首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huntington's disease (HD) causes widespread CNS changes and systemic abnormalities including endocrine and immune dysfunction. HD biomarkers are needed to power clinical trials of potential treatments. We used multiplatform proteomic profiling to reveal plasma changes with HD progression. Proteins of interest were evaluated using immunoblotting and ELISA in plasma from 2 populations, CSF and R6/2 mice. The identified proteins demonstrate neuroinflammation in HD and warrant further investigation as possible biomarkers.  相似文献   

2.
Transglutaminases (TGases) catalyze several reactions with protein substrates, including formation of γ-glutamyl-ε-lysine cross-links and γ-glutamylpolyamine residues. The resulting γ-glutamylamines are excised intact during proteolysis. TGase activity is altered in several diseases, highlighting the importance of in situ enzymatic determinations. Previous work showed that TGase activity (as measured by an in vitro assay) and free γ-glutamyl-ε-lysine levels are elevated in Huntington disease (HD) and that γ-glutamyl-ε-lysine is increased in HD CSF. Although free γ-glutamyl-ε-lysine was used in these studies as an index of in situ TGase activity, γ-glutamylpolyamines may also be diagnostic. We have devised methods for the simultaneous determination of four γ-glutamylamines in CSF: γ-glutamyl-ε-lysine, γ-glutamylspermidine, γ-glutamylputrescine, and bis-γ-glutamylputrescine and showed that all are present in normal human CSF at concentrations of ∼150, 670, 40, and 240 nM, respectively. The high γ-glutamylspermidine/γ-glutamylputrescine and γ-glutamylspermidine/bis-γ-glutamylputrescine ratios presumably reflect in part the large spermidine to putrescine mole ratio in human brain. We also showed that all four γ-glutamylamines are elevated in HD CSF. Our findings support the hypotheses that (i) γ-glutamylpolyamines are reflective of TGase activity in human brain, (ii) polyamination is an important post-translational modification of brain proteins, and (iii) TGase-catalyzed modification of proteins is increased in HD brain.  相似文献   

3.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

4.
A quick two-step procedure involving liquid phase isoelectric focusing in the Rotofor cell in combination with electroelution in the Mini whole cell gel eluter has been used for purification of proteins from human cerebrospinal fluid (CSF). Fractions, each highly enriched in a single protein band and virtually free of other proteins, were selected for characterization by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS). Six CSF proteins, transferrin, alpha1-acid-glycoprotein, Zn-alpha2-glycoprotein, apolipoprotein A1, apolipoprotein E and beta-trace were identified by MALDI-TOFMS analysis of the tryptic digests. These results demonstrate that the combination of liquid phase IEF and electroelution is a rapid preparative two-dimensional separation which can provide single proteins of high purity, in yields sufficient for characterization by MALDI-TOFMS. Characterization of such brain-specific proteins in CSF will be useful in the investigation of the pathophysiology of different brain disorders.  相似文献   

5.
The mouse and human brain express a large number of noncoding RNAs (ncRNAs). Some of these are known to participate in neural progenitor cell fate determination, cell differentiation, neuronal and synaptic plasticity and transposable elements derived ncRNAs contribute to somatic variation. Dysregulation of specific long ncRNAs (lncRNAs) has been shown in neuro-developmental and neuro-degenerative diseases thus highlighting the importance of lncRNAs in brain function. Even though it is known that lncRNAs are expressed in cells at low levels in a tissue-specific manner, bioinformatics analyses of brain-specific ncRNAs has not been performed. We analyzed previously published custom microarray ncRNA expression data generated from twelve human tissues to identify tissue-specific ncRNAs. We find that among the 12 tissues studied, brain has the largest number of ncRNAs. Our analyses show that genes in the vicinity of brain-specific ncRNAs are significantly up regulated in the brain. Investigations of repeat representation show that brain-specific ncRNAs are significantly more likely to originate in repeat regions especially DNA/TcMar-Tigger compared with non-tissue-specific ncRNAs. We find SINE/Alus depleted from brain-specific dataset when compared with non-tissue-specific ncRNAs. Our data provide a bioinformatics comparison between brain-specific and non tissue-specific ncRNAs. This article is part of a Directed Issue entitled: The Non-coding RNA Revolution.  相似文献   

