首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenothiazines (chlorpromazine and promethazine) and antihistaminic quinuclidine derivatives [phencarol, quinuclidyl-3-di-(o-tolyl) carbinol, hydrochloride quinuclidyl-3-di-(o-methoxyphenyl) carbinol--HQMC] at concentrations preceding the histamine-releasing ones inhibited the compound 48/80-induced histamine release from the isolated rat mast cells. HQMC inhibited histamine release induced by selective liberators (compound 48/80, MCD-peptide, specific antigen), but potentiated histamine release induced by nonselective liberators (chlorpromazine, tryton X-100). The inhibition by HQMC of histamine release induced by compound 48/80 increased during 1 min and was reversible. The inhibitory effect of all the compounds tested was partially counteracted by glucose.  相似文献   

2.
T Johansen 《Life sciences》1980,27(5):369-375
The effect of magnesium and EDTA on compound 4880-induced histamine release and adenosine triphosphate (ATP) content of mast cells has been studied. Inhibition of histamine release after preincubation of the cells with or without EDTA in the absence of calcium and the reversal by calcium indicate that calcium is required for compound 4880-induced histamine release. The presence of magnesium potentiate the inhibition caused by the lack of calcium. The inhibition of histamine release is not related to changes in cellular ATP content. The observations with EDTA suggest that calcium may be provided for the release process from intracellular sources.  相似文献   

3.
The adenosine triphosphate (ATP) content of rat mast cells was studied during and after histamine release induced by compound 48/80. The almost identical time course of ATP decrease from mast cells treated with either glycolytic or respiratory inhibitors seems to indicate that the ATP depletion was largely related to the histamine release process and not to an uncoupling of the oxidative phosphorylation. These results support the view that histamine release induced by compound 48/80 is an energy-requiring process. The ATP content of the cells was not, however, restored within the two hours of observation. The cause of the prolonged decrease in the ATP level has been discussed.  相似文献   

4.
The effects of tannins and related polyphenols on KO2- and compound 48/80-induced histamine release from rat peritoneal mast cells were examined. Pretreatment with hydrolyzable tannins (1-100 microM) significantly inhibited KO2-induced histamine release. Dimeric ellagitannins, which have hexahydroxydiphenoyl (HHDP) and valoneoyl residues and/or a valoneoyl-related acyl unit in the molecule, showed more potent inhibitory effects than monomeric hydrolyzable tannins. The most effective inhibition was exhibited by agrimoniin and euphorbin C (IC50 0.68 and 0.80 microM), which have dehydrodigalloyl and euphorbinoyl groups, respectively, as well as the HHDP group. However, procyanidins, flavonoids and related polyphenols with small molecular weights, except for epigallocatechin gallate, exhibited negligible effects. Although clinically used antiallergic drugs, azelastine, astemizole, ketotifen and epinastine have been shown to prevent KO2-induced histamine release, their potencies were all less than those of ellagitannins. An inhibitory effect on compound 48/80-induced histamine release was also exhibited by higher molecular weight tannins. The inhibitory effect on histamine release caused by different stimulants suggested that ellagitannins act as cell membrane stabilizers as well as radical scavengers.  相似文献   

5.
In this study, we investigated the effect of Amomum xanthiodes (Zingiberaceae) extract (AXE) on the mast cell-mediated allergy model and studied the possible mechanism of action. We found that AXE inhibited compound 48/80-induced systemic reactions and plasma histamine release in mice. Additionally, AXE decreased immunoglobulin E (IgE)-mediated local allergic reactions and passive cutaneous anaphylaxis (PCA), and AXE dose-dependently attenuated the release of histamine from rat peritoneal mast cells (RPMC) activated by compound 48/80 or IgE. The amounts of AXE needed for inhibition of compound 48/80-induced plasma histamine release and PCA were similar to disodium cromoglycate, the known anti-allergic drug. We found that AXE increased the cAMP levels and decreased the compound 48/80-induced intracellular Ca2+. Furthermore, AXE attenuated the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore (A23187)-stimulated tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 secretion in human mast cells. The inhibitory effect of AXE on the proinflammatory cytokines was nuclear factor-kappaB (NF-kappaB)-dependent. In addition, AXE decreased PMA plus A23187-induced degradation of IkappaBalphaand the nuclear translocation of NF-kappaB. Our findings provide evidence that AXE inhibits mast cell-derived immediate-type allergic reactions, and that cAMP, intracellular Ca2+, proinflammatory cytokines, and NF-kappaB are involved in these effects.  相似文献   

