首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
The Ion gene of E. coli controls the stability of two bacteriophage lambda proteins. The functional half-life of the phage N gene product, measured by complementation, is increased about 5-fold in Ion mutant strains, from 2 min to 10 min. The chemical half-life of N protein, determined by its disappearance on polyacrylamide gels following pulse-chase labeling, increases about three-fold in Ion cells. In contrast to its effect on the N protein, the Ion mutation produces a 50% decrease in the chemical half-life of cII protein. The decay rate of many other phage proteins, including the unstable gene O product, remains unaffected by a host Ion defect. A Ion mutation alters lambda physiology in two ways. First, upon infection, the phage enters the lytic pathway predominantly. This may result from the deficiency of cII protein caused by its decreased stability, since cII product is required for establishment of lysogeny. Second, brief thermal induction of a Ion (lambda c1857) lysogen leads irreversibly to lysis; repression cannot be restablished and the treated cells are committed to forming infective centers. Although N product is normally required for rapid commitment, Ion lysogens become committed more rapidly than Ion+ lysogens, even in the absence of N function. These results identify for the first time native proteins whose stability is affected by the Lon proteolytic pathway. They also indicate that the Lon system may be important in regulating gene expression in E. coli.  相似文献   

2.
We have studied the regulation of the lambda cII gene in vivo using cloned lambda fragments. Lambda N protein stimulated cII expression. Surprisingly, although very high cII protein levels were detected by gel electrophoresis, little cII protein activity, measured as stimulation of the lambda pI and pE promoters, was observed. The half-life of cII protein depended critically on its initial level. At low concentrations its half-life was as short as 1.5 min, whereas at high cII protein levels, it could be as long as 22 min. The Escherichia coli mutant ER437 directs lambda towards lysogeny; cII protein was more stable in this strain than in the wild type. On the other hand, although cyclic AMP is required for efficient lysogeny, it did not appear to influence the synthesis, stability, or activity of cII protein.  相似文献   

3.
4.
5.
6.
7.
8.
The Escherichia coli mntH (formerly yfeP) gene encodes a putative membrane protein (MntH) highly similar to members of the eukaryotic Nramp family of divalent metal ion transporters. To determine the function of E. coli MntH, a null mutant was created and MntH was overexpressed both in wild-type E. coli and in the metal-dependent mutant hflB1(Ts). At the restrictive temperature 42 degrees C, the mntH null mutation reduces the suppression of hflB1(Ts) thermosensitivity by exogenous divalent metals. Conversely, overexpression of MntH restores growth at 42 degrees C, increases suppression of the ts phenotype by Fe(II) and Ni(II) and renders hflB1(Ts) cells hypersensitive to Mn(II). Transport studies in intact cells show that MntH selectively facilitates uptake of 54Mn(II) and 55Fe(II) in a temperature-, time- and proton-dependent manner. Competition studies in uptake assays and growth inhibition experiments in hflB1(Ts) mutants together indicate that MntH is a divalent metal cation transporter of broad substrate specificity. The functional characteristics of MntH suggest that it corresponds to the previously described manganese transporter of E. coli. This study indicates that proton-dependent divalent metal ion uptake has been preserved in the Nramp family from bacteria to humans.  相似文献   

9.
Starting with the lambda pRE-strain lambda ctr1 cy3008, which forms clear plaques, we have isolated two mutant strains, lambda dya2 ctr1 cy3008 and lambda dya3 ctr1 cy3008, that form plaques with very slightly turbid centers. The dya2 and dya3 mutations lie in the region of overlap between the PRE promoter and the ribosome recognition region of the cII gene, and have nucleotide alterations at positions -1 and +5 of pRE, and alterations in cII mRNA at -16 and -21 nucleotides before the initial AUG codon of the gene. Both mutations destabilize a stem structure that may be formed by cII mRNA, and dya2 also changes the sequence on cII mRNA that is complementary to the 3'-end of 16 S rRNA from 5'-UAAGGA-3' to 5'-UGAGGA-3'. --The dya2 and dya3 mutations, along with the ctr1 mutation, which destabilizes either of two alternate stem structures which may be formed by cII mRNA (these being more stable stem structures than the one affected by dya2 and dya3), were tested for their ability to reverse two cII-mutations that are characterized by inefficient translation of cII mRNA. These are cII3088, an A----G mutation four bases before the initial AUG codon, and cII3059, a GUU----GAU (Val2----Asp) second codon mutation. It was found that ctr1 completely reverses the translation defects of these two mutations, while dya2 partially reverses these translation defects. The dya3 mutation has no effect on translation efficiency under any condition tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Quinoline is carcinogenic to the liver in rodents, but it is not clear whether it acts by a genotoxic mechanism. We previously demonstrated that quinoline does induce gene mutation in the liver of lambda/lacZ transgenic mice. In the present report, we reveal the molecular nature of the mutations induced by quinoline in the lambda cII gene, which is also a phenotypically selectable marker in the lambda transgene. (The cII gene has 294bp, which enables much easier sequence analysis than the original lacZ gene (3kb)). The liver cII mutant frequency was nine times higher in quinoline-treated mice than in control mice. Sequence analysis revealed that quinoline induced primarily G:C to C:G transversions (25 of 34). Thus, we have confirmed that quinoline is genotoxic in its target organ, and the G:C to C:G transversion is the molecular signature of quinoline-induced mutations.  相似文献   

