首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
致力于建立一条控制或降低大气中CO2浓度的途径,选择对 进行代谢工程以便改进其光合固定CO2的效率。作为研究的初始阶段,将编码丙糖磷酸异构酶、果糖-1,6-二磷酸醛缩酶及果糖-1,6-二磷酸酶的3个基因构建进一个由启动子trc控制的表达质粒pTrcFAT,成功地在大肠杆菌中实现了上述3个基因的活性共表达。活性测定结果显示:从1L培养液获得的破菌上清液每分钟可以催化二羟丙酮磷酸(DHAP)转化成700μmol果糖-6-磷酸。在此基础上进一步构建了这3个基因共表达的大肠杆菌-蓝藻穿梭表达质粒,也在大肠杆菌中实现了活性表达,当外泊基因的操纵子与载体质粒以大于1:1的比例进行构建时,可显著提高外源基因的表达量及相应的的酶活性。  相似文献   

2.
Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO2 fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various biosynthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-Å resolution and revealed the core domain with the α/β/α-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His13 and Glu99 are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes.  相似文献   

3.
4.
After dark-light transitions, there is a delay in photosynthetic CO2 fixation by isolated pea chloroplasts in the range of some minutes. In order to assess the physiological significance of light modulation of enzyme activity in the control of induction, we made estimates of the kinetic parameters of fructose-1,6-bisphosphatase immediately upon release from pea chloroplasts in the dark and after illumination for various time periods. The Michaelis constant for fructose-1,6-bisphosphate decreased and maximal velocities increased during induction. It seems likely that light activation of this enzyme is one of the factors contributing to the overcoming of the lag period in photosynthetic CO2 fixation.  相似文献   

5.
6.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

7.
Gene fda has been mapped, by co-transduction, between thyA and serA on the Escherichia coli chromosome.  相似文献   

8.
Complex II couples oxidoreduction of succinate and fumarate at one active site with that of quinol/quinone at a second distinct active site over 40 Å away. This process links the Krebs cycle to oxidative phosphorylation and ATP synthesis. The pathogenic mutation or inhibition of human complex II or its assembly factors is often associated with neurodegeneration or tumor formation in tissues derived from the neural crest. This brief overview of complex II correlates the clinical presentations of a large number of symptom-associated alterations in human complex II activity and assembly with the biochemical manifestations of similar alterations in the complex II homologs from Escherichia coli. These analyses provide clues to the molecular basis for diseases associated with aberrant complex II function.  相似文献   

9.
10.
11.
Conditions required for the reductive activation of purified, spinach chloroplast fructose-1,6-bisphosphatase (EC 3.1.3.11) have been determined in vitro. Full reductive activation was observed only when fructose-1,6-bisphosphate and Mg2+ were present at the same time as the reducing agent (dithiothreitol). Reduction in the absence either of fructose-1,6-bisphosphate or of Mg2+ slowly and irreversibly inactivated the enzyme. The concentration of fructose-1,6-bisphosphate that must be present during reduction for maximum activation depends upon the divalent cation present: it is highest with Mg2+, lower with Ca2+, and lowest when both Mg2+ and Ca2+ are present. A scheme for the reductive activation and inactivation of the enzyme is presented.  相似文献   

12.
13.
To understand the physiological functions of thermostable fructose-1,6-bisphosphatase (TNA1-Fbp) from Thermococcus onnurineus NA1, its recombinant enzyme was overexpressed in Escherichia coli, purified, and the enzymatic properties were characterized. The enzyme showed maximal activity for fructose-1,6-bisphosphate at 95°C and pH 8.0 with a half-life (t 1/2) of about 8 h. TNA1-Fbp had broad substrate specificities for fructose-1,6-bisphosphate and its analogues including fructose-1-phosphate, glucose-1-phosphate, and phosphoenolpyruvate. In addition, its enzyme activity was increased five-fold by addition of 1 mM Mg2+, while Li+ did not enhance enzymatic activity. TNA1-Fbp activity was inhibited by ATP, ADP, and phosphoenolpyruvate, but AMP up to 100 mM did not have any effect. TNA1-Fbp is currently defined as a class V fructose-1,6-bisphosphatase (FBPase) because it is very similar to FBPase of Thermococcus kodakaraensis KOD1 based on sequence homology. However, this enzyme shows a different range of substrate specificities. These results suggest that TNA1-Fbp can establish new criterion for class V FBPases.  相似文献   

14.
15.
An important Calvin cycle enzyme, chloroplast fructose-1, 6-bisphosphatase (FBPase) from wheat, has been cloned and expressed up to 15% of the total cell protein using a pPLc expression vector in Escherichia coli by replacing the codons in the 5'-terminal encoding sequence with optimal and A/T-rich ones. The overexpressed wheat FBPase is soluble, fully active, and heat stable. It can be purified by chromatography in turn on DEAE-Sepharose and Sephacryl S-200, and around 15 mg of purified enzymes (>95%) is obtained from 1 liter of cultured bacteria. Its special activity is 8.8 u/mg, K(cat) is 22.9/S, K(m) is 121 microM, and V(max) is 128 micromol/min. mg. The recombinant FBPase can be activated by DTT, Na(+), or low concentrations of Li(+), Ca(2+), Zn(2+), GuHCl, and urea, while it can be inhibited by K(+) or NH(+)(4).  相似文献   

16.
17.
18.
The substrate level of the photosynthetic reductive pentosephosphate cycle in spinach leaves during SO2 fumigation wassurveyed. At the beginning of SO2 fumigation, fructose-1,6-bisphosphateincreased and fructose-6-phosphate decreased, while ribulose-1,5-bisphosphateremained unchanged and 3-phosphoglyceric acid rapidly decreased.These results suggested that the inhibition of photosynthesisin spinach leaves with SO2 might be due to inactivation of fructose-1,6-bisphosphatase. (Received May 26, 1982; Accepted September 27, 1982)  相似文献   

19.
20.
Cytosolic fructose-1,6-bisphosphatase was purified to apparent homogeneity from the leaves of apple, a sorbitol synthesizing species. The enzyme was a homotetramer with a subunit mass of 37 kDa, and was highly specific for fructose 1,6-bisphosphate (F1,6BP) with a Km of 3.1 micro M and a Vmax of 48 units (mg protein)(-1). Either Mg2+ or Mn2+ was required for its activity with a Km of 0.59 mM and 62 micro M, respectively. Li+, Ca2+, Zn2+, Cu2+ and Hg2+ inhibited whereas Mn2+ enhanced the Mg2+ activated enzyme activity. Fructose 6-phosphate (F6P) was found to be a mixed type inhibitor with a Ki of 0.47 mM. Fructose 2,6-bisphosphate (F2,6BP) competitively inhibited the enzyme activity and changed the substrate saturation curve from hyperbolic to sigmoidal. AMP was a non-competitive inhibitor for the enzyme. F6P interacted with F2,6BP and AMP in a synergistic way to inhibit the enzyme activity. Dihydroxyacetone phosphate slightly inhibited the enzyme activity in the presence or absence of F2,6BP. Sorbitol increased the susceptibility of the enzyme to the inhibition by high concentrations of F1,6BP. High concentrations of sorbitol in the reaction mixture led to a reduction in the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号