6.
K Saeki  S Ikeda  M Nishibori 《Life sciences》1983,32(26):2973-2980
When added to Ca2+-free Hanks' solution, Ca2+ (0.1-2.5 mM) had no significant effect on antigen-induced histamine release from rat mast cells, but Sr2+ (1.0-3.0 mM) dose-dependently increased the release. Ba2+ (1.0 and 2.0 mM) also enhanced the release. Ca2+ and Ba2+ inhibited compound 40/80-induced histamine release, in a dose-dependent manner. In ordinary Hanks' medium, theophylline and 3-isobutyl-1-methylxanthine (IBMX) dose-dependently inhibited the antigen-induced histamine release but these drugs were ineffective in Ca2+-free medium. Theophylline (1.0 mM) also inhibited compound 48/80-induced histamine release in the presence but not absence of Ca2+. There was an optimal Ca2+ concentration for the theophylline effect. Sr2+ but not Ba2+ could substitute for Ca2+ in supporting the theophylline effect. Theophylline (1.0 mM) and IBMX (1.0 mM) increased mast cell cyclic AMP levels both in the presence and absence of Ca2+. These results suggest that Ca2+ is required in the interaction of theophylline and specific sites on mast cells or in the mast cell response to theophylline which probably does not involve the cyclic AMP increase and is linked to the inhibition of histamine release.  相似文献   

7.
It has recently been reported that phycocyanin, a biliprotein found in the blue-green microalgae Spirulina, exerts anti-inflammatory effects in some animal models of inflammation. Taking into account these findings, we decided to elucidate whether phycocyanin might exert also inhibitory effects in the induced allergic inflammatory response and on histamine release from isolated rat mast cells. In in vivo experiments, phycocyanin (100, 200 and 300mg/kg post-orally (p.o.)) was administered 1 h before the challenge with 1 microg of ovalbumin (OA) in the ear of mice previously sensitized with OA. One hour later, myeloperoxidase activity and ear edema were assessed. Phycocyanin significantly reduced both parameters. In separate experiments, phycocyanin (100 and 200 mg/kg p.o.) also reduced the blue spot area induced by intradermal injections of histamine, and the histamine releaser compound 48/80 in rat skin. In concordance with the former results, phycocyanin also significantly reduced histamine release induced by compound 48/80 from isolated peritoneal rat mast cells. The inhibitory effects of phycocyanin were dose dependent. Taken together, our results suggest that inhibition of allergic inflammatory response by phycocyanin is mediated, at least in part, by inhibition of histamine release from mast cells.  相似文献   

8.
The effect of diethylstilbestrol, a synthetic estrogen, on mast cell secretion was investigated. The results showed that 50 microM diethylstilbestrol inhibited histamine release from rat peritoneal mast cells in the presence and absence of glucose, but did not affect 45Ca uptake stimulated by concanavalin A. Diethylstilbestrol also inhibited histamine release induced by compound 48/80, exogenous ATP, or ionophore A23187. Since estradiol benzoate, hexestrol and daidzein were not inhibitory, the inhibitory action of diethylstilbestrol must be independent of its estrogenic activity. The ATP content of mast cells decreased to less than 0.1 nmol/10(6) cells on treatment with 50 microM diethylstilbestrol at 37 degrees C for 15 min. This effect of diethylstilbestrol in decreasing the ATP content of mast cells correlated well with its inhibitory effect on histamine release. Diethylstilbestrol at 50 microM depleted the cells of ATP at 37 degrees C, but not at 0 degrees C, whereas [3H]diethylstilbestrol ( [monoethyl-3H]diethylstilbestrol) binding to rat mast cells was the same at 0 and 37 degrees C. It is concluded that diethylstilbestrol reduced the ATP content of rat mast cells by inhibiting metabolism of the cells, and consequently inhibited degranulation.  相似文献   