6.
The microtubule (MT) cytoskeleton is essential for a variety of cellular processes. MTs are finely regulated by distinct classes of MT-associated proteins (MAPs), which themselves bind to and are regulated by a large number of additional proteins. We have carried out proteome analyses of tubulin-rich and tubulin-depleted MAPs and their interacting partners isolated from bovine brain. In total, 573 proteins were identified giving us unprecedented access to brain-specific MT-associated proteins from mammalian brain. Most of the standard MAPs were identified and at least 500 proteins have been reported as being associated with MTs. We identified protein complexes with a large number of subunits such as brain-specific motor/adaptor/cargo complexes for kinesins, dynein, and dynactin, and proteins of an RNA-transporting granule. About 25% of the identified proteins were also found in the synaptic vesicle proteome. Analysis of the MS/MS data revealed many posttranslational modifications, amino acid changes, and alternative splice variants, particularly in tau, a key protein implicated in Alzheimer’s disease. Bioinformatic analysis of known protein–protein interactions of the identified proteins indicated that the number of MAPs and their associated proteins is larger than previously anticipated and that our database will be a useful resource to identify novel binding partners.  相似文献   

7.
Antibody suspension bead arrays have proven to enable multiplexed and high‐throughput protein profiling in unfractionated plasma and serum samples through a direct labeling approach. We here describe the development and application of an assay for protein profiling of cerebrospinal fluid (CSF). While setting up the assay, systematic intensity differences between sample groups were observed that reflected inherent sample specific total protein amounts. Supplementing the labeling reaction with BSA and IgG diminished these differences without impairing the apparent sensitivity of the assay. We also assessed the effects of heat treatment on the analysis of CSF proteins and applied the assay to profile 43 selected proteins by 101 antibodies in 339 CSF samples from a multiple sclerosis (MS) cohort. Two proteins, GAP43 and SERPINA3 were found to have a discriminating potential with altered intensity levels between sample groups. GAP43 was detected at significantly lower levels in secondary progressive MS compared to early stages of MS and the control group of other neurological diseases. SERPINA3 instead was detected at higher levels in all MS patients compared to controls. The developed assay procedure now offers new possibilities for broad‐scale protein profiling of CSF within neurological disorders.  相似文献   

8.
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.  相似文献   

9.
One of the most distinctive characteristics of humans among primates is the size, organization and function of the brain. A recent study has proposed that there was widespread accelerated sequence evolution of genes functioning in the nervous system during human origins. Here we test this hypothesis by a genome-wide analysis of genes that are expressed predominantly or specifically in brain tissues and genes that have important roles in the brain, identified on the basis of five different definitions of brain specificity. Although there is little overlap among the five sets of brain-specific genes, none of them supports human acceleration. On the contrary, some datasets show significantly fewer nonsynonymous substitutions in humans than in chimpanzees for brain-specific genes relative to other genes in the genome. Our results suggest that the unique features of the human brain did not arise by a large number of adaptive amino acid changes in many proteins.  相似文献   

10.

Background

Cerebrospinal fluid (CSF) is an important source of potential biomarkers that affect the brain. Biomarkers for neurodegenerative disorders are needed to assist in diagnosis, monitoring disease progression and evaluating efficacy of therapies. Recent studies have demonstrated the involvement of tyrosine kinases in neuronal cell death. Thus, neurodegeneration in the brain is related to altered tyrosine phosphorylation of proteins in the brain and identification of abnormally phosphorylated tyrosine peptides in CSF has the potential to ascertain candidate biomarkers for neurodegenerative disorders.

Methods

In this study, we used an antibody-based tyrosine phosphopeptide enrichment method coupled with high resolution Orbitrap Fusion Tribrid Lumos Fourier transform mass spectrometer to catalog tyrosine phosphorylated peptides from cerebrospinal fluid. The subset of identified tyrosine phosphorylated peptides was also validated using parallel reaction monitoring (PRM)-based targeted approach.

Results

To date, there are no published studies on global profiling of phosphotyrosine modifications of CSF proteins. We carried out phosphotyrosine profiling of CSF using an anti-phosphotyrosine antibody-based enrichment and analysis using high resolution Orbitrap Fusion Lumos mass spectrometer. We identified 111 phosphotyrosine peptides mapping to 66 proteins, which included 24 proteins which have not been identified in CSF previously. We then validated a set of 5 tyrosine phosphorylated peptides in an independent set of CSF samples from cognitively normal subjects, using a PRM-based targeted approach.

