首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Salmonids were first introduced into the Chilean fresh waters in the 1880s, and c. 140 years later, they are ubiquitous across Chilean rivers, especially in the southern pristine fresh waters. This study examined the brown trout (Salmo trutta) and native taxa ecology in two adjacent but contrasting rivers of Chilean Patagonia. During spring 2016 and spring–fall 2017 we examined the variation in benthic macroinvertebrate and fish community composition and characterized fish size structure, stomach contents, and stable isotopes (δ13C and δ15N) to understand population structure, fish diet, and trophic interactions between S. trutta and native taxa. The native Galaxias maculatus (puye) dominated the fish community (74% of abundance). S. trutta was less abundant (16% of survey catch) but dominated the fish community (over 53%) in terms of biomass. S. trutta showed distinct diets (stomach content analysis) in the two rivers, and individuals from the larger river were notably more piscivorous, consuming native fish with a relatively small body size (<100-mm total length). Native fishes were isotopically distinct from S. trutta, which showed a wider isotopic niche in the smaller river, indicating that their trophic role was more variable than in the larger river (piscivorous). This study provides data from the unstudied pristine coastal rivers in Patagonia and reveals that interactions between native and introduced species can vary at very local spatial scales.  相似文献   

2.
3.
  1. Our project sought to determine ecological effects of adding low-head dams and levees to large rivers by examining potential changes to aquatic food webs over a 70-year period in the Lower Ohio River (LOR) and Upper Mississippi River (UMR).
  2. We employed museum collections of fish and compound specific stable isotope analysis of amino acids to evaluate long-term changes in primary food sources for multiple species of fish in each river.
  3. Fishes in both rivers depended more on autochthonous than allochthonous carbon sources throughout the 70-year period (based on measurements of isotopic signatures of algae, C3 plants, C4 plants, cyanobacteria, and fungi), but the relative use of different carbon sources differed between the UMR and LOR. Significant but opposite shifts in trophic positions (TP) between rivers over time (higher TP in the UMR; lower in the LOR) were correlated with major anthropogenic changes to habitat structure (e.g. slight decrease in abundance of side channels in the UMR; increase in pool water depth in the LOR) resulting from low-head dam construction. They may also have been influenced by likely increased primary productivity in the UMR from agricultural nitrogen inputs and by possible shifts in the importance of phytoplankton versus benthic algae in the LOR from changes in water depth. Shifts in trophic position and reliance on various food sources were not correlated with variation in discharge, gage height, or temperature.
  4. Although these two rivers have contrasting hydrogeomorphic complexity (UMR is an anastomosing river, while the LOR is a constricted channel river) and different discharge patterns (seasonal versus yearly operation in some cases), both differ substantially from rivers having hydrogeomorphic changes resulting from construction of high dams (>15 m). It is not surprising, therefore, that factors controlling trophic position and reliance on different carbon sources vary among different types of dams and river structures.
  相似文献   

4.
Summary Substantial numbers of predominantly O+ fish were impinged on the cooling water screens of Harculo, Gelderland, Merwedehaven and Amer power stations. Low numbers were impinged at the two stations located on the river Meuse (Maas and Claus). Two possible reasons for this difference are suggested,viz. a low fish density in the river Meuse and the deep position of the cooling water intakes. In comparison with Bergum power station situated on a lake the impingement rate at the river stations was more than ten times as low.Most fish were impinged during the summer months when large numbers of juvenile fish are present in the rivers. Dominating species impinged were roach, pikeperch, bream and perch. The abundance of pikeperch in the screensamples, points to a recent increase in the population of pikeperch in the rivers. The growth pattern of O+ pikeperch and O+ roach during summer seemed very similar for power stations located at different rivers. Thirty fish species and four crustacean species were collected, among whichOrconectus limosus was quite abundant at Maas and Claus power stations.  相似文献   