9.
Effects of a traditional oriental herbal medicine, "Saiboku-to" and its constituent herbs on Compound 48/80-induced histamine release from peritoneal mast cells in rats were investigated. Saiboku-to inhibited Compound 48/80-induced degranulation of and histamine release from the mast cells, suggesting that Saiboku-to not only possesses anti-histamine release effect from mast cells, but also contains active herbs with this effect. Significant inhibitions were found in 4 of 10 constituent herbs of Saiboku-to: Magnoliae Cortex, Perillae Herba, Bupleuri Radix and Hoelen. In the dose-response curves of the four herbs, the logarithmic linearity was observed for each herb, and 50% inhibitory concentration, the IC50 values, were calculated to be 56.8 microg/ml for Magnoliae Cortex, 175.8 microl/ml for Perillae Herba, 356.6 microg/ml for Bupleuri Radix, and 595.8 microg/ml for Hoelen. One mg/ml of Saiboku-to showing 75% inhibition of Compound 48/80-induced histamine release level from mast cells contains 88.5 microg of Magnoliae Cortex (it was estimated from the dose-response curve that this dose inhibits 62.68% of the Compound 48/80-induced histamine release level), 58.8 microg of Perillae Herba (21% inhibition), 205.9 microg of Bupleuri Radix (35.24% inhibition), and 147.1 microg of Hoelen (11.15% inhibition). From these results, it is suggested that the anti-histamine release effect of Saiboku-to, which contains 10 herbs, may be due mainly to the effect of Magnoliae Cortex and the synergism of the 3 other herbs.  相似文献   

10.
To explore effects of Forsythia koreana methanol extract (FKME) on mast cell-mediated allergic and inflammatory properties, the effect of FKME was evaluated on compound 48/80-induced systemic anaphylaxis, ear swelling, and anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-induced passive cutaneous anaphylaxis (PCA). In addition, the effect of FKME was investigated on the histamine release from rat peritoneal mast cells (RPMCs) stimulated by compound 48/80, which promotes histamine release. The human mast cell line HMC-1 was stimulated by phorbol 12-myristate 13-acetate plus calcium ionophore A23187. Activated HMC-1 can produce several proinflammatory and chemotactic cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8. Cytokine levels in the culture supernatant were measured by an enzyme-linked immunosorbent assay. Cytotoxicity by FKME was determined by a 3-(4,5-dimethylthiazol-2-yl)-diphenyl-tetrazolium bromide (MTT) assay. FKME inhibited compound 48/80-induced systemic anaphylactic shock and ear swelling in mice. When 1 g/kg FKME was pretreated or posttreated with mice, compound 48/80-induced mice morality was 50 and 66.7%, respectively. One gram per kilogram of FKME pretreatment inhibited ear-swelling responses derived from compound 48/80 by 29.75%. A PCA reaction was inhibited by 17.9%. In an in vitro model, FKME (1 mg/ml) inhibited histamine release from the RPMCs by 13.8% and TNF-α, IL-6, and IL-8 production from HMC-1 cells by 71.16% (P < 0.001), 86.72% (P < 0.001), and 44.6%, respectively. However, FKME had no cytotoxic effects on cell viability. In conclusion, FKME inhibited not only systemic anaphylaxis and ear swelling induced by compound 48/80 but also inhibited a PCA reaction induced by anti-DNP IgE in vivo. Treatment with FKME showed significant inhibitory effects on histamine, TNF-α, IL-6, and IL-8 release from mast cells.  相似文献   

