首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple strategy to separate overlapping electron paramagnetic resonance (EPR) signals in biological systems is presented. Pulsed EPR methods (inversion- and saturation-recovery) allow the determination of the T(1) spin-lattice relaxation times of paramagnetic centers. T(1) may vary by several orders of magnitude depending on the species under investigation. These variations can be employed to study selectively individual species from a spectrum that results from an overlap of two species using an inversion-recovery filtered (IRf) pulsed EPR technique. The feasibility of such an IRf field-swept technique is demonstrated on model compounds (alpha,gamma-bisphenylene-beta-phenylallyl-benzolate, BDPA, and 2,2,6,6-tetramethyl-piperidine-1-oxyl, TEMPO) and a simple strategy for the successful analysis of such mixtures is presented. Complex I is a multisubunit membrane protein of the respiratory chain containing several iron-sulfur (FeS) centers, which are observable with EPR spectroscopy. It is not possible to investigate the functionally important FeS cluster N2 separately because this EPR signal always overlaps with the other FeS signals. This cluster can be studied selectively using the IRf field-swept technique and its EPR spectrum is in excellent agreement with previous cw-EPR data from the literature. In addition, the possibility to separate the hyperfine spectra of two spectrally overlapping paramagnetic species is demonstrated by applying this relaxation filter together with hyperfine spectroscopy (REFINE). For the first time, the application of this filter to a three-pulse electron spin-echo envelope modulation (ESEEM) pulse sequence is demonstrated to selectively observe hyperfine spectra on a system containing two paramagnetic species. Finally, REFINE is used to assign the observed nitrogen modulation in complex I to an individual iron-sulfur cluster.  相似文献   

2.
After reduction with nicotinamide adenine dinucleotide (NADH), NADH:ubiquinone oxidoreductase (complex I) of the strictly aerobic yeast Yarrowia lipolytica shows clear signals from five different paramagnetic iron-sulfur (FeS) clusters (N1-N5) which can be detected using electron paramagnetic resonance (EPR) spectroscopy. The ligand environment and the assignment of several FeS clusters to specific binding motifs found in several subunits of the complex are still under debate. In order to characterize the hyperfine interaction of the surrounding nuclei with FeS cluster N1, one- and two-dimensional electron spin echo envelope modulation experiments were performed at a temperature of 30 K. At this temperature only cluster N1 contributes to the overall signal in a pulsed EPR experiment. The hyperfine and quadrupole tensors of a nitrogen nucleus and the isotropic and dipolar hyperfine couplings of two sets of protons could be determined by numerical simulation of the one- and two-dimensional spectra. The values obtained are in perfect agreement with a ferredoxin-like binding structure by four cysteine amino acid residues and allow the assignment of the nitrogen couplings to a backbone nitrogen nucleus and the proton couplings to the beta-protons of the bound cysteine residues.  相似文献   

3.
Nitroxide-labeled nucleic acids are used as a molecular size sensor to identify as few as one genome under polymerase chain reaction (PCR) conditions by electron paramagnetic resonance (EPR) spectroscopy. DNA identification is based on differences in the EPR spectra of mono-nitroxide-labeled nucleic acids. The experimental data imply that rapid DNA identification can be achieved in many systems by EPR at the molecular level.  相似文献   

4.
Early reperfusion of an ischemic region can result in significant salvage of the area at risk. We show the presence of hydroxyl free radicals at the time of post ischemia reperfusion using electron paramagnetic resonance (EPR) spectroscopy in a macaque model. These free radicals may be formed as a result of reperfusion or may be an un-involved bystander. It is possible that they may be involved in reperfusion injury.  相似文献   