5.
Hatchery‐reared fish are commonly stocked into freshwaters to enhance recreational angling. As these fishes are often of high trophic position and attain relatively large sizes, they potentially interact with functionally similar resident fishes and modify food‐web structure. Hatchery‐reared barbel Barbus barbus are frequently stocked to enhance riverine cyprinid fish communities in Europe; these fish can survive for over 20 years and exceed 8 kg. Here, their trophic consequences for resident fish communities were tested using cohabitation studies, mainly involving chub Squalius cephalus, a similarly large‐bodied, omnivorous and long‐lived species. These studies were completed over three spatial scales: pond mesocosms, two streams and three lowland rivers, and used stable isotope analysis. Experiments in mesocosms over 100 days revealed rapid formation of dietary specializations and discrete trophic niches in juvenile B. barbus and S. cephalus. This niche partitioning between the species was also apparent in the streams over 2 years. In the lowland rivers, where fish were mature individuals within established populations, this pattern was also generally apparent in fishes of much larger body sizes. Thus, the stocking of these hatchery‐reared fish only incurred minor consequences for the trophic ecology of resident fish, with strong patterns of trophic niche partitioning and diet specialization. Application of these results to decision‐making frameworks should enable managers to make objective decisions on whether cyprinid fish should be stocked into lowland rivers according to ecological risk.  相似文献   

6.
Over the last 50 years, Spanish Atlantic salmon (Salmo salar) populations have been in decline. In order to bolster these populations, rivers were stocked with fish of northern European origin during the period 1974–1996, probably also introducing the furunculosis-inducing pathogen, Aeromonas salmonicida. Here we assess the relative importance of processes influencing mitochondrial (mt)DNA variability in these populations from 1948 to 2002. Genetic material collected over this period from four rivers in northern Spain (Cantabria) was used to detect variability at the mtDNA ND1 gene. Before stocking, a single haplotype was found at high frequency (0.980). Following stocking, haplotype diversity (h) increased in all rivers (mean h before stocking was 0.041, and 0.245 afterwards). These increases were due principally to the dramatic increase in frequency of a previously very low frequency haplotype, reported at higher frequencies in northern European populations proximate to those used to stock Cantabrian rivers. Genetic structuring increased after stocking: among-river differentiation was low before stocking (1950s/1960s Φ ST = –0.00296–0.00284), increasing considerably at the height of stocking (1980s Φ ST = 0.18932) and decreasing post-stocking (1990s/2002 Φ ST = 0.04934–0.03852). Gene flow from stocked fish therefore seems to have had a substantial role in increasing mtDNA variability. Additionally, we found significant differentiation between individuals that had probably died from infectious disease and apparently healthy, angled fish, suggesting a possible role for pathogen-driven selection of mtDNA variation. Our results suggest that stocking with non-native fish may increase genetic diversity in the short term, but may not reverse population declines.  相似文献   

7.
We studied life‐history traits focusing on the growth and condition of the pikeperch Sander lucioperca to evaluate its phenotypic plasticity when introduced to new environments. Pikeperch is a non‐native fish introduced to Iberian freshwater fauna in 1998 that quickly spread to other river basins through human‐mediated activities, occupying now a wide variety of habitats along mainland Portugal. Condition (K and SMI), fork length at age, and length–weight relationships were studied for Portuguese populations. Pikeperch fork length for ages 1, 2, 3, and 4 was different between several populations. We applied generalized linear models (GLM) to study the influence of habitat type, latitude, altitude, time after first detection, and fish prey richness on pikeperch populations size at age 4 and condition. We observed higher condition values on populations from lower altitudes at lentic systems more recently introduced. But higher fork length at age 4 was found in populations from higher altitudes, on older populations with higher prey richness. Habitat type, time since first detection, and fish fauna composition are discussed as the main environmental factors explaining the observed phenotypic plasticity with concerns on predatory impact on native fauna.  相似文献   