11.
Heparin has been shown to act as a competitive inhibitor of inositol 1,4,5-triphosphate (InsP3) receptors in various cell types. Because InsP3 is one of the second messengers involved in stimulus-secretion coupling in mast cells, it is possible that heparin may inhibit mast cell-mediated reactions. Therefore, in allergic sheep, we tested this hypothesis in two mast cell-mediated reactions induced by immunologic and nonimmunologic stimuli: immediate cutaneous reaction (ICR) and acute bronchoconstrictor response (ABR). In 12 sheep allergic to Ascaris suum antigen, the surface area of the skin wheal was determined 20 min after intradermal injection (0.05 ml) of increasing concentrations of specific antigen, compound 48/80, and histamine, without and after pretreatment with heparin (100, 300, or 1,000 U/kg i.v.). Antigen, compound 48/80, and histamine produced concentration-dependent increases in ICR. Heparin "partially" inhibited the ICR to antigen and compound 48/80 in a dose-dependent manner without modifying the ICR to histamine. The heparin preservative benzyl alcohol was ineffective. In 11 additional sheep, specific lung resistance was measured before and after inhalation challenges with antigen, compound 48/80, and histamine without and with aerosol heparin pretreatment (1,000 U/kg). Heparin blocked the antigen- and compound 48/80-induced bronchoconstriction without modifying the airway effects of histamine. In isolated human uterine mast cells, heparin inhibited the anti-immunoglobulin E- but not the calcium ionophore- (A23187) induced histamine release. These data suggest that heparin inhibits the ICR and ABR induced by stimuli that produce immunologic and nonimmunologic mast cell degranulation without attenuating the effects of histamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Changes in intracellular and extracellular rat mast cell adenosine 3':5' monophosphate (cAMP) concentrations during stimulation of histamine release by 48/80 were studied. There was a rapid and progressive fall in intracellular cAMP beginning within 10 sec after the addition of 48/80. The lowest cAMP values were obtained at 10 min, with return to control levels by 30 min. The fall in cAMP was dose-related with progressive decreases in 10-min cAMP measurements as the 48/80 concentration was increased from 0.25 to 1.00 mug/ml. There was a graded increase in histamine release over the same concentration range. Attempts to demonstrate significant amounts of cAMP in the medium during 48/80 stimulation were unsuccessful, indicating that the changes in cAMP intracellularly are not due to altered cellular permeability. There was a general correlation between the ability of pharmacologic agents to sustain high intracellular levels of cAMP in the presence of 48/80, and inhibition of histamine release. Theophylline (20 mM) which increased cAMP levels 2- 3-fold prevented a detectable decrease in cAMP after 1 mug/ml 48/80 (measured at 10 min) and almost completely inhibited histamine release. Prostaglandin E1 (27 muM) also raised cAMP levels, decreased the 48/80-induced fall in cAMP (by 42%). Epinephrine increased mast cell cAMP levels, but did not prevent the subsequent 48/80-induced decrease in cAMP and did not inhibit histamine release. Carbamylcholine (1 nM), adenine (1 muM), and diazoxide (10 muM) lowered mast cell cAMP and potentiated 48/80 induced release. In view of previous studies from this laboratory indicating that 48/80 stimulates mast cell phosphodiesterase, it seems likely that the 48/80-induced fall in cAMP is due, at least in part, to increased cAMP destruction. Since agents which prevent the fall in cAMP inhibit histamine release, it is apparent that cAMP is an important part of the control mechanism of histamine secretion. On the other hand, it cannot be concluded that a decrease in cAMP alone is sufficient to produce a response since carbamylcholine, diazoxide, and adenine which lower cAMP do not alter histamine release unless 48/80 is also present.  相似文献   

13.
14.
Shin HY  Kim JS  An NH  Park RK  Kim HM 《Life sciences》2004,74(23):2877-2887
We investigated the effect of disodium cromoglycate (DSCG) on mast cell-mediated immediate-type hypersensitivity. DSCG inhibited systemic allergic reaction induced by compound 48/80 dose-dependently. Passive cutaneous anaphylaxis was inhibited by 71.6% by oral administration of DSCG (1 g/kg). When DSCG was pretreated at concentration rang from 0.01-1000 g/kg, the serum histamine levels were reduced in a dose dependent manner. DSCG also significantly inhibited histamine release from rat peritoneal mast cell (RPMC) by compound 48/80. We confirmed that DSCG inhibited compound 48/80-induced degranulation of RPMC by alcian blue/nuclear fast red staining. In addition, DSCG showed a significant inhibitory effect on anti-dinitrophenyl IgE-mediated tumor necrosis factor-alpha production. These results indicate that DSCG inhibits mast cell-mediated immediate-type allergic reaction.  相似文献   

15.
1H NMR spectroscopy was used to evaluate histamine release and lactate production in intact mast cells isolated from rats. The resonance lines of the aromatic histamine protons in mast cells, detected by the selective spin-excitation technique, were broader and located in a lower magnetic field than those in free histamine solution. When exocytosis of mast-cell granules was induced by compound 48/80, free histamine appeared, with a corresponding decrease in the amount of histamine in the mast cells; the lactate signal was also detected in the spectrum. On the addition of compound 48/80, there was a further release of histamine from mast cells, accompanied by further production of lactate. This result indicates that the mechanisms which induce the exocytosis of granules, and/or the events following exocytosis, activate glycolysis.  相似文献   

16.
1H NMR spectroscopy was used to evaluate histamine release and lactate production in intact mast cells isolated from rats. The resonance lines of the aromatic histamine protons in mast cells, detected by the selective spin-excitation technique, were broader and located in a lower magnetic field than those in free histamine solution. When exocytosis of mast-cell granules was induced by compound 48/80, free histamine appeared, with a corresponding decrease in the amount of histamine in the mast cells; the lactate signal was also detected in the spectrum. On the addition of compound 48/80, there was a further release of histamine from mast cells, accompanied by further production of lactate. This result indicates that the mechanisms which induce the exocytosis of granules, and/or the events folowing exocytosis, activate glycolysis.  相似文献   

