首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
NMDA receptors interact with a variety of intracellular proteins at excitatory synapses. In this paper we show that myosin regulatory light chain (RLC) isolated from mouse brain is a NMDA receptor-interacting protein. Myosin RLC bound directly to the C-termini of both NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) subunits, rendering the interaction of myosin RLC with NMDA receptors distinct from that of calmodulin which is considered a NR1-interacting protein. Myosin RLC co-localized with NR1 in the dendritic spines of isolated hippocampal neurons, and was co-immunoprecipitated from brain extracts in a complex with NR1, NR2A, NR2B, PSD-95, Adaptor protein-2 and myosin II heavy chain. The C0 region of NR1 was necessary and sufficient for binding myosin RLC. Ca2+/calmodulin, but not calmodulin alone, displaced recombinant myosin RLC from the carboxy tail of NR1 indicating that myosin RLC and Ca2+/calmodulin can compete for a common binding site on NR1 in vitro. Myosin RLC is the only known substrate for myosin regulatory light chain kinase, which has recently been shown to modulate NMDA receptor function in isolated hippocampal neurons. Our results suggest that an additional level of NMDA receptor regulation may be mediated via a direct interaction with a light chain of myosin II. Thus, myosin RLC-NMDA receptor interactions may contribute to the contractile and motile forces that are placed upon NMDA receptor subunits during changes associated with synaptic plasticity and neural morphogenesis.  相似文献   

2.
Li XD  Saito J  Ikebe R  Mabuchi K  Ikebe M 《Biochemistry》2000,39(9):2254-2260
Recent findings have suggested that the interaction between the two heads is critical for phosphorylation-dependent regulation of smooth muscle myosin. We hypothesized that the interaction between the two regulatory light chains on two heads of myosin dictates the regulation of myosin motor function. To evaluate this notion, we engineered and characterized smooth muscle heavy meromyosin (HMM), which is composed of one entire HMM heavy chain and one motor domain truncated heavy chain containing the S2 rod and regulatory light chain (RLC) binding site, as well as the bound RLC (SMDHMM). SMDHMM was inactive for both actin-translocating activity and actin-activated ATPase activity in the dephosphorylated state, demonstrating that the interaction between the two RLC domains on the two heads and/or a motor domain and a RLC domain in a distinct head is sufficient for the inhibition of smooth muscle myosin motor activity. When phosphorylated, SMDHMM was activated for both actin-translocating activity and actin-activated ATPase activity; however, these activities were lower than those of double-headed HMM, implying partial release of inhibition by phosphorylation in SMDHMM and/or cooperativity between the two heads of smooth muscle myosin. The present results indicate that the RLC domain is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity. On the other hand, similar to double-headed HMM, SMDHMM showed both "folded" and "extended" conformations, and the ratio of those conformations is dependent on ionic strength, suggesting that the RLC domain is sufficient to regulate the conformational transition in myosin.  相似文献   

3.
Multiple drug resistance protein 1 (MDR1) is composed of two homologous halves separated by an intracellular linker region. The linker has been reported to bind myosin regulatory light chain (RLC), but it is not clear how this can occur in the context of a myosin II complex. We characterized MDR1-RLC interactions and determined that binding occurs via the amino terminal of the RLC, a domain that typically binds myosin heavy chain. MDR1-RLC interactions were sensitive to the phosphorylation state of the light chain in that phosphorylation by myosin light chain kinase (MLCK) resulted in a loss of binding in vitro. We used ML-7, a specific inhibitor of MLCK, to study the functional consequences of disrupting RLC phosphorylation in intact cells. Pretreatment of polarized Madin-Darby canine kidney cells stably expressing MDR1 with ML-7 produced a significant increase in apical to basal permeability and a corresponding decrease in the efflux ratio (threefold; p < 0.01) of [3H]-digoxin, a classic MDR1 substrate. Together these data show that MDR1-mediated transport of [3H]-digoxin can be modulated by pharmacological manipulation of myosin RLC, but direct MDR1-RLC interactions are atypical and not explained by the structure of the myosin II holoenzyme.  相似文献   