12.
13.
A set of c-mutants of the phage phi80 is isolated. These mutants fit into three genes. According to plaque morphology and frequency of lysogenization of mutants, the genes were named cI, cII and cIII as it was previously done for phage lambda. Their order, determinated by mutant phage crosses, is cIII-sus326-cI-cII-sus250. Sus326 is a mutation in the gene 15, so it is probably an analogue of the N gene of the phage lambda. Thermoinducible mutants of the phage phi80 cts11 and cts12 correspond to the mutant types cItsB and cItsA of the phage lambda and they complement each other. Thus, it is supposed that phi80 phage repressor molecules consist of few protein subunits.  相似文献   

14.
An Escherichia coli mutant, ts121, was isolated following random insertional mutagenesis using phage lambda Mu transposition. The mutant phenotype includes inability to form colonies at temperatures above 38 degrees C and inability to propagate phage lambda at all temperatures. A lambda i434 cI- (ts121)+ transducing phage was isolated on the basis of its ability to form plaques on ts121 mutant bacteria. Using this transducing phage, it was shown through complementation and protein analyses, that the ts121 mutation is located in the dnaB gene. The exact insertion event was identified by polymerase chain reaction amplification of the DNA sequences containing the insertion junction. The mutational insertion event in ts121 was mapped precisely between base pairs 1514 and 1515 of the dnaB gene. This result predicts that the mutant dnaB protein has lost its six terminal amino acids. The reading frame shifts into Mu-specific DNA sequences resulting in an additional 20 amino acid residues. The E. coli wild type dnaB protein participates in host replication and interacts with lambda P protein to initiate phage lambda DNA replication. Our results demonstrate that the extreme carboxyl end of the dnaB protein is required for productive interaction with the lambda P replication protein at all temperatures, and is important for dnaB function at temperatures above 38 degrees C. Cold-sensitive extragenic suppressors of the ts121 mutation were isolated on the basis of their ability to restore colony formation at 42 degrees C. One of these extragenic suppressors was mapped at 54 min on the E. coli genetic map and localized to the suhB gene, whose product may affect the expression of a number of genes at the translational level.  相似文献   

15.
Dinitropyrenes (DNPs), 1,3-, 1,6- and 1,8-dinitropyrene, are carcinogenic compounds found in diesel engine exhaust. DNPs are strongly mutagenic in the bacterial mutation assay (Ames test), mainly inducing frameshift type mutations. To assess mutagenicity of DNPs in vivo is important in evaluating their possible involvement in diesel exhaust-induced carcinogenesis in human. For this purpose, we used the lambda/lacZ transgenic mouse (Muta Mouse) to examine induction of mutations in multiple organs. A commercially available mixture of DNPs (1,3-, 1,6-, 1,8-, and unidentified isomer (s) with a content of 20.2, 30.4, 35.2, and 14.2%, respectively) was injected intragastrically at 200 and 400mg/kg once each week for 4 weeks. Seven days after the final treatment, liver, lung, colon, stomach, and bone marrow were collected for mutation analysis. The target transgene was recovered by the lambda packaging method and mutation of lacZ gene was analyzed by a positive selection with galE(-) E. coli. In order to determine the sequence alterations by DNPs, the mutagenicity of the lambda cII gene was also examined by the positive selection with hfl(-) E. coli. Since cII gene (294bp) is much smaller than the lacZ (3024bp), it facilitated the sequence analysis. Strongest increases in mutant frequencies (MFs) were observed in colon for both lacZ (7.5x10(-5) to 43.3x10(-5)) and cII (2.7x10(-5) to 22.5x10(-5)) gene. Three-four-fold increases were observed in stomach for both genes. A statistically significant increase in MFs was also evident in liver and lung for the lacZ gene, and in lung and bone marrow for the cII gene. The sequence alterations of the cII gene recovered from 37 mutants in the colon were compared with 50 mutants from untreated mice. Base substitution mutations predominated for both untreated (91%) and DNP-treated (84%) groups. The DNPs treatment increased the incidence of G:C to T:A transversion (2-43%) and decreased G:C to A:T transitions (70-22%). The G:C to T:A transversions, characteristic to DNPs treatment, is probably caused by the guanine-C8 adduct, which is known as a major DNA-adduct induced by DNPs, through an incorporation of adenine opposite the adduct ("A"-rule). The present study showed a relevant use of the cII gene as an additional target for mutagenesis in the Muta Mouse and revealed a mutagenic specificity of DNPs in vivo.  相似文献   

