首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The interpeak latencies (IPLs) of the acoustically evoked brain stem potentials depend on brain stem temperature. This was used to see whether face fanning during hyperthermia lowers brain stem temperature. In 15 subjects, three thermally stable conditions were maintained by a water bath. In each condition the IPLs were determined in 10 separate trials. In condition A esophageal temperature (Tes) was 36.9 +/- 0.3 degrees C and increased to 38.6 +/- 0.2 degrees C in condition B. In conditions A and B the head was enclosed in a ventilated hood (air temperature 38 degrees C, relative humidity 100%) to suppress any direct heat loss from the head. From conditions A to B the IPL at peaks I-V decreased by 0.146 ms/degrees C change in Tes, reflecting a change in brain stem temperature. In condition C the hood was removed and the face was fanned by a cold air-stream (8-15 degrees C, 4-10 m/s) to maximize direct heat loss from the head. Skin temperature at the sweating forehead decreased from 38 to 23 degrees C, whereas Tes in condition C was maintained at the same level as in condition B (38.5 +/- 0.2 degrees C). The IPL at peaks I-V showed no difference between conditions B and C. It is concluded that face fanning in hyperthermic subjects does not dissociate brain stem temperature from Tes.  相似文献   

2.
The present study tested the hypothesis that inhalation rewarming provides a thermal increment to central neural structures adjacent to the nasopharyngeal region. Auditory-evoked brain stem responses of 14 subjects (7 men and 7 women) were monitored for 25 min while they inspired room air (24 degrees C) followed by hot air (41 degrees C) saturated with water vapor and cold dry air (-1 degrees C). The latencies of peaks I, III, and V and the interpeak latencies (IPLs) I-III, III-V, and I-V were compared among the three conditions with a repeated-measures ANOVA. Changes in IPLs are sensitive markers of changes in brain stem temperature. Tympanic temperature (T(ty)) was measured with an infrared tympanic thermometer. There were no significant differences in T(ty), peak latencies I, III, and V, and IPLs I-III, III-V, and I-V. The results indicate that inhalation of hot and cold air does not influence T(ty), nor does it influence the temperature of the brain stem. We conclude that inhalation rewarming is not capable of warming the vital central neural structures adjacent to the naropharynx.  相似文献   

3.
The rate of warming after hypothermia depends on the method of rewarming. This study compared the effectiveness of radio frequency (RF) energy against hot (41 degrees C) water immersion (HW) and an insulated cocoon (IC) for rewarming hypothermic men. Six men fasted overnight and were rewarmed for 1 h after attaining a 0.5 degree C reduction in rectal temperature (Tre). Tre and esophageal (Tes) temperature were recorded every 5 min with nonmetallic thermal probes. The base-line value for Tre and Tes just before rewarming was subtracted from each 5 min Tre and Tes during rewarming to give delta Tre and delta Tes. The 12 delta Tes values were averaged for each individual and were compared using analysis of variance. The average delta Tes for RF (1.15 +/- 0.22 degrees C/h) was faster (P less than 0.001) than either IC (0.37 +/- 0.16 degrees C/h) or HW (0.18 +/- 0.09 degree C/h). The present study shows the superiority of RF energy for rewarming mildly hypothermic men.  相似文献   