4.
Each myosin molecule contains two heavy chains and a total of four low-molecular weight light chain subunits, two "essential" and two "regulatory" light chains (RLCs). Although the roles of myosin light chains in vertebrate striated muscle are poorly understood at present, recent studies on the RLC have suggested that it has a modulatory role with respect to Ca2+ sensitivity of tension and the rate of tension development, effects that may be mediated by Ca2+ binding to the RLC. To examine possible roles of the RLC Ca2+/Mg2+ binding site in tension development by skeletal muscle, we replaced endogenous RLC in rabbit skinned psoas fibers with an avian mutant RLC (D47A) having much reduced affinity for divalent cations. After replacement of up to 80% of the endogenous RLC with D47A RLC, maximum tension (at pCa 4.5) was significantly reduced compared with preexchange tension, and the amount of decrease was directly related to the extent of D47A exchange. Fiber stiffness changed in proportion to tension, indicating that the decrease in tension was due to a decrease in the number of tension-generating cross-bridges. Decreases in both tension and stiffness were substantially, although incompletely, reversed after reexchange of native RLC for D47A. RLC exchange was also performed using a wild-type RLC. Although a small decrease in tension was observed after wild-type RLC exchange, the decrease was not proportional to the extent of RLC exchange and was not reversed by reexchange of the native RLC. D47A exchange also decreased the Ca2+ sensitivity of tension and reduced the apparent cooperativity of tension development. The results suggest that divalent cation binding to myosin RLC plays an important role in tension generation in skeletal muscle fibers.  相似文献   

5.
Native nonmuscle myosin IIs play essential roles in cellular and developmental processes throughout phylogeny. Individual motor molecules consist of a heterohexameric complex of three polypeptides which, when properly assembled, are capable of force generation. Here, we more completely characterize the properties, relationships and associations that each subunit has with one another in Drosophila melanogaster. All three native nonmuscle myosin II polypeptide subunits are expressed in close to constant stoichiometry to each other throughout development. We find that the stability of two subunits, the heavy chain and the regulatory light chain, depend on one another whereas the stability of the third subunit, the essential light chain, does not depend on either the heavy chain or regulatory light chain. We demonstrate that heavy chain aggregates, which form when regulatory light chain is lacking, associate with the essential light chain in vivo-thus showing that regulatory light chain association is required for heavy chain solubility. By immunodepletion we find that the majority of both light chains are associated with the nonmuscle myosin II heavy chain but pools of free light chain and/or light chain bound to other proteins are present. We identify four myosins (myosin II, myosin V, myosin VI and myosin VIIA) and a microtubule-associated protein (asp/Abnormal spindle) as binding partners for the essential light chain (but not the regulatory light chain) through mass spectrometry and co-precipitation. Using an in silico approach we identify six previously uncharacterized genes that contain IQ-motifs and may be essential light chain binding partners.  相似文献   

6.
The activity of smooth and non-muscle myosin II is regulated by phosphorylation of the regulatory light chain (RLC) at serine 19. The dephosphorylated state of full-length monomeric myosin is characterized by an asymmetric intramolecular head–head interaction that completely inhibits the ATPase activity, accompanied by a hairpin fold of the tail, which prevents filament assembly. Phosphorylation of serine 19 disrupts these head–head interactions by an unknown mechanism. Computational modeling (Tama et al., 2005. J. Mol. Biol. 345, 837–854) suggested that formation of the inhibited state is characterized by both torsional and bending motions about the myosin heavy chain (HC) at a location between the RLC and the essential light chain (ELC). Therefore, altering relative motions between the ELC and the RLC at this locus might disrupt the inhibited state. Based on this hypothesis we have derived an atomic model for the phosphorylated state of the smooth muscle myosin light chain domain (LCD). This model predicts a set of specific interactions between the N-terminal residues of the RLC with both the myosin HC and the ELC. Site directed mutagenesis was used to show that interactions between the phosphorylated N-terminus of the RLC and helix-A of the ELC are required for phosphorylation to activate smooth muscle myosin.  相似文献   

7.
We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca(2+) binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218-8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation.  相似文献   

