首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IFN-gamma is an important mediator of cellular resistance against microbial pathogens and tumor cells due in part to its potent capacity to activate macrophages for enhanced cytotoxicity. The present study demonstrates that TNF-alpha regulates the expression of enhanced antimicrobial activity by triggering IFN-gamma primed macrophages to kill or inhibit intracellular Toxoplasma gondii. Resident mouse macrophages stimulated with rIFN-gamma at levels up to 2500 U/ml failed to display enhanced antitoxoplasmal activity when cultured in vitro under low endotoxin conditions (less than 10 pg/ml), but were triggered by addition of small amounts of LPS (0.1 ng/ml). A similar requirement for LPS as a second signal necessary to trigger antitoxoplasmal activity was observed when IFN-gamma was administered to mice in vivo. The essential nature of this triggering step allowed us to explore the role of cytokines that act as endogenous regulators of macrophage activation. rTNF-alpha, although unable to confer antitoxoplasmal activity when used alone to treat macrophages, was capable of triggering IFN-gamma-primed macrophages cultured under low endotoxin conditions. The ability of TNF-alpha to trigger IFN-gamma-primed macrophages was blocked by rabbit anti-TNF-alpha polyclonal antisera but was not affected by polymyxin B indicating that TNF-alpha triggering was not due to contamination with LPS. Collectively, these findings demonstrate that TNF-alpha performs an important regulatory role in the expression of enhanced anti-microbial activity by IFN-gamma-primed macrophages.  相似文献   

2.
Tumor necrosis factor plays a critical role in airway smooth muscle hyperresponsiveness observed in asthma. However, the mechanisms underlying this phenomenon are poorly understood. We investigated if tumor necrosis factor-stimulated airway smooth muscle produced reactive oxygen species, leading to muscular hyperresponsiveness. Tumor necrosis factor increased intracellular and extracellular oxidants production in guinea pig airway smooth muscle cells and tissue homogenates. This production was abolished by inhibitors of NADPH oxidase (diphenylene iodinium or apocynin) and was enhanced by NADPH, whereas inhibitors of mitochondrial respiratory chain, nitric-oxide synthase, cyclooxygenase, and xanthine oxidase had no effect. NADPH oxidase subunits p22(phox) and p47(phox) were detected in smooth muscle cells and tissue homogenates by Western blot, immunohistochemistry, and spectral analysis. Furthermore, oxidants production was significantly reduced by transient transfection of smooth muscle cells with p22(phox) antisense oligonucleotides. Intracellular antioxidants and diphenylene iodinium abolished tumor necrosis factor-induced muscular hyperresponsiveness and increased in phosphorylation of the myosin light chain. Finally, NADPH oxidase subunits p22(phox) and p47(phox) were also detected in human airway smooth muscle. Collectively, these results demonstrate that tumor necrosis factor-stimulated airway smooth muscle produces oxidants through a NADPH oxidase-like system, which plays a pivotal role in muscle hyperresponsiveness and myosin light chain phosphorylation.  相似文献   

3.
Muscle wasting accompanies diseases that are associated with chronic elevated levels of circulating inflammatory cytokines and oxidative stress. We previously demonstrated that tumor necrosis factor-alpha (TNF-alpha) inhibits myogenic differentiation via the activation of nuclear factor-kappaB (NF-kappaB). The goal of the present study was to determine whether this process depends on the induction of oxidative stress. We demonstrate here that TNF-alpha causes a decrease in reduced glutathione (GSH) during myogenic differentiation of C(2)C(12) cells, which coincides with an elevated generation of reactive oxygen species. Supplementation of cellular GSH with N-acetyl-l-cysteine (NAC) did not reverse the inhibitory effects of TNF-alpha on troponin I promoter activation and only partially restored creatine kinase activity in TNF-alpha-treated cells. In contrast, the administration of NAC before treatment with TNF-alpha almost completely restored the formation of multinucleated myotubes. NAC decreased TNF-alpha-induced activation of NF-kappaB only marginally, indicating that the redox-sensitive component of the inhibition of myogenic differentiation by TNF-alpha occurred independently, or downstream of NF-kappaB. Our observations suggest that the inhibitory effects of TNF-alpha on myogenesis can be uncoupled in a redox-sensitive component affecting myotube formation and a redox independent component affecting myogenic protein expression.  相似文献   