8.
In central Europe, both brown trout Salmo trutta and European grayling Thymallus thymallus are threatened native salmonid species with high value in recreational angling and nature conservation. On the other hand, rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis are intensively stocked non-native species of high angling value but no value for nature conservation. This study tested if harvest rates of native salmonids are negatively correlated to intensive stocking and harvest rates of non-native salmonids in inland freshwater recreational fisheries. Data were collected from 250 fishing sites (river and stream stretches) over 13 years using mandatory angling logbooks. Logbooks were collected from individual anglers by the Czech Fishing Union in the regions of Prague and Central Bohemia, Czechia (central Europe) and processed by the author of this study. In result, anglers harvested 200,000 salmonids with total weight of 80 tons over 13 years. Intensive stocking of multiple salmonid species lead to slightly lower harvests of native salmonids. Inversely, intensive harvests of multiple salmonid species lead to slightly higher harvest of native salmonids. Recapture rates of stocked salmonids were relatively low (0.6%–3.7%), proving fish stocking moderately ineffective. Since the effects of non-native salmonid stocking and harvest rates on native salmonid harvest were significant but not strong, it is suggested that rivers and streams that support fishing for non-native salmonids still support fishing for native salmonids. However, this idea does not apply for fishing sites with really high intensity of non-native salmonid stocking – harvest rates of natives were very low on these fishing sites.  相似文献   

9.
10.
Although the occurrence of fossil fishes is known since more than one century in the Neogene of Gavdos Island (Greece), its composition remained hitherto unknown. The present study demonstrates that, in the Tortonian of Gavdos, the most abundant species is Bregmaceros albyi (Sauvage), which constitutes two thirds of the collected material. This fish fauna is indicative of an environment of moderate depth, probably corresponding to the external edge of the neritic zone, or possibly to the upper part of the continental slope. To cite this article: J. Gaudant et al., C. R. Palevol 4 (2005).  相似文献   

11.
Synopsis Spatial patterns of resource use by small-bodied fishes in the San Juan River were examined using stable isotopes. Using δ15N of fishes as an index of trophic position, our data suggest both native and non-native fishes primarily consumed macro-invertebrates. The δ13C of these fishes further suggested a detritus-based food web, from which most species fed on chironomids in low-velocity habitats. A two-way ANOVA revealed a significant interaction between trophic level of fish species and longitudinal position in the river. This interaction was primarily attributed to a decline in trophic level of non-native red shiner Cyprinella lutrensis, relative to other species, in upstream reaches of the river. In addition, ANCOVA results suggest trophic position of fishes was dependent on channel type (primary vs. secondary), as there was less variability in resource use in secondary channels. These data provided a spatial framework of trophic interactions that can be used to predict the outcome of management actions. Overall, we confirmed high overlap in resource used between native and non-native fishes. However, spatial variation in trophic interactions both longitudinally and laterally in the river present a challenge to resource managers attempting to managing entire river systems.  相似文献   

12.
  1. To adapt to ecological and environmental conditions, species can change their ecological niche (e.g., interactions among species) and function (e.g., prey‐predation, diet competition, and habitat segregation) at the species and guild levels. Stable isotope analysis of bulk carbon and nitrogen of organisms has conventionally been used to evaluate such adaptabilities in the scenopoetic and bionomic views as the isotopic niche width.
  2. Compound‐specific stable isotope analysis (CSIA) of nitrogen within amino acids provides trophic information without any disruption of scenopoetic views in the isotope ratios, unlike conventional bulk isotope analysis provides both information and therefore frequently hinders its usefulness for trophic information.
  3. We performed CSIA of amino acids to understand the trophic variability of the pike gudgeon Pseudogobio esocinus and largemouth bass Micropterus salmoides as representative specialist and generalist fish species, respectively, from 16 ecologically variable habitats in the four major rivers of Korea.
  4. There was little variation (1σ) in the trophic position (TP) among habitats for P. esocinus (± 0.2); however, there was considerably large variation for M. salmoides (± 0.6). The TP of M. salmoides was negatively correlated with the benthic invertebrate indices of the habitats, whereas the TP of P. esocinus showed no significant correlation with any indices. Thus, these two representative fish species have different trophic responses to ecological conditions, which is related to known differences in the trophic niche between specialists (i.e., small niche width) and generalists (i.e., large niche width).
  5. Over the past four decades, the conventional bulk isotope analysis has not been capable of deconvoluting “scenopoetic” and “bionomic” information. However, in the present study, we demonstrated that the CSIA of amino acids could isolate trophic niches from the traditional ecological niche composed of trophic and habitat information and evaluated how biological and ecological indices influence the trophic response of specialists and generalists.
  相似文献   

