首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sorghum (Sorghum bicolor L. Moench) has two isozymes of the cyanogenic β-glucosidase dhurrinase: dhurrinase-1 (Dhr1) and dhurrinase-2 (Dhr2). A nearly full-length cDNA encoding dhurrinase was isolated from 4-d-old etiolated seedlings and sequenced. The cDNA has a 1695-nucleotide-long open reading frame, which codes for a 565-amino acid-long precursor and a 514-amino acid-long mature protein, respectively. Deduced amino acid sequence of the sorghum Dhr showed 70% identity with two maize (Zea mays) β-glucosidase isozymes. Southern-blot data suggested that β-glu-cosidase is encoded by a small multigene family in sorghum. Northern-blot data indicated that the mRNA corresponding to the cloned Dhr cDNA is present at high levels in the node and upper half of the mesocotyl in etiolated seedlings but at low levels in the root—only in the zone of elongation and the tip region. Light-grown seedling parts had lower levels of Dhr mRNA than those of etiolated seedlings. Immunoblot analysis performed using maize-anti-β-glucosidase sera detected two distinct dhurrinases (57 and 62 kD) in sorghum. The distribution of Dhr activity in different plant parts supports the mRNA and immunoreactive protein data, suggesting that the cloned cDNA corresponds to the Dhr1 (57 kD) isozyme and that the dhr1 gene shows organ-specific expression.  相似文献   

3.
Male gyro (Gy) mice, which have an X chromosomal deletion inactivating the SpmS and Phex genes, were found to be profoundly hearing impaired. This defect was due to alteration in polyamine content due to the absence of spermine synthase, the product of the SpmS gene. It was reversed by breeding the Gy strain with CAG/SpmS mice, a transgenic line that ubiquitously expresses spermine synthase under the control of a composite cytomegalovirus-IE enhancer/chicken β-actin promoter. There was an almost complete loss of the endocochlear potential in the Gy mice, which parallels the hearing deficiency, and this was also reversed by the production of spermine from the spermine synthase transgene. Gy mice showed a striking toxic response to treatment with the ornithine decarboxylase inhibitor α-difluoromethylornithine (DFMO). Within 2–3 days of exposure to DFMO in the drinking water, the Gy mice suffered a catastrophic loss of motor function resulting in death within 5 days. This effect was due to an inability to maintain normal balance and was also prevented by the transgenic expression of spermine synthase. DFMO treatment of control mice or Gy-CAG/SpmS had no effect on balance. The loss of balance in Gy mice treated with DFMO was due to inhibition of polyamine synthesis because it was prevented by administration of putrescine. Our results are consistent with a critical role for polyamines in regulation of Kir channels that maintain the endocochlear potential and emphasize the importance of normal spermidine:spermine ratio in the hearing and balance functions of the inner ear.Polyamines are essential for viability in mammals. Knockouts of the genes for ornithine decarboxylase and S-adenosylmethionine decarboxylase, which are enzymes needed for the synthesis of putrescine, spermidine, and spermine, are lethal at early stages of embryonic development (1, 2). There is convincing evidence that the formation of hypusine in eIF5A, which requires spermidine as a precursor, is essential for eukaryotes (3). However, the function(s) of spermine is not so well established. Yeast mutants with inactivated spermine synthase grow at a normal rate (4). Mammalian cells in culture also grow normally in the presence of inhibitors of spermine synthase (5) or after inactivation of the spermine synthase gene (SpmS) (68). Inactivation of both of the genes that were originally described as encoding spermine synthases in plants leads to profound developmental defects (911), but recently it was discovered that one of these genes actually encodes a thermospermine synthase, and it appears that the lack of thermospermine may be responsible for these defects (12).In contrast, spermine is clearly required for normal development in mammals. The rare human Snyder-Robinson syndrome is caused by mutations in SpmS located in the X chromosome that drastically reduces the amount of spermine synthase (13, 14). This leads to mental retardation, hypotonia, cerebellar circuitry dysfunction, facial asymmetry, thin habitus, osteoporosis, and kyphoscoliosis. Male mice, which have an X chromosomal deletion that includes SpmS and have no detectable spermine synthase activity, do survive but are only viable on the B6C3H background (1517). This mouse