5.
Respiratory complex I couples the transfer of electrons from NADH to ubiquinone and the translocation of protons across the mitochondrial membrane. A detailed understanding of the midpoint reduction potentials (Em) of each redox center and the factors which influence those potentials are critical in the elucidation of the mechanism of electron transfer in this enzyme. We present accurate electrostatic interaction energies for the iron-sulfur (FeS) clusters of complex I to facilitate the development of models and the interpretation of experiments in connection to electron transfer (ET) in this enzyme. To calculate redox titration curves for the FeS clusters it is necessary to include interactions between clusters, which in turn can be used to refine Em values and validate spectroscopic assignments of each cluster. Calculated titration curves for clusters N4, N5, and N6a are discussed. Furthermore, we present some initial findings on the electrostatics of the redox centers of complex I under the influence of externally applied membrane potentials. A means of determining the location of the FeS cofactors within the holo-complex based on electrostatic arguments is proposed. A simple electrostatic model of the protein/membrane system is examined to illustrate the viability of our hypothesis.  相似文献   

6.
Bacterial proton-translocating NADH:quinone oxidoreductase (NDH-1) consists of a peripheral and a membrane domain. The peripheral domain catalyzes the electron transfer from NADH to quinone through a chain of seven iron-sulfur (Fe/S) clusters. Subunit NuoI in the peripheral domain contains two [4Fe-4S] clusters (N6a and N6b) and plays a role in bridging the electron transfer from cluster N5 to the terminal cluster N2. We constructed mutants for eight individual Cys-coordinating Fe/S clusters. With the exception of C63S, all mutants had damaged architecture of NDH-1, suggesting that Cys-coordinating Fe/S clusters help maintain the NDH-1 structure. Studies of three mutants (C63S-coordinating N6a, P110A located near N6a, and P71A in the vicinity of N6b) were carried out using EPR measurement. These three mutations did not affect the EPR signals from [2Fe-2S] clusters and retained electron transfer activities. Signals at g(z) = 2.09 disappeared in C63S and P110A but not in P71A. Considering our data together with the available information, g(z,x) = 2.09, 1.88 signals are assigned to cluster N6a. It is of interest that, in terms of g(z,x) values, cluster N6a is similar to cluster N4. In addition, we investigated the residues (Ile-94 and Ile-100) that are predicted to serve as electron wires between N6a and N6b and between N6b and N2, respectively. Replacement of Ile-100 and Ile-94 with Ala/Gly did not affect the electron transfer activity significantly. It is concluded that conserved Ile-100 and Ile-94 are not essential for the electron transfer.  相似文献   

7.
Taylor AM  Stoll S  Britt RD  Jarrett JT 《Biochemistry》2011,50(37):7953-7963
Biotin synthase catalyzes the conversion of dethiobiotin (DTB) to biotin through the oxidative addition of sulfur between two saturated carbon atoms, generating a thiophane ring fused to the existing ureido ring. Biotin synthase is a member of the radical SAM superfamily, composed of enzymes that reductively cleave S-adenosyl-l-methionine (SAM or AdoMet) to generate a 5'-deoxyadenosyl radical that can abstract unactivated hydrogen atoms from a variety of organic substrates. In biotin synthase, abstraction of a hydrogen atom from the C9 methyl group of DTB would result in formation of a dethiobiotinyl methylene carbon radical, which is then quenched by a sulfur atom to form a new carbon-sulfur bond in the intermediate 9-mercaptodethiobiotin (MDTB). We have proposed that this sulfur atom is the μ-sulfide of a [2Fe-2S](2+) cluster found near DTB in the enzyme active site. In the present work, we show that formation of MDTB is accompanied by stoichiometric generation of a paramagnetic FeS cluster. The electron paramagnetic resonance (EPR) spectrum is modeled as a 2:1 mixture of components attributable to different forms of a [2Fe-2S](+) cluster, possibly distinguished by slightly different coordination environments. Mutation of Arg260, one of the ligands to the [2Fe-2S] cluster, causes a distinctive change in the EPR spectrum. Furthermore, magnetic coupling of the unpaired electron with (14)N from Arg260, detectable by electron spin envelope modulation (ESEEM) spectroscopy, is observed in WT enzyme but not in the Arg260Met mutant enzyme. Both results indicate that the paramagnetic FeS cluster formed during catalytic turnover is a [2Fe-2S](+) cluster, consistent with a mechanism in which the [2Fe-2S](2+) cluster simultaneously provides and oxidizes sulfide during carbon-sulfur bond formation.  相似文献   