4.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

5.
This study examined both the thermal and metabolic responses of individuals in cool (30 degrees C, n = 9) and cold (18 degrees C, n = 7; 20 degrees C, n = 2) water. Male volunteers were immersed up to the neck for 1 h during both seated rest (R) and leg exercise (LE). In 30 degrees C water, metabolic rate (M) remained unchanged over time during both R (115 W, 60 min) and LE (528 W, 60 min). Mean skin temperature (Tsk) declined (P less than 0.05) over 1 h during R, while Tsk was unchanged during LE. Rectal (Tre) and esophageal (Tes) temperatures decreased (P less than 0.05) during R (delta Tre, -0.5 degrees C; delta Tes, -0.3 degrees C) and increased (P less than 0.05) during LE (delta Tre, 0.4 degrees C; Tsk, 0.4 degrees C). M, Tsk, Tre, and Tes were higher (P less than 0.05) during LE compared with R. In cool water, all regional heat flows (leg, chest, and arm) were generally greater (P less than 0.05) during LE than R. In cold water, M increased (P less than 0.05) over 1 h during R but remained unchanged during LE. Tre decreased (P less than 0.05) during R (delta Tre, -0.8 degrees C) but was unchanged during LE. Tes declined (P less than 0.05) during R (delta Tes, -0.4 degrees C) but increased (P less than 0.05) during LE (delta Tes, 0.2 degrees C). M, Tre, and Tes were higher (P less than 0.05), whereas Tsk was not different during LE compared with R at 60 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Core temperature "null zone".   总被引:1,自引:0,他引:1  
An experimental protocol was designed to investigate whether human core temperature is regulated at a "set point" or whether there is a neutral zone between the core thresholds for shivering thermogenesis and sweating. Nine male subjects exercised on an underwater cycle ergometer at a work rate equivalent to 50% of their maximum work rate. Throughout an initial 2-min rest period, the 20-min exercise protocol, and the 100-min recovery period, subjects remained immersed to the chin in water maintained at 28 degrees C. On completion of the exercise, the rate of forehead sweating (Esw) decayed from a mean peak value of 7.7 +/- 4.2 (SD) to 0.6 +/- 0.3 g.m-2.min-1, which corresponds to the rate of passive transpiration, at core temperatures of 37.42 +/- 0.29 and 37.39 +/- 0.48 degrees C, as measured in the esophagus (Tes) and rectum (Tre), respectively. Oxygen uptake (VO2) decreased rapidly from an exercising level of 2.11 +/- 0.25 to 0.46 +/- 0.09 l/min within 4 min of the recovery period. Thereafter, VO2 remained stable for approximately 20 min, eventually increased with progressive cooling of the core region, and was elevated above the median resting values determined between 15 and 20 min at Tes = 36.84 +/- 0.38 degrees C and Tre = 36.80 +/- 0.39 degrees C. These results indicate that the core temperatures at which sweating ceases and shivering commences are significantly different (P less than 0.001) regardless of whether core temperature is measured within the esophagus or rectum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Recent studies using inanimate and animal models suggest that the afterdrop observed upon rewarming from hypothermia is based entirely on physical laws of heat flow without involvement of the returning cooled blood from the limbs. During the investigation of thermoregulatory responses to cold water immersion (15 degrees C), blood flow to the limbs (minimized by the effects of hydrostatic pressure and vasoconstriction) was occluded in 17 male subjects (age, 29.0 +/- 3.3 yr). Comparisons of rectal (Tre) and esophageal temperature (Tes) responses were made during the 5 min before occlusion, during the 10-min occlusion period, and for 5 min immediately after the release of the cuffs (postocclusion). In the preocclusion phase, Tre and Tes showed similar cooling rates. The occlusion of blood flow to the extremities significantly arrested the cooling of Tes (P less than 0.05) with little effect on Tre. Upon release of the pressure cuffs, the returning extremity blood flow resulted in an increased rate of cooling, that was three times greater at the esophageal site (-0:149 +/- 0.052 vs. -0.050 +/- 0.026 degrees C.min-1). These results suggest that the cooled peripheral circulation, minimized during cold water immersion, may dramatically affect esophageal temperature and the complete neglect of the circulatory component to the afterdrop phenomenon is not warranted.  相似文献   