4.
Lactoferrin (Lf) is an iron-binding protein involved in host defense against infection and severe inflammation, which accumulates in the brain during neurodegenerative disorders. Prior to determining Lf function in pathological brain tissues, we investigated its transport through the blood-brain barrier (BBB) in inflammatory conditions. For this purpose, we used a reconstituted BBB model consisting of the coculture of bovine brain capillary endothelial cells (BBCECs) and astrocytes in the presence of tumor necrosis factor-alpha (TNF-alpha). As TNF-alpha can be either synthesized by brain glial cells or present in circulating blood, BBCECs were exposed to this cytokine at their luminal or abluminal side. We have been able to demonstrate that in the presence of TNF-alpha, whatever the type of exposure, BBCECs were activated and Lf transport through the activated BBCECs was markedly increased. Lf was recovered intact at the abluminal side of the cells, suggesting that increased Lf accumulation may occur in immune-mediated pathophysiology. This process was transient as 20 h later, cells were in a resting state and Lf transendothelial traffic was back to normal. The enhancement of Lf transcytosis seems not to involve the up-regulation of the Lf receptor but rather an increase in the rate of transendothelial transport.  相似文献   

5.
Osteoblasts or bone marrow stromal cells are required as supporting cells for the in vitro differentiation of osteoclasts from their progenitor cells. Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) in the presence of macrophage colony-stimulating factor (M-CSF) is capable of replacing the supporting cells in promoting osteoclastogenesis. In the present study, using Balb/c-derived cultures, osteoclast formation in both systems-osteoblast/bone-marrow cell co-cultures and in RANKL-induced osteoclastogenesis-was inhibited by antibody to tumor necrosis factor-alpha (TNF-alpha), and was enhanced by the addition of this cytokine. TNF-alpha itself promoted osteoclastogenesis in the presence of M-CSF. However, even at high concentrations of TNF-alpha the efficiency of this activity was much lower than the osteoclastogenic activity of RANKL. RANKL increased the level of TNF-alpha mRNA and induced TNF-alpha release from osteoclast progenitors. Furthermore, antibody to p55 TNF-alpha receptors (TNF receptors-1) (but not to p75 TNF-alpha receptors (TNF receptors-2) inhibited effectively RANKL- (and TNF-alpha() induced osteoclastogenesis. Anti-TNF receptors-1 antibody failed to inhibit osteoclastogenesis in C57BL/6-derived cultures. Taken together, our data support the hypothesis that in Balb/c, but not in C57BL/6 (strains known to differ in inflammatory responses and cytokine modulation), TNF-alpha is an autocrine factor in osteoclasts, promoting their differentiation, and mediates, at least in part, RANKL's induction of osteoclastogenesis.  相似文献   

6.
Hyperinsulinemia has recently been reported as a risk factor for atherosclerotic diseases such as coronary heart disease; however, the effect of insulin on the development of atherosclerosis is not well understood. Here we have investigated the direct effect of insulin on macrophages, which are known to be important in the atherosclerotic process. We treated THP-1 macrophages with insulin (10(-7) m) and examined the gene expression using nucleic acid array systems. The results of array analysis showed that insulin stimulated gene expression of tumor necrosis factor-alpha (TNF-alpha) the most among all genes in the analysis. In addition, insulin administration to macrophages enhanced both mRNA expression and protein secretion of TNF-alpha in a dose-dependent manner. To determine the signaling pathway involved in this TNF-alpha response to insulin, we pretreated the cells with three distinct protein kinase inhibitors: wortmannin, PD98059, and SB203580. Only PD98059, which inhibits extracellular signal-regulated kinases, suppressed insulin-induced production of TNF-alpha mRNA and protein in THP-1 macrophages. These observations indicate that insulin stimulates TNF-alpha production in macrophages by regulating the expression of TNF-alpha mRNA and that the extracellular signal-regulated kinase signaling pathway may have a critical role in stimulating the production of TNF-alpha in response to insulin in macrophages.  相似文献   