8.
Molluscan myosins are regulated molecules that control muscle contraction by the selective binding of calcium. The essential and the regulatory light chains are regulatory subunits. Scallop myosin is the favorite material for studying the interactions of the light chains with the myosin heavy chain since the regulatory light chains can be reversibly removed from it and its essential light chains can be exchanged. Mutational and structural studies show that the essential light chain binds calcium provided that the Ca-binding loop is stabilized by specific interactions with the regulatory light chain and the heavy chain. The regulatory light chains are inhibitory subunits. Regulation requires the presence of both myosin heads and an intact headrod junction. Heavy meromyosin is regulated and shows cooperative features of activation while subfragment-1 is non-cooperative. The myosin heavy chains of the functionally different phasic striated and the smooth catch muscle myosins are products of a single gene, the isoforms arise from alternative splicing. The differences between residues of the isoforms are clustered at surface loop-1 of the heavy chain and account for the different ATPase activity of the two muscle types. Catch muscles contain two regulatory light chain isoforms, one phosphorylatable by gizzard myosin light chain kinase. Phosphorylation of the light chain does not alter ATPase activity. We could not find evidence that light chain phosphorylation is responsible for the catch state.  相似文献   

9.
The actin-activated ATPase activity of smooth muscle myosin and heavy meromyosin (smHMM) is regulated by phosphorylation of the regulatory light chain (RLC). Complete regulation requires two intact myosin heads because single-headed myosin subfragments are always active. 2D crystalline arrays of the 10S form of intact myosin, which has a dephosphorylated RLC, were produced on a positively charged lipid monolayer and imaged in 3D at 2.0 nm resolution by cryo-electron microscopy of frozen, hydrated specimens. An atomic model of smooth muscle myosin was constructed from the X-ray structures of the smooth muscle myosin motor domain and essential light chain and a homology model of the RLC was produced based on the skeletal muscle S1 structure. The initial model of the 10S myosin, based on the previous reconstruction of smHMM, was subjected to real space refinement to obtain a quantitative fit to the density. The smHMM was likewise refined and both refined models reveal the same asymmetric interaction between the upper 50 kDa domain of the "blocked" head and parts of the catalytic, converter domains and the essential light chain of the "free" head observed previously. This observation suggests that this interaction is not simply due to crystallographic packing but is enforced by elements of the myosin heads. The 10S reconstruction shows additional alpha-helical coiled-coil not seen in the earlier smHMM reconstruction, but the location of one segment of S2 is the same in both.  相似文献   

10.
Myosin subunit interactions. Localization of the alkali light chains   总被引:3,自引:0,他引:3  
Myosin homodimers, molecules containing either the A1 or the A2 light chain, do not exchange their light chains under conditions approximating physiological temperature and ionic strength. Myosin heterodimers, molecules containing both A1 and A2 light chains, are therefore formed at the time of synthesis rather than by a labile subunit exchange. Antibodies specific for the amino-terminal region of the alkali light chains were used to localize these subunits in myosin by immunoelectron microscopy. The close proximity of the alkali light chain to the 5,5'-dithiobis-(2-nitrobenzoic acid) light chain in the "neck" region of the myosin head is consistent with the finding that the 5,5'-dithiobis-(2-nitrobenzoic acid) light chain influences subunit interactions between the alkali light chain and heavy chain in vertebrate skeletal muscle myosin.  相似文献   

11.
We examined the kinetic properties of rabbit skinned skeletal muscle fibers in which the endogenous myosin regulatory light chain (RLC) was partially replaced with a mutant RLC (D47A) containing a point mutation within the Ca2+/Mg2+ binding site that severely reduced its affinity for divalent cations. We found that when approximately 50% of the endogenous RLC was replaced by the mutant, maximum tension declined to approximately 60% of control and the rate constant of active tension redevelopment (ktr) after mechanical disruption of cross-bridges was reduced to approximately 70% of control. This reduction in ktr was not an indirect effect on kinetics due to a reduced number of strongly bound myosin heads, because when the strongly binding cross-bridge analog N-ethylmaleimide-modified myosin subfragment1 (NEM-S1) was added to the fibers, there was no effect upon maximum ktr. Fiber stiffness declined after D47A exchange in a manner indicative of a decrease in the number of strongly bound cross-bridges, suggesting that the force per cross-bridge was not significantly affected by the presence of D47A RLC. In contrast to the effects on ktr, the rate of tension relaxation in steadily activated fibers after flash photolysis of the Ca2+ chelator diazo-2 increased by nearly twofold after D47A exchange. We conclude that the incorporation of the nondivalent cation-binding mutant of myosin RLC decreases the proportion of cycling cross-bridges in a force-generating state by decreasing the rate of formation of force-generating bridges and increasing the rate of detachment. These results suggest that divalent cation binding to myosin RLC plays an important role in modulating the kinetics of cross-bridge attachment and detachment.  相似文献   

