首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
The integrin and extracellular matrix protein (ECM)-mediated adhesion and invasion of the receptive maternal uterine endometrium by trophoblasts is a critical event in the complex physiological process of pregnancy. Although the process has been largely characterized in mice, the relevant mechanism in primates remains unclear. We investigated the expression patterns and dynamic alterations of integrin subunits (alpha1, alpha5, alpha6, beta1, and beta4) and their ECM ligands, such as laminin (LN), type IV collagen (Col IV), and fibronectin (FN), at the maternal-fetal interface during Gestational Days 15, 25, 50, and 100 and at full term in 20 pregnant rhesus monkeys. Immunohistochemistry and in situ hybridization revealed that a relatively high expression of integrins occurred in trophoblast cells at Gestational Day 15, with the peak level occurring at Day 25. The expression level decreased from Day 50 to term. Along the invasive pathway, expression levels of integrin alpha1, alpha5, and beta1 subunits were gradually elevated from the proximal to distal column, reaching peak level in the trophoblast shell, but were reduced in those invasive extravillous cytotrophoblast (EVCT) cells in contact with the decidua. Integrin alpha1, alpha5, beta1, and beta4 subunits were also highly expressed in decidual stromal cells and moderately expressed in the maternal epithelium and endothelium. Immunoreactive FN, LN, and Col IV were distributed in EVCT and decidual stromal cells and part of the uterine epithelial and endothelial cells. These data suggest that the correlated expression of integrins and their ECM ligands at the maternal-fetal interface might be involved in regulation of cell proliferation and differentiation and the counterbalanced invasion-accelerating and invasion-restraining processes in trophoblast cells during the early stage of pregnancy.  相似文献   

3.
4.
Hypoxia not only controls organogenesis, embryogenesis, and wound repair, but also triggers tumor progression and metastasis. Matrix metalloproteinases (MMP), especially gelatinases (MMP-2, MMP-9) regulate the composition and stability of the extracellular matrix (ECM), which affects cell proliferation, migration, and differentiation. This study investigated the effect of hypoxia alone and in combination with ECM compounds and nutrition on MMP-2 and MMP-9 expression, activity, and synthesis in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMC). We also determined the expression of the tissue inhibitors of MMP (TIMP-1, -2). Cells were grown on plastic, collagen-I, collagen-IV, or gelatin and in either starving medium (0.1% serum) or growth medium (5% serum), and were subjected to normoxia or hypoxia (1% O(2)). Collagenases expression was determined by zymography. TIMP-1, -2 expression was assessed by Western blotting and RT-PCR. Depending on serum concentration human lung cells expressed pro-MMP-2 on all substrates. Hypoxia increased pro-MMP-2 expression, on collagen type I or type IV further via Erk1/2 and p38 MAP kinase signaling. MMP-9 was only expressed when cells were grown on collagen type IV and increased with serum concentration, and by hypoxia. TIMP-1 expression was only expressed when cells were grown on collagen type I and was significantly increased by hypoxia, while TIMP-2 expression was unchanged. We demonstrated that the hypoxia, ECM composition, and nutrition, rather than one of these conditions alone, modulate the expression and activity of collagenases and their inhibitors in primary human lung fibroblasts.  相似文献   

5.
Matrix metalloproteinases (MMPs) and counteracting tissue inhibitors of metalloproteinases (TIMPs) are balancing extracellular matrix (ECM) formation and degradation. The latter is believed to be an important aspect for the detachment of fetal membranes postpartum when loosening the feto-maternal connection which is a prerequisite to avoid placental retention a common disease in cows leading to considerable economic loss. Membrane-type (MT) MMPs have been suggested as potential activators controlling ECM remodelling. In particular, MT1-MMP (MMP-14) is able to degrade ECM substrates and activate MMP-2 through binding TIMP-2 at the cell surface. Since the connection between the trophoblast and the maternal caruncular epithelium is supported by integrin receptors bound to ECM, we hypothesize that impaired modulation of the ECM by TIMPs/MMPs participates in the aetiology of bovine retained fetal membranes. To analyse this involvement, placentomes were collected from cows after term parturition and timely release of fetal membranes (n = 4) and cows with retained fetal membranes after various treatments for the induction of parturition using progesterone antagonist (aglepristone), PGF analogue, glucocorticoid, and after elective caesarean sections (each group n = 3). The expression of MMP-14, MMP-2 and of TIMP-2 was examined by real-time-PCR, immunohistochemistry, Western blot and zymography. The relative mRNA expression levels of MMP-14 remained unchanged, while the expression levels of TIMP-2 and MMP-2 partly increased in animals with induced parturition and retention of fetal membranes compared to animals without placental retention. MMP-14 protein was expressed in cells of the uninucleated trophoblast, the fetal mesenchyme and maternal stroma. TIMP-2 was present exclusively in trophoblast giant cells, while MMP-2 could be detected in uninucleated trophoblast cells and the fetal mesenchyme. The presence of the activated enzyme was confirmed by zymography. In conclusion, MMP-14, MMP-2 and TIMP-2 are co-localized in the fetal compartment and therefore could influence the timely release of fetal membranes in cattle.  相似文献   