strain having an X-linked dominant mutation was isolated from a female offspring of an irradiated mouse and was termed gyro (Gy)2 based on a circling behavior pattern in affected males (18). Subsequent studies have shown that the Gy mice have a deletion of part of the X chromosome that inactivates both Phex, a gene that regulates phosphate metabolism, and SpmS (16, 19). The lack of SpmS causes a total absence of spermine (6, 7, 15, 16). Such Gy mice suffer from hypophosphatemia, have a greatly reduced size, sterility, and neurological abnormalities, and have a short life span (6, 16, 18). All of these changes except the hypophosphatemia are reversed when spermine synthase activity is restored (20).The original characterization of Gy mice also reported preliminary indications that these mice had hearing defects lacking the Preyer reflex (21, 22). This is of particular interest in the context of polyamine metabolism because a drug, α-difluoromethylornithine (DFMO, Eflornithine), that targets ornithine decarboxylase has been shown to cause occasional hearing loss in some patients (2326). Although DFMO was ineffective for cancer treatment, it is an extremely promising agent for cancer chemoprevention (27, 28). When combined with sulindac, DFMO treatment produced a substantial reduction in the recurrence of colorectal adenomas in a large clinical trial (27). DFMO is a major drug for the treatment of African sleeping sickness caused by Trypanosoma brucei (29, 30). It is also used as a topically applied cream for treatment of unwanted facial hair in women (31, 32). DFMO is generally well tolerated even at high doses, but reversible hearing loss has been reported in multiple clinical trials (25, 33), and a rarer irreversible defect has also been reported (34). These side effects are not observed at lower doses of DFMO (26, 27).Ototoxicity has been demonstrated to occur in experimental animals treated with DFMO including rats (35), guinea pigs (36), gerbils (37), and mice (38). Using immunohistochemistry, a high level of ornithine decarboxylase was observed in the inner ear of the rat, with the highest in the organ of Corti and lateral wall followed by the cochlear nerve (39). Measurements of polyamines in the relevant structures are very difficult due to the small amount of tissue available, but as expected, DFMO treatment reduced polyamine levels and ornithine decarboxylase activity in the inner ear of the guinea pig (36). A plausible explanation for the importance of polyamines in auditory physiology is based on their well documented role as regulators of potassium channels (38). The inward rectification of Kir channels is caused by blockage of the outward current by polyamines (4042). Studies of the cloned mouse cochlear lateral wall-specific Kir4.1 channel showed that inward rectification was reduced and that there was a marked reduction in endocochlear potential (EP). It was proposed that DFMO treatment increases the outward Kir4.1 current, resulting in a drop in EP (38).In the experiments reported here, we have studied in more detail the role of polyamines in auditory physiology using Gy mice and crosses of these mice with transgenic CAG/SpmS mice (43). These mice express spermine synthase under the control of a composite cytomegalovirus-IE enhancer/chicken β-actin promoter, which was designed to provide ubiquitous expression (4446). Assays of the spermine synthase activity in CAG/SpmS line 8 confirmed that there was a high level of expression of the transgene in many different organs and that this level was maintained for at least 1 year (43). Our studies confirm that Gy mice are totally deaf and that this condition is reversed by the expression of the SpmS gene. These changes are due to a virtually complete loss of the EP in the Gy mice. We have also examined the effect of DFMO on the Gy mice. Unexpectedly, it was found that these mice show a rapid and profound toxicity to this drug, leading to death within a few days. Within 5 days of exposure to DFMO in the drinking water, the DFMO-treated mice suffered a catastrophic loss of balance due to inner ear effects. This toxicity was also prevented by the transgenic expression of spermine synthase in the Gy background.  相似文献   

4.
5.
Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL)-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI), was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control protein for IL-1β also interacted with BilRI. Our findings suggest that A. actinomycetemcomitans expresses an IL-1β-binding surface-exposed lipoprotein that may be part of the bacterial IL-1β-sensing system.  相似文献   

6.