12.
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.  相似文献   

13.
P D Wagner  R G Yount 《Biochemistry》1975,14(9):1908-1914
A purine disulfide analog of ATP, 6,6'-dithiobis(inosinyl imidodiphosphate), forms mixed disulfides with cysteine residues at what are believed to be ATP regulatory sites of myosin. Blocking these sites causes inactivation of the ATPase activity at the active sites. Two cysteine residues per head are specifically modifed by this disulfide analog. The thiopurine nucleotides can be stoichiometrically displaced from myosin by [14-C]cyanide to give a more stable thiocyanato derivative of the enzyme. [14-C]Thiocyanatomyosin (3.7 14-CN/myosin) was dissociated in 4 M urea and the individual subunits were isolated. The heavy chains each had 0.78 14-CN bound per 200,000 molecular weight unit. The light chain with molecular weight of 20,700 had 1.00 14-CN bound and the 16,500 molecular weight light chain had 0.65 14-CN bound. The two 19,000 molecular weight light chains were not labeled. The two labeled light chains have only a single cysteine which is stoichiometrically modified. These two light chains show a high degree of homology and presumably perform identical functions in myosin. Their specific modification by the purine disulfide analog and their other known properties suggest that they contribute directly to the ATP regulatory sites and may, in fact, function as regulatory subunits.  相似文献   

14.
Recombinant DNA approaches have allowed us to probe the mechanisms by which the regulatory light chains (RLCs) regulate myosin function by identifying the functional importance of specific regions of the RLC molecule. For example, we have demonstrated that the presence of high-affinity Ca2+/Mg(2+)-binding site in the N-terminal domain of the RLC is essential for the regulation of myosin-actin interaction [Reinach, F. C., Nagai, K. & Kendrick-Jones, J. (1986) Nature 322, 80-83]. To explore further the role of this metal-binding site in the RLC and generate an RLC with a Ca(2+)-specific site, we constructed four chicken skeletal muscle myosin regulatory light chain hybrid 'genes'. In these, the first domain containing the high-affinity Ca2+/Mg(2+)-binding site in the RLC was replaced with that containing the lower-affinity, Ca(2+)-specific, regulatory site from troponin C (TnC). In two of these hybrids, we replaced only the Ca(2+)-binding EF hand, while in the other two the EF hand and the N-terminal helix of TnC were transplanted. These hybrids were expressed in Escherichia coli in high yields and the purified proteins were used in calcium-binding experiments to assay the affinity and specificity of the sites and incorporated into scallop myosin to assay their regulatory behaviour. The results obtained show that the calcium-binding site from TnC, when transplanted into the RLC backbone, had a low affinity although most of its specificity appeared to be retained. As a result, although the TnC/RLC hybrids bound to scallop myosin and were able to activate the MgATPase activity of scallop acto-myosin, they were unable to regulate it. These results are in agreement with our previous findings that occupancy of the Ca2+/Mg2+ site in the RLC is essential for regulation. Our results suggest that the specificity and affinity of the calcium-binding site in troponin C is dependent on both intra- and inter-domain interactions within troponin C and that these latter interactions appear to be missing when this binding site is transplanted into the light chain backbone.  相似文献   

15.
Myosin head consists of a globular catalytic domain and a long alpha-helical regulatory domain. The catalytic domain is responsible for binding to actin and for setting the stage for the main force-generating event, which is a "swing" of the regulatory domain. The proximal end of the regulatory domain contains the essential light chain 1 (LC1). This light chain can interact through the N and C termini with actin and myosin heavy chain. The interactions may inhibit the motion of the proximal end. In consequence the motion of the distal end (containing regulatory light chain, RLC) may be different from the motion of the proximal end. To test this possibility, the angular motion of LC1 and RLC was measured simultaneously during muscle contraction. Engineered LC1 and RLC were labeled with red and green fluorescent probes, respectively, and exchanged with native light chains of striated muscle. The confocal microscope was modified to measure the anisotropy from 0.3 microm(3) volume containing approximately 600 fluorescent cross-bridges. Static measurements revealed that the magnitude of the angular change associated with transition from rigor to relaxation was less than 5 degrees for both light chains. Cross-bridges were activated by a precise delivery of ATP from a caged precursor. The time course of the angular change consisted of a fast phase followed by a slow phase and was the same for both light chains. These results suggest that the interactions of LC1 do not inhibit the angular motion of the proximal end of the regulatory domain and that the whole domain rotates as a rigid body.  相似文献   