6.
Neuronal responses to extracellular matrix (ECM) constituents are likely to play an important role in nervous system development and regeneration. We have studied the interactions of a neuron-like rat pheochromocytoma cell line, PC12, with ECM protein-coated substrates. Using a quantitative cell attachment assay, PC12 cells were shown to adhere readily to laminin (LN) or collagen IV (Col IV) but poorly to fibronectin (FN). The specificity of attachment to these ECM proteins was demonstrated using ligand-specific antibodies and synthetic peptides. To identify PC12 cell surface proteins that mediate interactions with LN, Col IV, and FN, two different antisera to putative ECM receptors purified from mammalian cells were tested for their effects on PC12 cell adhesion and neuritic process outgrowth. Antibodies to a 140-kD FN receptor heterodimer purified from Chinese hamster ovarian cells (anti-FNR; Brown, P. J., and R. L. Juliano, 1986, J. Cell Biol., 103:1595-1603) inhibited attachment to LN and FN but not to Col IV. Antibodies to an ECM receptor preparation purified from baby hamster kidney fibroblastic cells (anti-ECMR; Knudsen, K. A., P. E. Rao, C. H. Damsky, and C. A. Buck, 1981, Proc. Natl. Acad. Sci. USA., 78:6071-6075) inhibited attachment to LN, FN, and Col IV, but did not prevent attachment to other adhesive substrates. In addition to its effects on adhesion, the anti-ECMR serum inhibited both PC12 cell and sympathetic neuronal process outgrowth on LN substrates. Immunoprecipitation of surface-iodinated or [3H]glucosamine-labeled PC12 cells with either the anti-FNR or anti-ECMR serum identified three prominent cell surface glycoproteins of 120, 140, and 180 kD under nonreducing conditions. The 120-kD glycoprotein, which could be labeled with 32P-orthophosphate and appeared to be noncovalently associated with the 140- and 180-kD proteins, cross reacted with antibodies to the beta-subunit (band 3) of the avian integrin complex, itself a receptor or receptors for the ECM constituents LN, FN, and some collagens.  相似文献   

7.
Skeletal homeostasis is partly regulated by the mechanical environment and specific signals generated by a cell's adhesion to the matrix. Previous studies demonstrated that osteopontin (OPN) expression is stimulated in response to both cellular adhesion and mechanical stimulation. The present studies examine if specific integrin ligands mediate osteoblast selective adhesion and whether opn mRNA expression is induced in response to these same ligands. Embryonic chicken calvaria osteoblastic cells were plated on bacteriological dishes coated with fibronectin (FN), collagen type I (Col1), denatured collagen/gelatin (G), OPN, vitronectin (VN), laminin (LN) or albumin (BSA). Osteoblastic cells were shown to selectively adhere to FN, Col1, G and LN, yet not to VN, OPN or BSA. Opn mRNA expression was induced by adhesion to Col1, FN, LN and G, but neither OPN nor VN induced this expression. Examination of the activation of the protein kinases A and C second signaling systems showed that only adhesion to FN induced protein kinase A and protein kinase C (PKC) activity while adherence to Col1 induced PKC. Evaluation of the intracellular distribution of focal adhesion kinase (FAK) and p-tyrosine within cells after adherence to FN, VN or BSA demonstrated that adherence to FN stimulated FAK translocation from the nucleus to the cytoplasm and high levels of p-tyrosine localization at the cell surface. However, cell adherence to VN or BSA did not show these morphological changes. These data illustrate that osteoblast selective adhesion is mediated by specific integrin ligands, and induction of intracellular second signal kinase activity is related to the nature of the ligand.  相似文献   