8.
Ten women [mean maximal O2 uptake (VO2max), 2.81 l X min-1] exercised for 15 min on a cycle ergometer in the middle of the luteal phase (L) and in the early follicular phase (F) of the menstrual cycle at the same constant work rates (mean 122 W) and an ambient temperature of 18 degrees C. Serum progesterone averaged 44.7 nmol X l-1 in L and 0.7 nmol X l-1 in F. After a 4-h resting period, exercise was performed between 3 and 4 A.M., when the L-F core temperature difference is maximal. Preexercise esophageal (Tes), tympanic (Tty), and rectal (Tre) temperatures averaged 0.6 degrees C higher in L. During exercise Tes, Tty, and Tre averaged 0.5 degrees C higher. The thresholds for chest sweating and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were elevated in L by an average of 0.47 degrees C, related to mean body temperature (Tb(es) = 0.87Tes + 0.13Tskin), Tes, Tty, or Tre. The above-threshold chest sweat rate and cutaneous heat clearances were also increased in L. The mean exercise heart rate was 170.0 beats X min-1 in L and 163.8 beats X min-1 in F. The mean exercise VO2 in L (2.21 l X min-1) was 5.2% higher than in F (2.10 l X min-1), the metabolic rate was increased in L by 5.6%, but the net efficiency was 5.3% lower. No significant L-F differences in the respiratory exchange ratio and postexercise plasma lactate were demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Ten male volunteers were divided into two groups based on body morphology and mass. The large-body mass (LM) group (n = 5) was 16.3 kg heavier and 0.22 cm2 X kg-1 X 10(-2) smaller in surface area-to-mass ratio (AD X wt-1) (P less than 0.05) than the small-body mass (SM) group (n = 5). Both groups were similar in total body fat and skinfold thicknesses (P greater than 0.05). All individuals were immersed for 1 h in stirred water at 26 degrees C during both rest and one intensity of exercise (metabolic rate approximately 550 W). During resting exposures metabolic rate (M) and rectal temperature (Tre) were not different (P greater than 0.05) between the LM and SM groups at min 60. Esophageal temperature (Tes) was higher (P less than 0.05) for the SM group at min 60, although the change in Tes during the 60 min between groups was similar (LM, -0.4 degrees C; SM, -0.2 degrees C). Tissue insulation (I) was lower (P less than 0.05) for SM (0.061 degrees C X m-2 X W-1) compared with the LM group (0.098 degrees C X m-2 X W-1). During exercise M, Tre, Tes, and I were not different (P greater than 0.05) between groups at min 60. These data illustrate that a greater body mass between individuals increases the overall tissue insulation during rest, most likely as a result of a greater volume of muscle tissue to provide insulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Thermoregulatory, cardiovascular, and body fluid responses during exercise in the heat were tested in five middle-aged (48 +/- 2 yr) women before and after 14-23 days of estrogen replacement therapy (ERT). The heat and exercise challenge consisted of a 40-min rest period followed by semirecumbent cycle exercise (approximately 40% maximal O2 uptake) for 60 min. At rest, the ambient temperature was elevated from a thermoneutral (dry bulb temperature 25 degrees C; wet bulb temperature 17.5 degrees C) to a warm humid (dry bulb temperature 36 degrees C; wet bulb temperature 27.5 degrees C) environment. Esophageal (Tes) and rectal (Tre) temperatures were measured to estimate body core temperature while arm blood flow and sweating rate were measured to assess the heat loss response. Mean arterial pressure and heart rate were measured to evaluate the cardiovascular response. Blood samples were analyzed for hematocrit (Hct), hemoglobin ([Hb]), plasma 17 beta-estradiol (E2), progesterone (P4), protein, and electrolyte concentrations. Plasma [E2] was significantly (P < 0.05) elevated by ERT without affecting the plasma [P4] levels. After ERT, Tes and Tre were significantly (P < 0.05) depressed by approximately 0.5 degrees C, and the Tes threshold for the onset of arm blood flow and sweating rate was significantly (P < 0.05) lower during exercise. After ERT, heart rate during exercise was significantly lower (P < 0.05) without notable variation in mean arterial pressure. Isotonic hemodilution occurred with ERT evident by significant (P < 0.05) reductions in Hct and [Hb], whereas plasma tonicity remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In 10 women, external cold and heat exposures were performed both in the middle of luteal phase (L) and in the early follicular phase (F) of the menstrual cycle. Serum progesterone concentrations in L and F averaged 46.0 and 0.9 nmol X l-1, respectively. The experiments took place between 3:00 and 4:30 A.M., when the L-F core temperature difference is maximal. At neutral ambient temperature, esophageal (Tes), tympanic (Tty), rectal (Tre), and mean skin (Tsk) temperatures averaged 0.59 degrees C higher in L than in F. The thresholds for shivering, chest sweating, and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were increased in L by an average of 0.47 degrees C, related to mean body temperature [Tb(es) = 0.87Tes + 0.13 Tsk] and to Tes, Tty, Tre, or Tsk. The above-threshold chest sweat rate and cutaneous heat clearances at the thumb and forearm were also enhanced in L, when related to Tb(es) or time. The metabolic rate, arm blood flow, and heart rate at thermoneutral conditions were increased in L by 5.0%, 1.1 ml X 100 ml-1 X min-1, and 4.6 beats X min-1, respectively. The concomitant increase in threshold temperatures for all autonomic thermoregulatory responses in L supports the concept of a resetting of the set point underlying the basal body temperature elevation in L. The effects of the increased threshold temperatures are counteracted by enhanced heat loss responses.  相似文献   