7.
8.
9.
10.
11.
12.
NEMO (NF-kappaB essential modifier)/IKKgamma (IkappaB kinase-gamma) is required for the activation of the IkappaB kinase complex (IKK) by inflammatory stimuli such as tumor necrosis factor (TNF-alpha). Here we show that TNF-alpha stimulates the ubiquitination of NEMO in a manner that does not appear to target it for degradation and that is impaired by mutations in the NEMO zinc finger. Mutations of the zinc finger are found in patients with hypohidrotic ectodermal dysplasia with immunodeficiency (HED-ID) and lead to the impairment of TNF-alpha-stimulated IKK phosphorylation and activation. In addition, the ubiquitination of NEMO is mediated by c-IAP1, an inhibitor of apoptosis protein that is a component of the TNF receptor signaling complex. Thus, the ubiquitination of NEMO mediated by c-IAP1 likely plays an important role in the activation of IKK by TNF-alpha. Also, defective NEMO ubiquitination may be responsible for the impaired cellular NF-kappaB signaling found in patients with HED-ID.  相似文献   

13.
14.
15.
Endothelial dysfunction associated with elevated serum levels of TNF-alpha observed in diabetes, obesity, and congenital heart disease results, in part, from the impaired production of endothelial nitric oxide (NO). Cellular NO production depends absolutely on the availability of arginine, substrate of endothelial nitric oxide synthase (eNOS). In this report, evidence is provided demonstrating that treatment with TNF-alpha (10 ng/ml) suppresses not only eNOS expression but also the availability of arginine via the coordinate suppression of argininosuccinate synthase (AS) expression in aortic endothelial cells. Western blot and real-time RT-PCR demonstrated a significant and dose-dependent reduction of AS protein and mRNA when treated with TNF-alpha with a corresponding decrease in NO production. Reporter gene analysis demonstrated that TNF-alpha suppresses the AS proximal promoter, and EMSA analysis showed reduced binding to three essential Sp1 elements. Inhibitor studies suggested that the repression of AS expression by TNF-alpha may be mediated, in part, via the NF-kappaB signaling pathway. These findings demonstrate that TNF-alpha coordinately downregulates eNOS and AS expression, resulting in a severely impaired citrulline-NO cycle. The downregulation of AS by TNF-alpha is an added insult to endothelial function because of its important role in NO production and in endothelial viability.  相似文献   

16.
Accumulating evidence demonstrates that adipose tissue is a major site of tumor necrosis factor-alpha (TNF-alpha) gene expression, which is markedly high in obese animals and may contribute to obesity-linked insulin resistance. We now report that recombinant murine TNF-alpha triggers the apoptotic degeneration of brown adipocytes differentiated in culture. Moreover, noradrenaline, which has been described as having trophic effects on brown fat and accelerating the differentiation of brown adipocytes, is capable of dose-dependently preventing the TNF-alpha-induced apoptosis of brown fat cells. Since obesity is characterized by greatly increased TNF-alpha production and reduced catecholaminergic activity, apoptosis was studied in the brown fat of genetically obese animals. In situ DNA fragmentation analysis revealed a larger number of apoptotic cells in the brown fat of obese (fa/fa) than in that of lean (+/+) Zucker rats. The exposure of obese rats to low temperatures for 7 days, which increases the sympathetic activity of brown adipose tissue, significantly reduces the number of apoptotic brown adipocytes. We hypothesize that TNF-alpha may play a significant role in the control of brown fat homeostasis.  相似文献   