8.
Extracellular matrix (ECM) is an important mediator of endothelial functions such as adhesion, spreading, migration, proliferation, and maintenance of differentiated functions. Attachment of cultured cells to tissue culture polystyrene (TCPS) is dependent on vitronectin which adsorbs onto the surface from the serum in the culture medium. Vitronectin (VN) will adsorb efficiently to TCPS even if the latter has been coated with another matrix molecule and blocked with albumin. This means that studies of the interactions of cells with individual coated ECM molecules will be confounded by the presence of adsorbed VN if serum is present in the culture medium. In this study, the adhesion, spreading, growth, and output of endogenous matrix molecules by bovine corneal endothelial (BCE) cells were measured on five different matrix substrates using medium which had been depleted of vitronectin to avoid such confounding effects. The same cell adhesion and spreading maxima were achieved on vitronectin, fibronectin (FN), laminin (LM), and types I and IV collagen (col I, col IV). The coating concentrations required to achieve these maxima, however, differed among the substrates, LM needing considerably higher concentrations than the other substrates for both maximal adhesion and spreading and FN needing higher concentrations for cell spreading. When cells were continuously passaged on each of the five substrates coated at concentrations optimal for cell spreading, no differences in cell proliferation rates or cell morphology were observed. Significant differences, however, were observed in the subcellular output of endogenous matrix molecules (FN, LM, col IV, and thrombospondin) between the different substrates. Col I was a poor substrate for the production of all ECM molecules tested over the 10 passages of the experiment, whereas col IV was a consistently good substrate. LM and FN substrates displayed differential effects on the output of different ECM molecules. VN was unique in that BCE cells at early passage on this substrate produced high levels of endogenous matrix molecules, whereas with continued passage on this substrate, a progressive decline in ECM secretion was observed. These results show that incorporation of individual molecules into the ECM by BCE cells in culture is significantly affected by the nature of the substratum. They further suggest that passage of endothelial cells in media containing serum (which results in coating of VN onto the substrate) may result in a progressive reduction of ECM output.  相似文献   

9.
Embryo implantation in humans and rodents is a highly invasive yet tightly controlled process involving extracellular matrix (ECM) degradation. Matrix metalloproteinase 9 (MMP-9) has been implicated as the major facilitator of this ECM degradation. MMP-9 is expressed by the embryo's trophoblast cells, whereas tissue inhibitor of metalloproteinases 3 (TIMP-3) is expressed by the maternal uterine cells immediately adjacent to the trophoblast. We examined the functional roles of MMP-9 and TIMP-3 during in vitro ECM degradation by mouse embryos. Blastocysts were treated with either MMP-9 antisense or sense oligonucleotides and incubated on an ECM gel. The extent of ECM degradation exhibited by the blastocysts due to proteinase secretion was quantified. Embryos exposed to MMP-9 antisense oligonucleotides exhibited reduced ECM-degrading activity as compared with controls, and this reduced activity was correlated with the level of MMP-9 secreted by the embryos. The functional role of TIMP-3 was then examined by incubating blastocysts on an ECM gel that had been impregnated with various amounts of TIMP-3. In a dose-dependent manner, increases in TIMP-3 resulted in a reduction in ECM degradation and were correlated with diminished MMP-9 activity. These results provide important functional evidence that in vitro ECM degradation is regulated by embryo-derived MMP-9 and ECM-derived TIMP-3.  相似文献   

10.
11.
12.
Extracellular matrix receptors on ductus arteriosus smooth muscle cells (SMC) must enable the cells to migrate through both interstitial and basement membrane matrices to form intimal mounds during postnatal ductus closure. We examined the role of beta 1 and beta 3 integrin receptors on SMC adhesion and migration. Using a new assay to measure cell migration, we found that lamb ductus arteriosus SMC attach to and migrate over surfaces coated with fibronectin (FN), laminin (LN), vitronectin (VN), and collagens I (I) and IV (IV). Blocking antibodies, specific to different integrin complexes, showed that SMC adhesion to FN, LN, I, and IV depended exclusively on functioning beta 1 integrins with little, if any, contribution by the alpha V beta 3 integrin; on the other hand, cell migration over these substrates depended to a large extent on the alpha V beta 3 receptor. Immunofluorescent staining demonstrated that during the early phase of SMC migration, the beta 1 integrins organized rapidly into focal plaques that, with time, gradually covered the cell's basal surface; on the other hand, the beta 3 receptor remained concentrated at all times at the cell's margins. Ligand affinity chromatography and immunoprecipitation techniques identified a unique series of beta 1 integrins binding to each matrix component: FN (alpha 5 beta 1, alpha 3 beta 1, alpha V beta 1), LN (alpha 1 beta 1, alpha 7 beta 1), VN (alpha V beta 1), I (alpha 1 beta 1, alpha 2 beta 1), and IV (alpha 1 beta 1). In contrast, the beta 3 integrin, alpha V beta 3, bound to all the substrates tested: FN, LN, VN, I, and IV. The results indicate that beta 1 and beta 3 integrins may play different roles in attachment and migration as SMC move through the vascular extracellular matrix to produce obliteration of the ductus arteriosus lumen.  相似文献   