16.
The interactions of smooth muscle myosin and its light chains have been examined by incubating sodium dodecyl sulfate-polyacrylamide gels of myosin with radioactively labeled regulatory or essential light chains. The technique involves sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fixation with methanol and acetic acid followed by an extensive series of washes. The gel is incubated overnight with labeled light chains in the presence of bovine serum albumin and then washed extensively to remove unbound protein. Following staining and destaining, the gel is autoradiographed to reveal which protein bands have bound light chain. The myosin heavy chain was able to rebind labeled regulatory or essential light chains despite the harsh procedure described above. By fragmenting the myosin heavy chain proteolytically, we were able to determine the binding site for both types of light chains to be within the 26,000-Da COOH-terminal segment of smooth muscle subfragment 1 (S-1) or the 20,000-Da COOH-terminal segment of skeletal muscle S-1. The extent of binding was 0.1-0.4 mol of light chain/mol of S-1 heavy chain. No binding was observed to portions of the myosin molecule which do not contain this segment such as myosin rod, light meromyosin, S-2, or the NH2-terminal 75,000-Da segment of S-1.  相似文献   

17.
Myosin VI is expressed in a variety of cell types and is thought to play a role in membrane trafficking and endocytosis, yet its motor function and regulation are not understood. The present study clarified mammalian myosin VI motor function and regulation at a molecular level. Myosin VI ATPase activity was highly activated by actin with K(actin) of 9 microm. A predominant amount of myosin VI bound to actin in the presence of ATP unlike conventional myosins. K(ATP) was much higher than those of other known myosins, suggesting that myosin VI has a weak affinity or slow binding for ATP. On the other hand, ADP markedly inhibited the actin-activated ATPase activity, suggesting a high affinity for ADP. These results suggested that myosin VI is predominantly in a strong actin binding state during the ATPase cycle. p21-activated kinase 3 phosphorylated myosin VI, and the site was identified as Thr(406). The phosphorylation of myosin VI significantly facilitated the actin-translocating activity of myosin VI. On the other hand, Ca(2+) diminished the actin-translocating activity of myosin VI although the actin-activated ATPase activity was not affected by Ca(2+). Calmodulin was not dissociated from the heavy chain at high Ca(2+), suggesting that a conformational change of calmodulin upon Ca(2+) binding, but not its physical dissociation, determines the inhibition of the motility activity. The present results revealed the dual regulation of myosin VI by phosphorylation and Ca(2+) binding to calmodulin light chain.  相似文献   

18.
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca2+ sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.  相似文献   

19.
In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long α-helical “heavy chain” stabilized by a “regulatory” light chain (RLC) and an “essential” light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca2+ to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca2+. Our results indicate that loss of Ca2+ abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.  相似文献   

20.
The experimental conditions for release of the regulatory light chain (RLC) of scallop myosin at 30 degrees C were studied. Substantially all RLC was released from myosin by incubation for 5 min in medium containing buffer and KCl. This release of RLC was inhibited strongly by Ca2+, while the effect of Mg2+ was about 10,000 times weaker than that of Ca2+. Even in the absence of Ca2+, MgATP and MgADP inhibited the release of RLC, while the protective effect of AMPPNP was negligible. Other Mg nucleotides also showed some protective effect, though appreciably less than MgATP. The incubation of scallop myosin with abalone regulatory light chain (LC2) at 30 degrees C for 5 min produced a hybrid myosin. In the presence of 5 mM MgCl2, 1 of the 2 mol of RLC per mol of scallop myosin was exchanged with 1 mol of LC2. In the presence of Ca2+ or MgATP, myosin bound 1 extra mole of LC2 besides the 2 mol each of SH-LC and RLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号