首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ADP-ribose) polymerase-1 (PARP-1) safeguards genomic integrity by limiting sister chromatid exchanges. Overstimulation of PARP-1 by extensive DNA damage, however, can result in cell death, as prolonged PARP-1 activation depletes NAD(+), a substrate, and elevates nicotinamide, a product. The decline of NAD(+) and the rise of nicotinamide may downregulate the activity of Sir2, the NAD(+)-dependent deacetylases, because deacetylation by Sir2 is dependent on high concentration of NAD(+) and inhibited by physiologic level of nicotinamide. The Sir2 deacetylase family has been implicated in mediating gene silencing, longevity and genome stability. It is conceivable that poly(ADP-ribosyl)ation by PARP-1, which is induced by DNA damage, could modulate protein deacetylation by Sir2 via the NAD(+)/nicotinamide connection. The possible linkage of the two ancient pathways that mediate broad biological activities may spell profound evolutionary roles for the conserved PARP-1 and Sir2 gene families in multicellular eukaryotes.  相似文献   

2.
3.
4.
5.
6.
Matrix processing peptidase of mitochondria. Structure-function relationships   总被引:12,自引:0,他引:12  
The mitochondrial processing peptidase (MPP) and the processing enhancing protein (PEP) cooperate in the proteolytic cleavage of matrix targeting sequences from nuclear-encoded mitochondrial precursor proteins. We have determined the cDNA sequence of Neurospora MPP after expression cloning. MPP appears to contain two domains of approximately equal size which are separated by a loop-like sequence. Considerable structural similarity exists to the recently sequenced yeast MPP as well as to Neurospora and yeast PEP. Four cysteine residues are conserved in Neurospora and yeast MPP. Inactivation of MPP can be achieved by using sulfhydryl reagents. MPP (but not PEP) depends on the presence of divalent metal ions for activity. Both MPP and PEP are synthesized as precursors containing matrix targeting signals which are processed during import into mitochondria by the mature forms of MPP and PEP.  相似文献   

7.
ADP-Ribosylation of Highly Purified Rat Brain Mitochondria   总被引:1,自引:0,他引:1  
Highly purified synaptic and nonsynaptic mitochondria were prepared from rat brain, and their ADP-ribosyl transferase and NAD glycohydrolase activities were investigated. Data show that there is no significant difference in ADP-ribosyl transferase activity between these two types of subcellular preparations. However, NAD glycohydrolase activity appeared to be much higher in nonsynaptic mitochondria. The specific activity of both enzymes was investigated in the presence of the inhibitor nicotinamide or its analogue 3-aminobenzamide or other adenine nucleotides, such as ATP or ADP-ribose. The inhibitory effect of nicotinamide or 3-aminobenzamide on ADP-ribosyl transferase appears rather weak compared with their effect on NAD glycohydrolase activity. However, ADP-ribose and ATP appeared more effective in inhibiting ADP-ribosyl transferase. Our results provide evidence for the existence of ADP-ribosyl transferase activity in rat brain mitochondria. When NAD glycohydrolase was inhibited totally by nicotinamide, the transfer of ADP-ribose from NAD to mitochondrial proteins still occurred. The chain length determinations show that the linkage of ADP-ribose to mitochondrial proteins is oligomeric.  相似文献   

8.
9.
1-methyl-4-phenylpyridine (MPP+), a major product of the oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been postulated to be the compound responsible for destruction of nigrostriatal neurons in man and primates and for inhibition of mitochondrial NADH oxidation which leads to cell death. We have confirmed that 0.5 mM MPP+ inhibits extensively the oxidation of NAD+-linked substrates in intact liver mitochondria in State 3 and after uncoupling, while succinate oxidation is unaffected. However, in inverted mitochondria, inner membrane preparations, and Complex I NADH oxidation is not significantly affected at this concentration of MPP+, nor are malate and glutamate dehydrogenases or the carriers of these substrates inhibited. We report here the discovery of an uptake system for MPP+ in mitochondria which is greatly potentiated by the presence of malate plus glutamate and inhibited by respiratory inhibitors, suggesting an energy-dependent carrier. A 40-fold concentration of MPP+ in the mitochondria occurs in ten minutes. This might account for the inhibition of malate and glutamate oxidation in intact mitochondria.  相似文献   

10.
Denu JM 《Cell》2007,129(3):453-454
Recent genetic evidence reveals additional salvage pathways for NAD(+) synthesis. In this issue, Belenky et al. (2007) report that nicotinamide riboside, a new NAD(+) precursor, regulates Sir2 deacetylase activity and life span in yeast. The ability of nicotinamide riboside to enhance life span does not depend on calorie restriction.  相似文献   