13.
14.
Placental growth and development is crucial for successful pregnancy. The aim of this study was to characterize the activity and localization of the matrix metalloproteinase 2 (MMP-2) and MMP-9, which are capable of degrading basement membrane collagen (predominantly collagen type IV), and their endogenous tissue inhibitor of matrix metalloproteinases (TIMPs), in amniotic fluid and in the developing ovine placenta. Cell deletion by apoptosis during placental development was also examined. Zymography with gelatin as substrate indicated that MMP-2 (72 kDa gelatinase A; predominantly latent form) was present in increasing amounts in amniotic fluid from day 70 of gestation to labour (days 140-145), and MMP-9 (92 kDa gelatinase B; predominantly latent form) was detectable from day 125 to labour; there was no increase in MMP-2 or -9 in labour. A broad range of TIMPs was detected in amniotic fluid; the molecular masses corresponded to TIMP-1, -2 and -3. Immunohistochemical techniques localized MMP-2, MMP-9 and TIMP-3 in the sheep placenta, predominantly in the trophoblast layer in uninucleate, but not binucleate, cells. However, MMP-2 and -9 activated proteins in placental homogenates were low throughout pregnancy. Apoptosis was identified by morphological criteria and also by TdT-mediated dUTP nick end labelling. Apoptosis was present in discrete regions in the placenta, predominantly in trophoblast cells near the tips and the basal regions of the fetomaternal interdigitations. During pregnancy the sheep placenta becomes more complex and the area of the fetomaternal interface increases. MMP-2 and -9 are likely to be involved in breaking down basement membranes to allow cell migration during this process. It is suggested that digestion of supporting extracellular matrix may trigger apoptosis and in some way increase the branching pattern in the villi.  相似文献   

15.
C-type natriuretic peptide (CNP) acts mainly in a local, paracrine fashion to regulate vascular tone and cell proliferation. Although several in vivo studies have demonstrated that CNP exerts an inhibitory effect on mesangial matrix generation, a limited number of reports exist about the anti-extracellular matrix (ECM) accumulation effect of CNP and its underlying mechanisms in mesangial cells (MCs) in vitro. In this study, human MCs were incubated in serum-containing medium in the absence or presence of CNP (0, 10 and 100?pM) for 24, 48 and 72?h, respectively. CNP administration significantly suppresses MCs proliferation and collagen (Col)-IV expression in a time- and dose-dependent manner. In addition, the study presented herein was designed as a first demonstration of the regulative effects of CNP on the metabolisms of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in MCs in vitro, and found that: (1) CNP administration significantly decreased the secretion and expression of MMP-2 and MMP-9 in the cultured MCs; (2) the secretion and expression of TIMP-1 progressively elevated after treatment with CNP for 24 and 48?h, whereas declined at later time point; (3) CNP expression was negatively correlated with MMP-2 and MMP-9 expression; (4) the balance of MMPs/TIMPs was shifted toward the reduction in MMP-2 and MMP-9 activity and/or the increment in TIMP-1 expression, which could not account for the down-regulation of Col-IV expression in CNP-treated MCs. In conclusion, CNP suppresses mesangial proliferation and ECM expression via a MMPs/TIMPs-independent pathway in vitro.  相似文献   

16.
GH3B6 cells, a rat pituitary tumor cell line, synthesize and secrete large amounts of prolactin (PRL) in vitro. In the present work, we evaluated the capacity of these cells to express extracellular matrix (ECM) components and receptors in vitro. The expression of laminin (LN), fibronectin (FN) and type IV collagen (CIV) was investigated by immunofluorescence assays. In comparison to PRL distribution, where around 50-70% of the cells contained PRL concentrated in the Golgi region, a variable immunolabeling for the three ECM components could be observed in the majority of GH3B6 cells. Importantly, this pattern was not modified when cells were cultured in the presence of 30 nM thyroliberin (TRH). The expression of the ECM receptors: alpha5beta1 (FN receptor), alpha6beta1 (LN receptor) and CD44 (hyaluronic acid receptor) could be demonstrated by cytofluorometric analysis. Using biochemical procedures, we analyzed the synthesis and secretion of glycosaminoglycans (GAGs). The cells synthesized and secreted mainly heparan sulfate (75%) with a minor amount of chondroitin sulfate/dermatan sulfate. In an attempt to evaluate the individual contribution of the ECM components to influence cell morphology and PRL distribution in vitro, GH3B6 cells were cultivated separately on LN, FN and CIV substrates. Under all conditions, it was possible to observe an increase of cell adherence to the substrate, accompanied with changes of cellular morphology, characterized by the appearance of cytoplasmatic processes. However, no changes on PRL distribution could be observed. Our results suggest that endocrine tumor cell lines are involved in synthesis of ECM components and receptors.  相似文献   