12.
To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.  相似文献   

13.
An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53-80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40-65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.  相似文献   

14.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Thermoregulatory responses were studied in seven women during two separate experimental protocols in the follicular (F, days 4-7) phase and during the luteal (L, days 19-22) phase of the menstrual cycle. Continuous measurements of esophageal temperature (Tes), mean skin temperature (Tsk), oxygen uptake and forearm sweating (ms) were made during all experiments. Protocol I involved both passive heat exposure (3 h) and cycle exercise at approximately 80% VO2 peak during which the environmental chamber was controlled at Ta = 50.0 degrees C, rh = 14% (Pw = 1.7 kPa). In protocol II subjects were tested during thirty-five minutes of exercise at approximately 85% VO2 peak at Ta = 35 degrees C and rh = 25% (Pw = 1.4 kPa). The normal L increase in resting Tes (approximately 0.3 degrees C) occurred in all seven subjects. Tsk was higher during L than F in all experiments conducted at 50 degrees C. During exercise and passive heat exposure, the Tes threshold for sweating was higher in L, with no change in the thermosensitivity (slope) of ms to Tes between menstrual cycle phases. This rightward or upward shift in Tes threshold for initiation of sweating averaged 0.5 degrees C for all experiments. The data indicate the luteal phase modulation in the control of sweating in healthy women is also apparent during severe exercise and/or heat stress.  相似文献   

16.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.  相似文献   

17.
We examined whether an increase in skin temperature or the rate of increase in core body temperature influences the relationship between minute ventilation (Ve) and core temperature during prolonged exercise in the heat. Thirteen subjects exercised for 60 min on a cycle ergometer at 50% of peak oxygen uptake while wearing a suit perfused with water at 10 degrees C (T10), 35 degrees C (T35), or 45 degrees C (T45). During the exercise, esophageal temperature (Tes), skin temperature, heart rate (HR), Ve, tidal volume, respiratory frequency (f), respiratory gases, blood pressure (BP), and blood lactate were all measured. We found that oxygen uptake, carbon dioxide output, BP, and blood lactate did not differ among the sessions. Tes, HR, Ve, and f remained nearly constant from minute 10 onward in the T10 session, but all of these parameters progressively increased in the T35 and T45 sessions, and significantly higher levels were seen in the T45 than the T35 session. For all but two subjects in the T35 and T45 sessions, plotting Ve as a function of Tes revealed no threshold for hyperventilation; instead, increases in Ve were linearly related to Tes, and there were no significant differences in the slopes or intercepts between the T35 and T45 sessions. Thus, during prolonged submaximal exercise in the heat, Ve increases with core temperature, and the influences of skin temperature and the rate of increase in Tes on the relationship between Ve and Tes are apparently small.  相似文献   