Osteopontin (OPN) is a cytokine and ligand for multiple members of the integrin family. OPN undergoes the in vivo polymerization catalyzed by cross-linking enzyme transglutaminase 2, which consequently increases the bioactivity through enhanced interaction with integrins. The integrin α9β1, highly expressed on neutrophils, binds to the sequence SVVYGLR only after intact OPN is cleaved by thrombin. The SVVYGLR sequence appears to be cryptic in intact OPN because α9β1 does not recognize intact OPN. Because transglutaminase 2-catalyzed polymers change their physical and chemical properties, we hypothesized that the SVVYGLR site might also be exposed on polymeric OPN. As expected, α9β1 turned into a receptor for polymeric OPN, a result obtained by cell adhesion and migration assays with α9-transfected cells and by detection of direct binding of recombinant soluble α9β1 with colorimetry and surface plasmon resonance analysis. Because the N-terminal fragment of thrombin-cleaved OPN, a ligand for α9β1, has been reported to attract neutrophils, we next examined migration of neutrophils to polymeric OPN using time-lapse microscopy. Polymeric OPN showed potent neutrophil chemotactic activity, which was clearly inhibited by anti-α9β1 antibody. Unexpectedly, mutagenesis studies showed that α9β1 bound to polymeric OPN independently of the SVVYGLR sequence, and further, SVVYGLR sequence of polymeric OPN was cryptic because SVVYGLR-specific antibody did not recognize polymeric OPN. These results demonstrate that polymerization of OPN generates a novel α9β1-binding site and that the interaction of this site with the α9β1 integrin is critical to the neutrophil chemotaxis induced by polymeric OPN.Acidic phosphorylated secreted glycoprotein osteopontin (OPN),4 known as a cytokine, has multiple functions, including roles in tissue remodeling, fibrosis, mineralization, immunomodulation, inflammation, and tumor metastasis (13). OPN is also an integrin ligand. At least nine integrins can function as OPN receptors. α5β1, α8β1, αvβ1, αvβ3, αvβ5 (1), and αvβ6 (4) recognize the linear tripeptide RGD, and α9β1, α4β1, and α4β7 recognize the sequence, SVVYGLR (5), adjacent to RGD but only after OPN has been cleaved by the protease, thrombin (Fig. 1).Open in a separate windowFIGURE 1.Schematic diagram of OPN. Two integrin-binding sites (boxed), a thrombin cleavage site (arrow), and a putative transglutamination site (circled) are shown. The term thrombin-cleaved nOPN is defined as in the figure.The overlap of receptors for OPN does not necessarily mean that these integrins play redundant roles in cellular responses to OPN because the patterns of integrin expression and utilization vary widely among cell types. In addition, interactions of different integrins with a single ligand can exert distinct effects on cell behavior in a single cell type. For example, we have previously reported that signals by ligation of αvβ3, αvβ6, or α9β1 to a single ligand, tenascin-C, differently affected cell adhesion, spreading, and proliferation of the colon cancer cell line, SW480 (6). Furthermore, intact OPN or thrombin- or matrix metalloproteinase-cleaved OPN interact with distinct subsets of integrins and exhibit distinct effects on cell behavior (4, 7, 8). Collectively, some of the functional diversity of OPN could be attributed to this multiplicity of receptors and responses. We have recently shown that polymerization of OPN results in enhanced biological activity (9). We thus set out to determine whether polymerized OPN exerts its effects through unique interactions with integrins.OPN is polymerized by transglutaminase 2 (TG2, EC 2.3.2.13) (10) that catalyzes formation of isopeptide cross-links between glutamine and lysine residues in substrate proteins (11) including OPN. Polymeric OPN has been identified in vivo in bone (12) and calcified aorta (13). We have previously reported that upon polymerization, OPN displays increased integrin binding accompanied by enhanced cell adhesion, spreading, migration, and focal contact formation (9). However, very little is known about how polymeric OPN induces its biological effects.Integrin α9β1, highly expressed on neutrophils (14), does not act as a receptor for intact OPN but does bind to an N-terminal fragment of OPN (nOPN) that is generated by thrombin cleavage (15) through the new C-terminal sequence, SVVYGLR. Protein polymerization can expose otherwise cryptic domains (16), so we hypothesized that the SVVYGLR site might be exposed upon polymerization and serve as a binding site for α9β1. In the present study, we demonstrate that α9β1 is indeed a receptor for polymeric OPN and that neutrophil migration induced by polymeric OPN is largely mediated by this interaction. However, mutational analysis and antibody studies demonstrate that this interaction does not involve the SVVYGLR site, suggesting the presence of de novo binding site in polymeric OPN.  相似文献   

7.
Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.  相似文献   

8.
9.
10.
11.
Calliostoma tupinamba isa new species from Southeastern Brazil, ranging from southern Rio de Janeiro to northern São Paulo, and found only on coastal islands, on rocks and sessile invertebrates at 3 to 5 meters of depth. Shell and soft part morphology is described here in detail. Calliostoma tupinamba is mainly characterized by a depressed trochoid shell; eight slightly convex whorls; a sharply suprasutural carina starting on the third whorl and forming a peripheral rounded keel; and a whitish, funnel-shaped and deep umbilicus, measuring about 5%–10% of maximum shell width. Calliostoma tupinamba resembles Calliostoma bullisi Clench & Turner, 1960 in shape, but differs from it in being taller and wider, having a smaller umbilicus and lacking a strong and large innermost spiral cord at its base. Finally, an identification key of Brazilian Calliostoma species is presented.  相似文献   

12.
13.