8.
The Elp3 subunit of the Elongator complex is highly conserved from archaea to humans and contains a well-characterized C-terminal histone acetyltransferase (HAT) domain. The central region of Elp3 shares significant sequence homology to the Radical SAM superfamily. Members of this large family of bacterial proteins contain a FeS cluster and use S-adenosylmethionine (SAM) to catalyse a variety of radical reactions. To biochemically characterize this domain we have expressed and purified the corresponding fragment of the Methanocaldococcus jannaschii Elp3 protein. The presence of a Fe4S4 cluster has been confirmed by UV-visible spectroscopy and electron paramagnetic resonance (EPR) spectroscopy and the Fe content determined by both a colorimetric assay and atomic absorption spectroscopy. The cysteine residues involved in cluster formation have been identified by site-directed mutagenesis. The protein binds SAM and the binding alters the EPR spectrum of the FeS cluster. Our results provide biochemical support to the hypothesis that Elp3 does indeed contain the Fe4S4 cluster which characterizes the Radical SAM superfamily and binds SAM, suggesting that Elp3, in addition to its HAT activity, has a second as yet uncharacterized catalytic function. We also present preliminary data to show that the protein cleaves SAM.  相似文献   

9.
Electron paramagnetic resonance (EPR) spectra of complex biological systems contain information about the paramagnetic centres present. Retrieving such information is important since paramagnetic species are common intermediates of all redox reactions in both normal and abnormal metabolism. However, it is often difficult to determine the nature and content of all paramagnetic species present because the EPR signals from individual centres overlap. Here, we apply our deconvolution method based on spectra subtraction with variable coefficient to quantify individual paramagnetic components of human muscle biopsies taken from critically ill patients with severe sepsis. We use low temperature EPR spectroscopy to identify and quantify nine different paramagnetic species in the tissue. These include the majority of the mitochondrial iron-sulfur centres and the first in vivo report of a mitochondrial radical assigned to a spin-coupled pair of semiquinones (SQ·-SQ·). We have previously demonstrated in these same muscle biopsies that biochemical assays of mitochondrial dysfunction correlate with clinical outcomes (D. Brealey, M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, M. Singer, Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360 (2002) 219-223.). Analysis of the paramagnetic centres in the muscle confirms and extends these findings: the (SQ·-SQ·) radical species negatively correlates with the illness severity of the patient (APACHE II score) and a decreased concentration of mitochondrial Complex I iron-sulfur redox centres is linked to mortality.  相似文献   

10.
Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T1 of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T1 is longer, no modulation of the coupling between metal centers can be detected.  相似文献   

11.
Xu W  Lees NS  Hall D  Welideniya D  Hoffman BM  Duin EC 《Biochemistry》2012,51(24):4835-4849
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB) catalyzes the terminal step of the MEP/DOXP pathway where it converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into the two products, isopentenyl diphosphate and dimethylallyl diphosphate. The reaction involves the reductive elimination of the C4 hydroxyl group, using a total of two electrons. Here we show that the active form of IspH contains a [4Fe-4S] cluster and not the [3Fe-4S] form. Our studies show that the cluster is the direct electron source for the reaction and that a reaction intermediate is bound directly to the cluster. This active form has been trapped in a state, dubbed FeS(A), that was detected by electron paramagnetic resonance (EPR) spectroscopy when one-electron-reduced IspH was incubated with HMBPP. In addition, three mutants of IspH have been prepared and studied, His42, His124, and Glu126 (Aquifex aeolicus numbering), with particular attention paid to the effects on the cluster properties and possible reaction intermediates. None of the mutants significantly affected the properties of the [4Fe-4S](+) cluster, but different effects were observed when one-electron-reduced forms were incubated with HMBPP. Replacing His42 led to an increased K(M) value and a much lower catalytic efficiency, confirming the role of this residue in substrate binding. Replacing the His124 also resulted in a lower catalytic efficiency. In this case, however, the enzyme showed the loss of the [4Fe-4S](+) EPR signal upon addition of HMBPP without the subsequent formation of the FeS(A) signal. Instead, a radical-type signal was observed in some of the samples, indicating that this residue plays a role in the correct positioning of the substrate. The incorrect orientation in the mutant leads to the formation of substrate-based radicals instead of the cluster-bound intermediate complex FeS(A). Replacing the Glu126 also resulted in a lower catalytic efficiency, with yet a third type of EPR signal being detected upon incubation with HMBPP. (31)P and (2)H ENDOR measurements of the FeS(A) species incubated with regular and (2)H-C4-labeled HMBPP reveal that the substrate binds to the enzyme in the proximity of the active-site cluster with C4 adjacent to the site of linkage between the FeS cluster and HMBPP. Comparison of the spectroscopic properties of this intermediate to those of intermediates detected in (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase and ferredoxin:thioredoxin reductase suggests that HMBPP binds to the FeS cluster via its hydroxyl group instead of a side-on binding as previously proposed for the species detected in the inactive Glu126 variant. Consequences for the IspH reaction mechanism are discussed.  相似文献   