18.
The effect of cold exposure on the sympathoadrenal system in primates was studied with and without ketamine anesthesia in eight adult rhesus monkeys. Each monkey was placed in a primate chair at a thermoneutral temperature (25 degrees C) for 1 h (control) followed by cold exposure (12 degrees C) for 3 h or placed in a circulating water bath (28 degrees C) to induce a decrease in core temperature (Tre) to 35 and 33 degrees C. Plasma catecholamines were analyzed by high-pressure liquid chromatography with electrochemical detection (60-65% recovery, coefficient of variation = 15%). The 3-h cold exposure was associated with a 175% increase above control levels of norepinephrine (NE) and a 100% increase in epinephrine (E). Decreases were evident in Tre (0.5 degree C), mean skin temperature (Tsk, 5.5 degrees C), and mean body temperature (Tb, 2.0 degrees C). Continuous infusion of ketamine (0.65 mg . kg-1 . min-1) resulted in no change in the plasma levels of NE and E from the control levels. Tre, Tsk, and Tb all showed greater declines with the addition of ketamine infusion to the cold exposure. Water exposure (28 degrees C) under ketamine anesthesia resulted in a drop in Tre to 33 degrees C within 1 h. Plasma levels of NE and E were unchanged from control values at Tre of 35 and 33 degrees C. The data suggest that the administration of ketamine abolished both the thermoregulatory response and the catecholamine response to acute cold exposure.  相似文献   

19.
To detect shifts in the threshold core temperature (Tc) for sweating caused by particular nonthermal stresses, it is necessary to stabilize or standardize all other environmental and physiological variables which cause such shifts. It is, however, difficult to cause progressive changes in Tc without also causing changes in skin temperature (Tsk). This study compares the technique of body warming by immersion in water at 40 degrees C, and subsequent body cooling in water at 28 degrees C, to determine the core threshold for sweating, with one by which Tc was raised by cycling exercise in air at 20 degrees C, and then lowered by immersion in water at 28 degrees C. The first of these procedures involved considerable shifts in Tsk upon immersion in water at 40 degrees C, and again upon transfer to water at 28 degrees C; the second procedure caused only small changes in Tsk. The onset of sweating at a lower esophageal temperature (Tes) during immersion in water at 40 degrees C (36.9 +/- 0.1 degrees C) than during exercise (37.4 +/- 0.3 degree C) is attributed to the high Tsk since Tes was then unchanged. Likewise, the rapid decline in the sweat rate during immersion at 28 degrees C had the same time course to extinction after the pretreatments. This related more to the Tsk, which was common, than to the levels or rates of change of Tes, which both differed between techniques. Tes fell most rapidly, and thus sweating was extinguished at a lower Tes, following 40 degrees C immersion than following exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Six resting men were exposed to three temperatures (15.5, 21, 26.5 degrees C) for 120 min at three altitudes (sea level, 2,500 m, 5,000 m). A 60-min sea-level control at the scheduled temperature preceded the nine altitude episodes. Comparison of the base-line results at any one temperature showed no differences between rectal temperatures (Tre) or mean weighted skin temperatures (Tsk). After 120 min, Tre and Tsk not only depended on ambient temperature but also altitude. The initial rate of fall in Tre increased with altitude and equilibrium occurred earlier. At 15.5 degrees C, Tre was 0.3 degrees C lower at 5,000 m and 0.2 degrees C lower at 2,500 m than at sea level. Tsk was almost 2 degrees C higher at 15.5 degrees C at 5,000 m and 1 degrees C higher at 2,500 m than at sea level. Similar, smaller differences were observed at 21 degrees C. Mean weighted body temperature showed no change with altitude, but, since the gradient between core and shell was reduced, a shift of blood toward the periphery is implied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号