17.
18.
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that promotes cell migration, survival, and gene expression. Here we show that FAK signaling is important for tumor necrosis factor-alpha (TNFalpha)-induced interleukin 6 (IL-6) mRNA and protein expression in breast (4T1), lung (A549), prostate (PC-3), and neural (NB-8) tumor cells by FAK short hairpin RNA knockdown and by comparisons of FAK-null (FAK(-/-)) and FAK(+/+) mouse embryo fibroblasts. FAK promoted TNFalpha-stimulated MAPK activation needed for maximal IL-6 production. FAK was not required for TNFalpha-mediated nuclear factor-kappaB or c-Jun N-terminal kinase activation. TNFalpha-stimulated FAK catalytic activation and IL-6 production were inhibited by FAK N-terminal but not FAK C-terminal domain overexpression. Analysis of FAK(-/-) fibroblasts stably reconstituted with wild type or various FAK point mutants showed that FAK catalytic activity, Tyr-397 phosphorylation, and the Pro-712/713 proline-rich region of FAK were required for TNFalpha-stimulated MAPK activation and IL-6 production. Constitutively activated MAPK kinase-1 (MEK1) expression in FAK(-/-) and A549 FAK short hairpin RNA-expressing cells rescued TNFalpha-stimulated IL-6 production. Inhibition of Src protein-tyrosine kinase activity or mutation of Src phosphorylation sites on FAK (Tyr-861 or Tyr-925) did not affect TNFalpha-stimulated IL-6 expression. Moreover, analyses of Src(-/-), Yes(-/-), and Fyn(-/-) fibroblasts showed that Src expression was inhibitory to TNFalpha-stimulated IL-6 production. These studies provide evidence for a novel Src-independent FAK to MAPK signaling pathway regulating IL-6 expression with potential importance to inflammation and tumor progression.  相似文献   

19.
Influenza A virus infections are commonly associated with symptoms that suggest involvement of TNF-alpha. In this study, we exposed human monocytes, rat alveolar macrophages, and murine PU5-1.8 macrophages to influenza A virus, strain Puerto Rico 8. We observed a productive infection that was accompanied by TNF-alpha mRNA accumulation, TNF-alpha release and subsequent cell death. TNF-alpha production was dependent on exposure to live virus, in contrast to IFN release that was also induced by UV-inactivated virus. Most strikingly, low amounts of LPS (1 to 10 ng/ml) from Escherichia coli or Haemophilus influenzae were capable of strongly potentiating TNF-alpha production from virus-infected macrophages. The potentiating effect of LPS was neither due to increased survival of macrophages nor to altered virus multiplication, enhanced TNF-alpha gene expression, discharge of intracellular TNF-alpha stores, or shifts in the kinetics of TNF-alpha release. Thus, low amounts of LPS, which could easily be present in vivo, may serve as a potent trigger signal for TNF-alpha production from macrophages that have been primed by influenza A virus infection. These data suggest that the frequently observed serious complications of combined influenza A virus and bacterial infections may be partially due to a high TNF-alpha production.  相似文献   

20.
Heat shock proteins are generally regarded as intracellular proteins acting as molecular chaperones; however, Hsp72 is also detected in the extracellular compartment. Hsp72 has been identified in the bronchoalveolar lavage fluid (BALF) of patients with acute lung injury. To address whether Hsp72 directly activated airway epithelium, human bronchial epithelial cells (16HBE14o-) were treated with recombinant Hsp72. Hsp72 induced a dose-dependent increase in IL-8 expression, which was inhibited by the NF-kappaB inhibitor parthenolide. Hsp72 induced activation of NF-kappaB, as evidenced by NF-kappaB trans-activation and by p65 RelA and p50 NF-kappaB1 binding to DNA. Endotoxin contamination of the Hsp72 preparation was not responsible for these effects. Next, BALB/c mice were challenged with a single intratracheal inhalation of Hsp72 and killed 4 h later. Hsp72 induced significant up-regulation of KC, TNF-alpha, neutrophil recruitment, and myeloperoxidase in the BALF. A similar challenge with Hsp72 in TLR4 mutant mice did not stimulate the inflammatory response, stressing the importance of TLR4 in Hsp72-mediated lung inflammation. Last, cultured mouse tracheal epithelial cells (MTEC) from BALB/c and TLR4 mutant and wild-type mice were treated ex vivo with Hsp72. Hsp72 induced a significant increase in KC expression from BALB/c and wild-type MTEC in an NF-kappaB-dependent manner; however, TLR4 mutant MTEC had minimal cytokine release. Taken together, these data suggest that Hsp72 is released and biologically active in the BALF and can regulate airway epithelial cell cytokine expression in a TLR4 and NF-kappaB-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号