13.
14.
Life-history Habitat Matching in Invading Non-native Plant Species   总被引:1,自引:0,他引:1  
We briefly reviewed the literature on habitat matching in invading non-native plant species. Then we hypothesized that the richness and cover of native annual and perennial plant species integrate complex local information of vegetation and soils that would help to predict invasion success by similarly adapted non-native plant species. We tested these ‘life-history habitat matching’ relationships in 603 0.1-ha plots, including 294 plots in Colorado, which were relatively high for the cover of native perennial plant species, and for 309 0.1-ha plots in southern Utah, which were relatively high in the cover of native annual plant species. We found strong positive relationships between the richness and foliar cover for both native and non-native species, whether they were annual or perennial species (0.34 > r 2 < 0.53; P < 0.0001). We also found significant positive relationships between the cover of native annual species at a site and the richness (r 2 = 0.13; P < 0.0001) and the foliar cover (r 2 = 0.06; P < 0.0001) of non-native annual species. The proportion of non-native annual species in the flora of a plot also increased significantly with the foliar cover of native annual species. Conversely, the richness and cover of non-native annual species were significantly negatively associated with the foliar cover of native perennial species (r 2 = 0.05 and 0.06, respectively; P < 0.0001). The cover of non-native annual or perennial species was not significantly correlated with soil texture variables, %N, or %C. We conclude that there may be a high degree of life-history habitat matching by non-native annual species in these study sites. Information on native annual and perennial species richness and cover may help characterize the complex soils, climate, and disturbance environment in which similarly adapted non-native plant species establish and gain foliar cover.  相似文献   

15.
The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable‐isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ13C and δ15N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31·6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19·7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits.  相似文献   

16.
Trophic niche overlap in native and alien fish species can lead to competitive interactions whereby non‐native fishes outcompete indigenous individuals and eventually affect the viability of natural populations. The species Erythroculter mongolicus and Erythroculter ilishaeformis (belonging to the Culterinae), which are two commercially important fish species in the backwater bay of the Pengxi River in the Three Gorges Reservoir (TGR), were threatened by competition from the non‐native Coilia ectenes (lake anchovy). The latter is an alien species introduced into the lower reaches of the Yangtze River in China and now widespread in the TGR. The trophic consequences of non‐native lake anchovy invasion for E. mongolicus and E. ilishaeformis were assessed using stable isotope analysis (δ13C and δ15N) and associated metrics including the isotopic niche, measured as the standard ellipse area. The trophic niche of native E. mongolicus had little overlap (<15%) with the alien fish species and was significantly reduced in size after invasion by lake anchovy. This suggests that E. mongolicus shifted to a more specialized diet after invasion by lake anchovy. In contrast, the trophic niche overlap of native fish E. ilishaeformis with the alien fish species was larger (>50%) and the niche was obviously increased, implying that fish in this species exploited a wider dietary base to maintain their energetic requirements. Thus, marked changes for the native E. mongolicus and E. ilishaeformis were detected as the trophic consequences of invasion of non‐native lake anchovy.  相似文献   

17.
A total of 298 fish specimens belonging to seven families were caught during ichthyoplanktonic survey of three rivers within the Ewekoro cement facility catchment area located in southwestern Nigeria. The highest numbers of specimens were caught from Alaguntan (37.0%) and Elebute (36.6%) rivers while 28.9% of the fish samples were collected from Itori River. The fish population and species diversity recorded in the catchment rivers were significantly lower (p < 0.05) than comparative catches from Ewekoro River located about 30 km downstream of the factory operational area. The food items ingested by the specimens across the seasons in the catchment rivers revealed obvious differences in diet with some degree of overlap in the fish trophic preferences. However, the omnivorous species dominated the catches in each of the rivers, irrespective of season. Categorization of the fish specimens based on habitat-related adaptive physiology showed that a significant number of the fish from Alaguntan and Itori Rivers have accessory respiratory organs. The four species with accessory respiratory organs were Polypterus senegalus Curv., Clarias gariepinus C. & V., Ctenopoma kingslayae Gun. and Channa obscura Smith. Of the 12 fish species recorded in the Ewekoro cement facility catchment rivers, only P. senegalus, C. gariepinus, C. obscura and Oreochromis niloticus (Trew.) are valuable food fishes in southwestern Nigeria.  相似文献   

18.