11.
Mutations in phosphatase and tensin homologue-induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD-linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA-mediated interference (RNAi)-based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin-associated rhomboid-like protease (PARL), m-AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway.  相似文献   

12.
Sandmeier JJ  Celic I  Boeke JD  Smith JS 《Genetics》2002,160(3):877-889
The Sir2 protein is an NAD(+)-dependent protein deacetylase that is required for silencing at the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA). Mutations in the NAD(+) salvage gene NPT1 weaken all three forms of silencing and also cause a reduction in the intracellular NAD(+) level. We now show that mutation of a highly conserved histidine residue in Npt1p results in a silencing defect, indicating that Npt1p enzymatic activity is required for silencing. Deletion of another NAD(+) salvage pathway gene called PNC1 caused a less severe silencing defect and did not significantly reduce the intracellular NAD(+) concentration. However, silencing in the absence of PNC1 was completely dependent on the import of nicotinic acid from the growth medium. Deletion of a gene in the de novo NAD(+) synthesis pathway BNA1 resulted in a significant rDNA silencing defect only on medium deficient in nicotinic acid, an NAD(+) precursor. By immunofluorescence microscopy, Myc-tagged Bna1p was localized throughout the whole cell in an asynchronously growing population. In contrast, Myc-tagged Npt1p was highly concentrated in the nucleus in approximately 40% of the cells, indicating that NAD(+) salvage occurs in the nucleus in a significant fraction of cells. We propose a model in which two components of the NAD(+) salvage pathway, Pnc1p and Npt1p, function together in recycling the nuclear nicotinamide generated by Sir2p deacetylase activity back into NAD(+).  相似文献   

13.
14.
Transport of nuclear-encoded precursor proteins into mitochondria includes proteolytic cleavage of amino-terminal targeting sequences in the mitochondrial matrix. We have isolated the processing activity from Neurospora crassa. The final preparation (enriched ca. 10,000-fold over cell extracts) consists of two proteins, the matrix processing peptidase (MPP, 57 kd) and a processing enhancing protein (PEP, 52 kd). The two components were isolated as monomers. PEP is about 15-fold more abundant in mitochondria than MPP. It is partly associated with the inner membrane, while MPP is soluble in the matrix. MPP alone has a low processing activity whereas PEP alone has no apparent activity. Upon recombining both, full processing activity is restored. Our data indicate that MPP contains the catalytic site and that PEP has an enhancing function. The mitochondrial processing enzyme appears to represent a new type of "signal peptidase," different from the bacterial leader peptidase and the signal peptidase of the endoplasmic reticulum.  相似文献   

15.
Effects of 1-methyl-4-phenylpyridinium ion (MPP+) on the activities of NAD+- or NADP+-linked dehydrogenases in the TCA cycle were studied using mitochondria prepared from mouse brains. Activities of NAD+- and NADP+-linked isocitrate dehydrogenases, NADH- and NADPH-linked glutamate dehydrogenases, and malate dehydrogenase were little affected by 2 mM of MPP+. However, alpha-ketoglutarate dehydrogenase activity was significantly inhibited by MPP+. Kinetic analysis revealed a competitive type of inhibition. Inhibition of alpha-ketoglutarate dehydrogenase may be one of the important mechanisms of MPP+-induced inhibition of mitochondrial respiration, and of neuronal degeneration.  相似文献   

16.
Heritable domains of generalized repression are a common feature of eukaryotic chromosomes and involve the assembly of DNA into a silenced chromatin structure. Sir2, a conserved protein required for silencing in yeast, has recently been shown to couple histone deacetylation to cleavage of a high-energy bond in nicotinamide adenine dinucleotide (NAD) and the synthesis of a novel product, O-acetyl-ADP-ribose. The deacetylase activity provides a direct link between Sir2 and the hypoacetylated state of silent chromatin. However, the unusual coupling of deacetylation to cleavage and synthesis of other bonds raises the possibility that deacetylation is not the only crucial function of Sir2.  相似文献   

17.
Highly active antiretroviral therapy has been associated with the emergence of lipodystrophy syndromes that have clinical features commonly seen in patients with mitochondrial dysfunction. The effect of therapeutic protease inhibitors (PIs) on mitochondrial function is unknown. Mitochondrial matrix space proteins possess an amino-terminal leader peptide that is removed by the mitochondrial processing protease (MPP). Lack of cleavage could result in non- or dysfunctional mitochondrial proteins. The effects of different PIs on protease processing using pure MPP or yeast mitochondria, recognized models for mammalian counterparts, were examined in vitro. Multiple PIs were found to inhibit MPP, evidenced by accumulation of immature pALDH and decreased levels of processed ALDH. Both indinavir and amprenavir at 5.0 mg/ml resulted in significant inhibition of MPP. Although inhibition of MPP was also observed with ritonavir and saquinavir, the inhibition was difficult to quantify due to background inhibition of MPP by DMSO that was required to solubilize the drugs for the in vitro studies. Indinavir was also shown to inhibit MPP within yeast mitochondria. Lack of processing may impair mitochondrial function and contribute to the observed mitochondrial dysfunctions in patients receiving HAART and implicated in antiretroviral-associated lipodystrophy.  相似文献   