Cell death can be divided into the anti-inflammatory process of apoptosis and the pro-inflammatory process of necrosis. Necrosis, as apoptosis, is a regulated form of cell death, and Poly-(ADP-Ribose) Polymerase-1 (PARP-1) and Receptor-Interacting Protein (RIP) 1/3 are major mediators. We previously showed that absence or inhibition of PARP-1 protects mice from nephritis, however only the male mice. We therefore hypothesized that there is an inherent difference in the cell death program between the sexes. We show here that in an immune-mediated nephritis model, female mice show increased apoptosis compared to male mice. Treatment of the male mice with estrogens induced apoptosis to levels similar to that in female mice and inhibited necrosis. Although PARP-1 was activated in both male and female mice, PARP-1 inhibition reduced necrosis only in the male mice. We also show that deletion of RIP-3 did not have a sex bias. We demonstrate here that male and female mice are prone to different types of cell death. Our data also suggest that estrogens and PARP-1 are two of the mediators of the sex-bias in cell death. We therefore propose that targeting cell death based on sex will lead to tailored and better treatments for each gender.  相似文献   

14.
15.
16.
GSH metabolism in yeast is carried out by the γ-glutamyl cycle as well as by the DUG complex. One of the last steps in the γ-glutamyl cycle is the cleavage of Cys-Gly by a peptidase to the constitutent amino acids. Saccharomyces cerevisiae extracts carry Cys-Gly dipeptidase activity, but the corresponding gene has not yet been identified. We describe the isolation and characterization of a novel Cys-Gly dipeptidase, encoded by the DUG1 gene. Dug1p had previously been identified as part of the Dug1p-Dug2p-Dug3p complex that operates as an alternate GSH degradation pathway and has also been suggested to function as a possible di- or tripeptidase based on genetic studies. We show here that Dug1p is a homodimer that can also function in a Dug2-Dug3-independent manner as a dipeptidase with high specificity for Cys-Gly and no activity toward tri- or tetrapeptides in vitro. This activity requires zinc or manganese ions. Yeast cells lacking Dug1p (dug1Δ) accumulate Cys-Gly. Unlike all other Cys-Gly peptidases, which are members of the metallopeptidase M17, M19, or M1 families, Dug1p is the first to belong to the M20A family. We also show that the Dug1p Schizosaccharomyces pombe orthologue functions as the exclusive Cys-Gly peptidase in this organism. The human orthologue CNDP2 also displays Cys-Gly peptidase activity, as seen by complementation of the dug1Δ mutant and by biochemical characterization, which revealed a high substrate specificity and affinity for Cys-Gly. The results indicate that the Dug1p family represents a novel class of Cys-Gly dipeptidases.GSH is a thiol-containing tripeptide (l-γ-glutamyl-l-cysteinyl-glycine) present in almost all eukaryotes (barring a few protozoa) and in a few prokaryotes (1). In the cell, glutathione exists in reduced (GSH) and oxidized (GSSG) forms. Its abundance (in the millimolar range), a relatively low redox potential (-240 mV), and a high stability conferred by the unusual peptidase-resistant γ-glutamyl bond are three of the properties endowing GSH with the attribute of an important cellular redox buffer. GSH also contributes to the scavenging of free radicals and peroxides, the chelation of heavy metals, such as cadmium, the detoxification of xenobiotics, the transport of amino acids, and the regulation of enzyme activities through glutathionylation and serves as a source of sulfur and nitrogen under starvation conditions (2, 3). GSH metabolism is carried out by the γ-glutamyl cycle, which coordinates its biosynthesis, transport, and degradation. The six-step cycle is schematically depicted in Fig. 1 (2).Open in a separate windowFIGURE 1.γ-Glutamyl cycle of glutathione metabolism. γ-Glutamylcysteine synthetase and GSH synthetase carry out the first two steps in glutathione biosynthesis. γ-glutamyltranspeptidase, γ-glutamylcyclotransferase, 5-oxoprolinase, and Cys-Gly dipeptidase are involved in glutathione catabolism. Activities responsible for γ-glutamylcyclotransferase and 5-oxoprolinase have not been detected in S. cerevisiae.In Saccharomyces cerevisiae, γ-glutamyl cyclotransferase and 5-oxoprolinase activities have not been detected, which has led to the suggestion of the presence of an incomplete, truncated form of the γ-glutamyl cycle (4) made of γ-glutamyl transpeptidase (γGT)4 and Cys-Gly dipeptidase and only serving a GSH catabolic function. Although γGT and Cys-Gly dipeptidase activities were detected in S. cerevisiae cell extracts, only the γGT gene (ECM38) has been identified so far. Cys-Gly dipeptidase activity has been identified in humans (5, 6), rats (710), pigs (11, 12), Escherichia coli (13, 14), and other organisms (15, 16), and most of them belong to the M17 or the M1 and M19 metallopeptidases gene families (17).S. cerevisiae has an alternative γGT-independent GSH degradation pathway (18) made of the Dug1p, Dug2p, and Dug3p proteins that function together as a complex. Dug1p also seem to carry nonspecific di- and tripeptidase activity, based on genetic studies (19).We show here that Dug1p is a highly specific Cys-Gly dipeptidase, as is its Schizosaccharomyces pombe homologue. We also show that the mammalian orthologue of DUG1, CNDP2, can complement the defective utilization of Cys-Gly as sulfur source of an S. cerevisiae strain lacking DUG1 (dug1Δ). Moreover, CNDP2 has Cys-Gly dipeptidase activity in vitro, with a strong preference for Cys-Gly over all other dipeptides tested. CNDP2 and its homologue CNDP1 are members of the metallopeptidases M20A family and have been known to carry carnosine (β-alanyl-histidine) and carnosine-like (homocarnosine and anserine) peptidase activity (20, 21). This study thus reveals that the metallopeptidase M20A family represents a novel Cys-Gly peptidase family, since only members of the M19, M1, and M17 family were known to carry this function.  相似文献   

17.