Invasive non-native crustaceans are a biodiversity and management concern in the Mediterranean Sea. The Atlantic blue crab (Callinectes sapidus) was first recorded in the Mediterranean Sea in 1949, but may have arrived as early as in the 1930’s. Blue crabs in the Mediterranean Sea are of concern due to their presumed potential for negative consumptive and competitive interactions with native fauna. The aim of this study was to provide a first assessment of the trophic ecology of non-native blue crab in the Northern Aegean Sea using stable carbon (δ13C) and nitrogen isotope (δ15N) analysis. We found limited isotopic niche overlap between blue crabs and seven native species examined at Gökçeada Island in April, June, and August of 2017. In addition, the range of calculated trophic positions of blue crabs at Gökçeada Island (2.0 to 4.4), while broad, is in general agreement with prior studies in both native and non-native ranges. We also observe that trophic position declined and the relative importance of pelagic carbon sources to blue crabs increased from April to August. However, we also found that differing assumptions as to the number and type of food web baselines and trophic discrimination factors led to differing estimates of trophic position in blue crabs at Gökçeada Island by as much as one to two trophic levels. These methodical differences make it challenging to directly compare results within and between studies, and thus limit our ability to assess negative consumptive and competitive interactions of invasive blue crab with native coastal species in the Mediterranean Sea.

  相似文献   

19.
The introduction of novel predators into an environment can have detrimental consequences on prey species, especially if these species lack the ability to recognize these predators. One such species that may be negatively affected by introduced predators is the federally threatened San Marcos salamander (Eurycea nana). Previous research found that predator‐naïve (captive‐hatched) salamanders showed decreased activity in response to the chemical cues of both a native fish predator (Micropterus salmoides) and an introduced fish predator (Lepomis auritus), but not to a non‐predatory fish (Gambusia geiseri). We tested the hypothesis that E. nana recognized the introduced Lepomis (and other non‐native Lepomis) because they share chemical cues with other native congeneric Lepomis predators in the San Marcos River. We examined the antipredator response of predator‐naïve E. nana to chemical cues from (1) a sympatric native sunfish (Lepomis cyanellus; Perciformes: Centrarchidae); (2) a sympatric introduced sunfish (L. auritus); (3) an allopatric sunfish (Lepomis gibbosus); (4) a sympatric non‐native, non‐centrarchid cichlid (Herichthys cyanoguttatum; Perciformes: Cichlidae); and (5) a blank water control to determine whether individuals make generalizations about novel predators within a genus and across a family. Exposure to chemical cues from all fish predator treatments caused a reduction in salamander activity (antipredator response). Additionally, there were no differences in the antipredator responses to each predatory fish treatment. The similar responses to all sunfish treatments indicate that E. nana shows predator generalization in response to novel predators that are similar to recognized predators. Additionally, the antipredator response to H. cyanoguttatum indicates that predator generalization can occur among perciform families.  相似文献   

20.
Faunas and paleoenvironments from main archaeological Plio-Pleistocene sites of the Nachukui Formation (West Turkana, Kenya). The Nachukui Formation is currently under archaeological investigation, especially within the Kalochoro (2.35 – 1.9 Myr) and Kaitio (1.9 – 1.65 Myr) Members. Six main archaeological sites have been excavated from this time period, which yield rich vertebrate faunas collected in situ or in close vicinity to the site. Paleontological studies help to precise the specific diversity for each site and increase our documentation for each Member with the discovery of new taxa. They allow to provide new informations about the biotope diversities exploited by Hominids and show a climatic tendency towards more humid environment between the Members. To cite this article: J.-P. Brugal et al., C.R. Palevol 2 (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号