17.
HCO-3 modulation of histamine release and its relationship with the Ca2+ signal were studied in serosal rat mast cells. Histamine release was induced by Ca2+ mobilizing stimuli, namely compound 48/80, thapsigargin, Ca2+ chelators, ionophore A23187, and PMA and ionophore A23187 in a HCO-3-buffered medium or a HCO-3-free medium. The presence of HCO-3 reduced histamine release by 48/80, Ca2+ chelators, A23187, and PMA/A23187, but increased histamine release induced by thapsigargin. Histamine release by PMA was significantly higher in a HCO-3-free medium than in a HCO-3-free medium, as it was the PMA potentiation of histamine release by A23187. [Ca2+]i changes induced by these drugs were measured in fura-2-loaded mast cells. In thapsigargin and EGTA or BAPTA preincubated mast cells [Ca2+]i increase was higher in a HCO-3-buffered medium than in a HCO-3-free medium in the presence of Ca2+. On the contrary, in compound 48/80 and PMA/A23187 activated mast cells the [Ca2+]i increase is the same both in the presence and in the absence of HCO-3. The effect of HCO-3 on histamine release in serosal rat mast cells depends on the stimulus, but it is not related to the presence of Cl-. In thapsigargin-stimulated mast cells the effect of HCO-3 on histamine release may be related to the Ca2+ signal, but in compound 48/80, EGTA, and PMA/A23187-activated mast cells there is no relationship between intracellular Ca2+ and the inhibitory effect of HCO-3 on histamine release. Additionally, the PKC pathway is implicated in the inhibitory effect of HCO-3 on histamine release, the higher the chelation of calcium rendering the higher the enhancement of the response after adding calcium in the absence of HCO-3.  相似文献   

18.
Fritillaria ussuriensis (FU, derived from the bulbs of various species of the genus Fritillaria, including Fritillaria thunbergii Miq.) is used in herbal medicine to treat conditions such as eczema, skin burns, and frostbite. In this study, we investigated the mechanism of the anti-allergy effect of FU. FU extract (80 mg/kg), orally administered to Sprague-Dawley (SD) rats, significantly inhibited the passive cutaneous anaphylaxis (PCA) reaction. It inhibited the compound 48/80-induced release of histamine from rat peritoneal mast cells in a concentration-dependent manner. Significant inhibitory effects of the FU extract on IL-6, IL-8, and TNF-α (1, 10, and 100 μg/mL) were observed in HMC-1 cells. Treatment with FU attenuated PMA plus A23187-induced phosphorylation of all three MAPKs, especially at concentrations of 10 and 100 μg/mL. Further, it (80 mg/kg) led to significant inhibition of mast-cell accumulation in ear tissue at the chronic phase. These results indicate that it inhibits allergic reactions.  相似文献   

19.
The influence of PGP on compound 48/80-induced anaphylactoid reaction development in mice and on histamine secretion from rat peritoneal mast cells (RPMS) under their activation by compound 48/80 were investigated. Anaphylactoid reaction was caused by intraperitoneal injection of compound 48/80 into mice. The number of animals with manifestations of anaphylactoid reaction symptoms, the severity of these symptoms, the amount of died animals and the time of death were registering during an hour. Mast cells for in vitro investigations were obtained from rats’ peritoneal cavity. Secreted histamine was evaluated from formation of fluorescent product of it’s condensation with ortho-phthalaldehyde. The preventive injection of PGP in mice (15 min before compound 48/80) decreased the mortality rate of animals and intensity of anaphylactoid reaction symptoms. But PGP had no effect on histamine secretion from mast cells under their activation by compound 48/80 in vitro. Results show that there is a component in the mechanism of PGP protective effect under anaphylactoid reaction which is not connected with mast cells stabilization.  相似文献   

20.
Histamine release from tissue-bound mast cells and cell proliferation in the proper mesentery in the intact rat was quantitated following in intraperitoneal injection of graded doses of compound 48/80. The dose-response curves were sigmoid-like in linear-log plots. ED50 for histamine release was 0.035-0.040 and for increased cell proliferation 0.040-0.048 microgram per g BW. The proliferative response following mast-cell secretion ceased after a period of between 48-72 h, irrespective of whether a high or a low dose of 48/80 was used. Basal on the net rate of histamine synthesis (ca. 0.45 microgram/g mesentery wet weight/h) after an initial injection of 48/80, on the extent of histamine release and the proliferative response after a repeated injection of 48/80, it is concluded that there is a lag period of at least 3 days before proliferation can be re-stimulated by renewed 48/80-induced mast-cell secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号