12.
XC Sarcoma, Vero and Aedes aegypti plasma membranes have been studied in viable cells and in purified membrane of XC Sarcoma cells by the spin label method. The temperature dependence of the order parameter of fatty acid spin labels is found to be linear in all three cells and membrane and shows no evidence of a lipid phase transition. The order parameter of the fatty acid labels substituted at the 5-position is shown to increase as a function of the cholesterol: phospholipid molar ratio in cells that have been studied to date. Cells attached to their growing surface are studied for the first time by electron paramagnetic resonance spectroscopy (EPR). The resulting spectra are anisotropic due to the non-spherical shape of the cells and show that these labels orient preferentially perpendicular to the cell surface. The viscosity of the extracted XC cell membrane is estimated to be 2.5 P from rotational correlation time measurements of the spin label 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO).  相似文献   

13.
Electron paramagnetic resonance (EPR) spectroscopy can be applied to measure oxygen concentrations in cells and tissues. Oxygen is paramagnetic, and thus it interacts with a free radical label resulting in a broadening of the observed linewidth. Recently we have developed instrumentation in order to enable the performance of EPR spectroscopy and EPR oximetry in the intact beating heart. This spectrometer consists of 1–2-GHz microwave bridge with the source locked to the resonant frequency of a specially designed lumped circuit resonator. This technique is applied to measure the kinetics of the uptake and clearance of different free radical labels. It is demonstrated that this technique can be used to noninvasively measure tissue oxygen concentration. In addition, rapid scan EPR measurements can be performed enabling gated millisecond measurements of oxygen concentrations to be performed over the cardiac cycle. Thus, low-frequency EPR spectroscopy offers great promise in the study of tissue oxygen concentrations and the role of oxygen in metabolic control.  相似文献   

14.
Diphenylamine (DPA), a known inhibitor of polyene and isoprene biosynthesis, is shown to inhibit flash-activatable electron transfer in photosynthetic membranes of Rhodobacter capsulatus. DPA is specific to the QO site of ubihydroquinone:cytochrome c oxidoreductase, where it inhibits not only reduction of the [2Fe-2S]2+ cluster in the FeS subunit and subsequent cytochrome c reduction but also heme bL reduction in the cytochrome b subunit. In both cases, the kinetic inhibition constant (Ki) is 25 +/- 10 microM. A novel aspect of the mode of action of DPA is that complete inhibition is established without disturbing the interaction between the reduced [2Fe-2S]+ cluster and the QO site ubiquinone complement, as observed from the electron paramagnetic resonance (EPR) spectral line shape of the reduced [2Fe-2S] cluster, which remained characteristic of two ubiquinones being present. These observations imply that DPA is behaving as a noncompetitive inhibitor of the QO site. Nevertheless, at higher concentrations (>10 mM), DPA can interfere with the QO site ubiquinone occupancy, leading to a [2Fe-2S] cluster EPR spectrum characteristic of the presence of only one ubiquinone in the QO site. Evidently, DPA can displace the more weakly bound of the two ubiquinones in the site, but this is not requisite for its inhibiting action.  相似文献   