Arrestins bind active phosphorylated G protein-coupled receptors, precluding G protein activation and channeling signaling to alternative pathways. Arrestins also function as mitogen-activated protein kinase (MAPK) scaffolds, bringing together three components of MAPK signaling modules. Here we have demonstrated that all four vertebrate arrestins interact with JNK3, MKK4, and ASK1, but only arrestin3 facilitates JNK3 activation. Thus, the functional specificity of arrestins is not determined by differential binding of the kinases. Using receptor binding-impaired mutant, we have shown that free arrestin3 readily promotes JNK3 phosphorylation. We identified key arrestin-binding elements in JNK3 and ASK1 and investigated the molecular interactions of arrestin2 and arrestin3 and their individual domains with the components of the two MAPK cascades, ASK1-MKK4-JNK3 and c-Raf-1-MEK1-ERK2. We found that both arrestin domains interact with all six kinases. These findings shed new light on the mechanism of arrestin-mediated MAPK activation and the spatial arrangement of the three kinases on arrestin molecule.Arrestins are multifunctional regulators of cell signaling (1, 2). Arrestins, which bind active phosphorylated G protein-coupled receptors (GPCRs),2 which play a major role in receptor desensitization and internalization (3, 4). With the identification of numerous non-receptor binding partners, the classical paradigm of arrestin function has been expanded, implicating arrestins in mitogen-activated protein kinase (MAPK) activation, protein ubiquitination, chemotaxis, apoptosis, and other cellular functions (2, 5-11).The first indication that arrestins function as signaling adapters came from the studies of arrestin-dependent c-Src recruitment to the receptors, which results in the activation of extracellular signal-regulated kinases (ERK1/2) (10, 12, 13). Subsequently, arrestin2 and arrestin3 in complex with different receptors were reported to scaffold JNK3 (9), ERK1/2 (8, 14), and p38 (15, 16) activation cascades. Although arrestins play an important role in regulating different MAPK pathways, the mechanism of arrestin-dependent assembly of MAP kinases into a signaling complex remains largely unexplored. Existing models have limited predictive value. For example, the idea that JNK3 is activated solely by arrestin3 because this arrestin subtype has unique ability to bind JNK3 (9, 17) was not supported by further experimentation (18-20). Similarly, the hypothesis that only receptor-bound arrestins interact with MAP kinases (8, 9) was not confirmed (17-20).Here we addressed several key mechanistic issues in arrestin-dependent MAPK signaling. First, we show that the scaffolding function is not limited to receptor-bound arrestin; free arrestin3 facilitates ASK1-mediated JNK3 activation, indicating that arrestins are not exclusively receptor-regulated adapters as thought previously. Second, we show that all four mammalian arrestins bind each component of the JNK3 cascade with comparable affinity, demonstrating that binding does not necessarily translate into activation. This finding establishes the mechanistic basis of the “dominant-negative” effect of certain arrestin subtypes. Third, using truncated forms of ASK1 and JNK3, we identified the major arrestin-binding elements of these two kinases. Finally, we show that every kinase in JNK3 and ERK2 activation cascades binds both arrestin domains. Based on these findings, we propose a functional model of arrestin-dependent regulation of MAPK activity and a new structural model of the arrestin-MAPK multiprotein signaling complex.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号