17.
Summary The influence of the extracellular matrix (ECM) glycoproteins collagen, IV laminin (LN), and fibronectin (FN) on the in vitro migration of epithelial cells was studied using the ECM migration track method (4) with preparations immunostained for LN and FN. The locomotion of rat liver epithelial cells stimulated to migrate in serum-free medium by epidermal growth factor (EGF) in the presence of the protein per cm2. Neither LN nor collagen IV decreased the number of migrating cells, indicating that the inhibition is a specific effect of fibronectin. The data also indicate that the FN-mediated inhibition of migration is an additional and not alternative mechanism to the well-established contact inhibition of locomotion (1) which also occurs in liver epithelial cell cultures. The system is being used for a further analysis of the factors that influence migration of normal and neoplastic epithelial cells and the biochemical mechanisms underlying the migration reaction. Editor’s Statement This paper describes new and heretofore neglected aspects of EGF and fibronectin action on the migratory behavior of cultured cells. Gordon H. Sato  相似文献   

18.
Hepatocytes are the source of plasma fibronectin (FN) which lacks the alternatively spliced EDI segment, distinctive of oncofetal FN. When hepatic or other epithelial cells are cultured on plastic, EDI inclusion is triggered. Here we report that EDI inclusion is inhibited when hepatic cells are cultured on a basement membrane-like extracellular matrix (ECM), demonstrating a new role for the ECM in the control of gene expression. The effect is duplicated by collagen IV and laminin but not by collagen I; is not observed with another alternatively spliced FN exon (EDII); and correlates with a decrease in cell proliferation, consistently with high EDI inclusion levels observed in many physiological and pathological proliferative processes.  相似文献   

19.
Zymography and in situ hybridizition were used to investigate matrix metalloproteinase-2, -9 (MMP-2, -9) activities, and expression of mRNAs for MMP-2, -9 and tissue inhibitors of matrix metalloproteinases (TIMP-1, -2, -3) in the rat uterus during early pregnancy (day 1-7). The zymography results showed two forms of MMP-2 (64 and 67 kDa) in the rat uteri during early pregnancy. The 64-kDa MMP-2 activity was the highest on day 2 (P < 0.01) and higher on day 5 and 6 (P < 0.05). The 67-kDa MMP-2 activity reached the highest on day 5 and 6 (P < 0.01). The 64-kDa MMP-2 activity at the implantation sites was higher than those at interimplantation sites (P < 0.05). Furthermore, the 67 kDa MMP-2 can be converted to 64 kDa forms by incubation with p-aminophenylmercuric acetate (APMA) and trypsin in vitro. The 92-kDa MMP-9 activity was only detected on day 5 and 6 of pregnancy (P < 0.01). In situ hybridization showed that on day 1-4 of pregnancy, both MMP-2 and TIMP-2 mRNAs were evidently localized in the basal stromal cells. On day 5, MMP-2 mRNA signals were decreased in the basal stromal cells and mRNA for TIMP-2 was expressed in the epithelial cells and subepithelial stromal cells. The mRNAs for MMP-9, TIMP-1, and -3 were mainly expressed in epithelial cells on day 1-5. At the implantation site on day 6, the mRNAs for MMP-2, -9, TIMP-1, -2, and -3 were highly expressed in the primary decidual zone surrounding the implanting embryo, and in the whole decidualized stromal cells (the primary and secondary decidual zones) at the implantation site on day 7. The intensities of mRNAs for the TIMPs in decidualized stromal cells at the implantation site on day 6 and 7 were stronger than those for the MMPs. The weak mRNAs for MMP-2, -9, TIMP-1, and -3 but not TIMP-2 were also observed in the ectoplacental cone/trophoblastic cells of the implanting embryos. However, at the interimplantation sites on day 6 and 7, MMP-2, -9, TIMP-1, -2, and -3 mRNAs were weakly expressed in the epithelial cells, subepithelial stromal cells, and myometrium. The results suggested that the implanting rat embryo strongly induced MMP-2 and -9 proteins and gene expression for decidulization and embryo invasion, which were strictly controlled and balanced by the simultaneous expression of TIMP-1, -2 and -3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号