Conclusions

The findings from this deep phosphotyrosine profiling of CSF samples have the potential to identify novel disease-related phosphotyrosine-containing peptides in CSF.
  相似文献   

11.
Alternative splicing patterns are known to vary between tissues but these patterns have been found to be predominantly peculiar to one species or another, implying only a limited function in fundamental neural biology. Here we used high-throughput RT-PCR to monitor the expression pattern of all the annotated simple alternative splicing events (ASEs) in the Reference Sequence Database, in different mouse tissues and identified 93 brain-specific events that shift from one isoform to another (switch-like) between brain and other tissues. Consistent with an important function, regulation of a core set of 9 conserved switch-like ASEs is highly conserved, as they have the same pattern of tissue-specific splicing in all vertebrates tested: human, mouse and zebrafish. Several of these ASEs are embedded within genes that encode proteins associated with the neuronal microtubule network, and show a dramatic and concerted shift within a short time window of human neural stem cell differentiation. Similarly these exons are dynamically regulated in zebrafish development. These data demonstrate that although alternative splicing patterns often vary between species, there is nonetheless a core set of vertebrate brain-specific ASEs that are conserved between species and associated with neural differentiation.  相似文献   

12.
Pathological-length polyglutamine (Q(n)) expansions, such as those that occur in the huntingtin protein (htt) in Huntington's disease (HD), are excellent substrates for tissue transglutaminase in vitro, and transglutaminase activity is increased in post-mortem HD brain. However, direct evidence for the participation of tissue transglutaminase (or other transglutaminases) in HD patients in vivo is scarce. We now report that levels of N(epsilon)-(gamma-L-glutamyl)-L-lysine (GGEL)--a 'marker' isodipeptide produced by the transglutaminase reaction--are elevated in the CSF of HD patients (708 +/- 41 pmol/mL, SEM, n = 36) vs. control CSF (228 +/- 36, n = 27); p < 0.0001. These data support the hypothesis that transglutaminase activity is increased in HD brain in vivo.  相似文献   

13.
Huntington's disease (HD) is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgenic mice. Increased brain copper correlated with decreased levels of the copper export protein, amyloid precursor protein. We hypothesized that increased amounts of copper bound to low affinity sites could contribute to pro-oxidant activities and neurodegeneration. We focused on two proteins: huntingtin, because of its centrality to HD, and lactate dehydrogenase (LDH), because of its documented sensitivity to copper, necessity for normoxic brain energy metabolism and evidence for altered lactate metabolism in HD brain. The first 171 amino acids of wild-type huntingtin, and its glutamine expanded mutant form, interacted with copper, but not iron. N171 reduced Cu(2+)in vitro in a 1:1 copper:protein stoichiometry indicating that this fragment is very redox active. Further, copper promoted and metal chelation inhibited aggregation of cell-free huntingtin. We found decreased LDH activity, but not protein, and increased lactate levels in HD transgenic mouse brain. The LDH inhibitor oxamate resulted in neurodegeneration when delivered intra-striatially to healthy mice, indicating that LDH inhibition is relevant to neurodegeneration in HD. Our findings support a role of pro-oxidant copper-protein interactions in HD progression and offer a novel target for pharmacotherapeutics.  相似文献   

14.
Human cerebrospinal fluid (CSF) is an important source for studying protein biomarkers of age-related neurodegenerative diseases. Before characterizing biomarkers unique to each disease, it is necessary to categorize CSF proteins systematically and extensively. However, the enormous complexity, great dynamic range of protein concentrations, and tremendous protein heterogeneity due to post-translational modification of CSF create significant challenges to the existing proteomics technologies for an in-depth, nonbiased profiling of the human CSF proteome. To circumvent these difficulties, in the last few years, we have utilized several different separation methodologies and mass spectrometric platforms that greatly enhanced the identification coverage and the depth of protein profiling of CSF to characterize CSF proteome. In total, 2594 proteins were identified in well-characterized pooled human CSF samples using stringent proteomics criteria. This report summarizes our efforts to comprehensively characterize the human CSF proteome to date.  相似文献   

15.
16.
Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD.  相似文献   

17.
18.
Human cerebrospinal fluid (CSF) proteome is actively investigated to identify relevant biomarkers and therapeutic targets for neurological disorders. Approximately 80% of CSF proteome originate from plasma, yielding a high dynamic range in CSF protein concentration and precluding identification of potential biomarkers originating from CNS cells. Here, we have adapted the most complete multiaffinity depletion method available to remove 20 abundant plasma proteins from a CSF pool originating from patients with various cognitive disorders. We identified 622 unique CSF proteins in immunodepleted plus retained fractions versus 299 in native CSF, including 22 proteins hitherto not identified in CSF. Parallel analysis of neuronal secretome identified 34 major proteins secreted by cultured cortical neurons (cell adhesion molecules, proteins involved in neurite outgrowth and axonal guidance, modulators of synaptic transmission, proteases and protease inhibitors) of which 76% were detected with a high confidence in immunodepleted CSF versus 50% in native CSF. Moreover, a majority of proteins previously identified as secretory products of choroid plexus cells or astrocytes were detected in immunodepleted CSF. Hence, removal of 20 major plasma proteins from CSF improves detection of brain cell-derived proteins in CSF and should facilitate identification of relevant biomarkers in CSF proteome profiling analyses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号