18.
The majority of mitochondrial proteins can be imported into mitochondria following termination of their translation in the cytosol. Import of fumarase and several other proteins into mitochondria does not appear to occur post-translationally according to standard in vivo and in vitro assays. However, the nature of interaction between the translation and translocation apparatuses during import of these proteins is unknown. Therefore, a major question is whether the nascent chains of these proteins are exposed to the cytosol during import into mitochondria. We asked directly if the presequence of fumarase can be cleaved by externally added mitochondrial processing peptidase (MPP) during import, using an in vitro translation-translocation coupled reaction. The presequence of fumarase was cleaved by externally added MPP during import, indicating a lack of, or a loose physical connection between, the translation and translocation of this protein. Exchanging the authentic presequence of fumarase for that of the more efficient Su9-ATPase presequence reduced the exposure of fumarase precursors to externally added MPP en route to mitochondria. Therefore, exposure to cytosolic MPP is dependent on the presequence and not on the mature part of fumarase. On the other hand, following translation in the absence of mitochondria, the authentic fumarase presequence and that of Su9-ATPase become inaccessible to added MPP when attached to mature fumarase. Thus, folding of the mature portion of fumarase, which conceals the presequence, is the reason for its inability to be imported in classical post-translational assays. Another unique feature of fumarase is its distribution between the mitochondria and the cytosol. We show that in vivo the switch of the authentic presequence with that of Su9-ATPase caused more fumarase molecules to be localized to the mitochondria. A possible mechanism by which the cytosolic exposure, the targeting efficiency, and the subcellular distribution of fumarase are dictated by the presequence is discussed.  相似文献   

19.
Nuclear-encoded mitochondrial precursor proteins are proteolytically processed inside the mitochondrion after import. The general mitochondrial processing activity in plant mitochondria has been shown to be integrated into the cytochrome bc1 complex of the respiratory chain. Here we investigate the occurrence of an additional, matrix-located processing activity by incubation of the precursors of the soybean mitochondrial proteins, alternative oxidase, the FAd subunit of the ATP synthetase and the tobacco F1 subunit of the ATP synthase, with the membrane and soluble components of mitochondria isolated from soybean cotyledons and spinach leaves. A matrix-located peptidase specifically processed the precursors to the predicted mature form in a reaction which was sensitive to orthophenanthroline, a characteristic inhibitor of mitochondrial processing peptidase (MPP). The specificity of the matrix peptidase was illustrated by the inhibition of processing of the alternative oxidase precursor in both soybean and spinach matrix extracts upon altering a single amino acid residue in the targeting presequence (-2 Arg to Gly). Additionally, there was no evidence for general proteolysis of precursor proteins incubated with the matrix. The purity of the matrix fractions was ascertained by spectrophotometric and immunological analyses. The results demonstrate that there is a specific processing activity in the matrix of soybean and spinach in addition to the previously well characterized membrane-bound MPP integrated into the cytochrome bc1 complex of the respiratory chain.  相似文献   

20.
Most mitochondrial matrix space proteins are synthesized as a precursor protein, and the N-terminal extension of amino acids that served as the leader sequence is removed after import by the action of a metalloprotease called mitochondrial processing peptidase (MPP). The crystal structure of MPP has been solved very recently, and it has been shown that synthetic leader peptides bind with MPP in an extended conformation. However, it is not known how MPP recognizes hundreds of leader peptides with different primary and secondary structures or when during import the leader is removed. Here we took advantage of the fact that the structure of the leader from rat liver aldehyde dehydrogenase has been determined by 2D-NMR to possess two helical portions separated by a three amino acid (RGP) linker. When the linker was deleted, the leader formed one long continuous helix that can target a protein to the matrix space but is not removed by the action of MPP. Repeats of two and three leaders were fused to the precursor protein to determine the stage of import at which processing occurs, if MPP could function as an endo peptidase, and if it would process if the cleavage site was part of a helix. Native or linker deleted constructs were used. Import into isolated yeast mitochondria or processing with recombinantly expressed MPP was performed. It was concluded that processing did not occur as the precursor was just entering the matrix space, but most likely coincided with the folding of the protein. Further, finding that hydrolysis could not take place if the processing site was part of a stable helix is consistent with the crystal structure of MPP. Lastly, it was found that MPP could function at sites as far as 108 residues from the N terminus of the precursor protein, but its ability to process decreases exponentially as the distance increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号