide pairs will show a drop of about 1.2 deg. C in melting temperature with each unit per cent of modification.  相似文献   

19.
We have studied by X-ray diffraction fibres of complexes of polypurine-polypyrimidine with divalent cations. In the presence of Mg++, poly(dC) and poly(dG) form a very stable triple helix at neutral pH, based on G-G-C triplexes, whereas Zn++ prevents its formation, both at neutral and acidic pH. The poly(dC) . poly(dG) complex with Zn++ is of the B form, but its X-ray diffraction pattern shows an unusual intensity distribution. This is probably due to the fact that counterions occupy defined positions on the helix. The A form has not been observed. With poly[d(A-G)].poly [d(C-T)] a different triple helical structure is formed, both with Zn++ and Mg++. Direct, X-ray diffraction evidence for these triple helices is provided here for the first time.  相似文献   

20.
Proton and phosphorus nmr have been used to investigate the double-helical structures of polyriboadenylic acid [poly(A)] formed in acidic solutions (pH < 6). The results obtained at low pH (~4.5) are consistent with the model for the acid poly(A) double helix proposed by Rich [Rich, A., Davies, D. R., Crick, F. H. C. & Watson, J. D. (1961) J. Mol. Biol. 3 , 71–86]. Other models that have been proposed are inconsistent with the nmr data. The nmr measurements have also been used to examine the conformation of poly(A) helix in the half-protonated state. Although the base-stacking arrangement of this state is similar to that observed in the more extensively protonated low-pH state, the phosphate backbone conformation is different from that found in either the neutral or low-pH structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号