16.
Bacteriophage lambda grows lytically on Escherichia coli defective for integration host factor, a protein involved in lambda site-specific recombination and the regulation of gene expression. We report the characterization of a mutant, lambda cos154, that, unlike wild-type lambda, is defective for growth in integration host factor-defective E. coli. The cis-dominant mutation in lambda cos154 is a single base pair change in a region of hyphenated dyad symmetry close to the lambda left cohesive end; this mutation prevents DNA packaging. We propose the following two alternative roles for this site in lambda DNA packaging: (i) to bind an E. coli accessory protein required in the absence of integration host factor or (ii) to bind the phage-encoded terminase protein that is essential for DNA packaging.  相似文献   

17.
The affinities of the bacteriophage 434 repressor for its various binding sites depend on the type and/or concentration of monovalent cations. The ability of bacteriophage 434 repressor to govern the lysis-lysogeny decision depends on the DNA binding activities of the phage's cI repressor protein. We wished to determine whether changes in the intracellular ionic environment influence the lysis-lysogeny decision of the bacteriophage lambda(imm434). Our findings show that the ionic composition within bacterial cells varies with the cation concentration in the growth media. When lambda(imm434) lysogens were grown to mid-log or stationary phase and subsequently incubated in media with increasing monovalent salt concentrations, we observed a salt concentration-dependent increase in the frequency of bacteriophage spontaneous induction. We also found that the frequency of spontaneous induction varied with the type of monovalent cation in the medium. The salt-dependent increase in phage production was unaffected by a recA mutation. These findings indicate that the salt-dependent increase in phage production is not caused by activation of the SOS pathway. Instead, our evidence suggests that salt stress induces this lysogenic bacteriophage by interfering with 434 repressor-DNA interactions. We speculate that the salt-dependent increase in spontaneous induction is due to a direct effect on the repressor's affinity for DNA. Regardless of the precise mechanism, our findings demonstrate that salt stress can regulate the phage lysis-lysogeny switch.  相似文献   

18.
The ATP-binding component (Component II, hereafter referred to as ClpA) of a two-component, ATP-dependent protease from Escherichia coli has been purified to homogeneity. ClpA is a protein with subunit Mr 81,000. It has an intrinsic ATPase activity and activates degradation of protein substrates only in the presence of a second component (Component I, hereafter referred to as ClpP), Mg2+, and ATP. The amount of ClpA varies by less than a factor of 2 in cells grown in different media and at temperatures from 30 to 42 degrees C. ClpA does not appear to be a heat-shock protein since its synthesis is not dependent on htpR. Antibodies against purified ClpA were used to identify lambda transducing phage bearing the clpA gene. The cloned gene contains a DNA sequence expected to code for the first 28 amino acids of ClpA, which were determined by protein sequencing of purified ClpA. The clpA gene in the phage was mutated by insertion of delta kan defective transposons and the mutations were transferred to E. coli by homologous recombination. The clpA gene was mapped to 19 min on the E. coli chromosome. Mutant cells with insertions early in the gene produce no ClpA protein detectable in Western blots, and extracts of such mutant cells have no detectable ClpA activity. clpA- mutants grow well under all conditions tested and are not defective in turnover of proteins during nitrogen starvation nor in the turnover of such highly unstable proteins as the lambda proteins O, N, and cII, or the E. coli proteins SulA, RcsA, and glutamate dehydrogenase. The degradation of abnormal canavanine-containing proteins is defective in clpA mutants especially in cells that also have a lon- mutation. Extracts of clpA- lon- cells have ATP-dependent casein degrading activity.  相似文献   

19.
20.
An EcoRI segment containing the early region of bacteriophage phi 80 DNA that controls immunity and lytic growth was identified as a segment whose presence on a plasmid prevented growth of infecting phi 80cI phage. The nucleotide sequence of the segment (EcoRI-F) and adjacent regions was determined. Based on the positions of amber mutations and the sizes of some gene products, the reading frames for five genes were identified. From the relative locations of these genes in the genome, the properties of some isolated gene products, and the analysis of the structures of predicted proteins, the following phi 80 to lambda analogies are deduced: genes cI and cII to their lambda namesakes; gene 30 to cro; gene 15 to O; and gene 14 to P. An amber mutation by which gene 16 was defined is a nonsense mutation in the frame for gene 15 protein, excluding the presence of gene 16. An amber mutation in gene 14 or 15 inhibits phage DNA synthesis, as is the case with their lambda analogues, gene O or P. Some characteristics of proteins from the early region predicted from their primary structures and their possible functions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号