15.
Electron paramagnetic resonance (EPR) spectroscopy is a valuable tool for understanding the oxidation state and chemical environment of the Mn4Ca cluster of photosystem II. Since the discovery of the multiline signal from the S2 state, EPR spectroscopy has continued to reveal details about the catalytic center of oxygen evolution. At present EPR signals from nearly all of the S-states of the Mn4Ca cluster, as well as from modified and intermediate states, have been observed. This review article describes the various EPR signals obtained from the Mn4Ca cluster, including the metalloradical signals due to interaction of the cluster with a nearby organic radical.  相似文献   

16.
Bennett B  Lemon BJ  Peters JW 《Biochemistry》2000,39(25):7455-7460
Carbon monoxide binding and inhibition have been investigated by electron paramagnetic resonance (EPR) spectroscopy in solution and in crystals of structurally described states of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum. Simulation of the EPR spectrum of the as-isolated state indicates that the main component of the EPR spectrum consists of the oxidized state of the "H cluster" and components due to reduced accessory FeS clusters. Addition of carbon monoxide to CpI in the presence of dithionite results in the inhibition of hydrogen evolution activity, and a characteristic axial EPR signal [g(eff(1)), g(eff(2)), and g(eff(3)) = 2.0725, 2.0061, and 2.0061, respectively] was observed. Hydrogen evolution activity was restored by successive sparging with hydrogen and argon and resulted in samples that exhibited the native oxidized EPR signature that could be converted to the reduced form upon addition of sodium dithionite and hydrogen. To examine the relationship between the spectroscopically defined states of CpI and those observed structurally by X-ray crystallography, we have examined the CpI crystals using EPR spectroscopy. EPR spectra of the crystals in the CO-bound state exhibit the previously described axial signal associated with CO binding. The results indicate that the addition of carbon monoxide to CpI results in a single reversible carbon monoxide-bound species characterized by loss of enzyme activity and the distinctive axial EPR signal.  相似文献   

17.
We have used site-directed mutagenesis, EPR spectroscopy, redox potentiometry, and protein crystallography to monitor assembly of the FS0 [4Fe-4S] cluster and molybdo-bis(pyranopterin guanine dinucleotide) cofactor (Mo-bisPGD) of the Escherichia coli nitrate reductase A (NarGHI) catalytic subunit (NarG). Cys and Ser mutants of NarG-His49 both lack catalytic activity, with only the former assembling FS0 and Mo-bisPGD. Importantly, both prosthetic groups are absent in the NarG-H49S mutant. EPR spectroscopy of the Cys mutant reveals that the Em value of the FS0 cluster is decreased by at least 500 mV, preventing its participation in electron transfer to the Mo-bisPGD cofactor. To demonstrate that decreasing the FS0 cluster Em results in decreased enzyme activity, we mutated a critical Arg residue (NarG-Arg94) in the vicinity of FS0 to a Ser residue. In this case, the Em of FS0 is decreased by 115 mV, with a concomitant decrease in enzyme turnover to ∼30% of the wild type. Analysis of the structure of the NarG-H49S mutant reveals two important aspects of NarGHI maturation: (i) apomolybdo-NarGHI is able to bind GDP moieties at their respective P and Q sites in the absence of the Mo-bisPGD cofactor, and (ii) a critical segment of residues in NarG, 49HGVNCTG55, must be correctly positioned to ensure holoenzyme maturation.  相似文献   

18.
Main principles of the way to decompose an EPR spectrum of a multicomponent system, irradiated at 77 K, into separate radiation-induced paramagnetic centre signals are given. The decomposition is possible due to the computer assistant spectra processing, and is based on different properties of different paramagnetic centres, namely, on different thermostability of the centres, on different rate of relaxation, and on different photosensitivity. Concrete examples of the EPR spectrum decomposition into different free radical signals are given for cases of murine liver and spleen irradiated at 77 K. Radiochemical yields of different free radicals, induced by gamma radiation at 77 K in whole biological tissues, were defined. The data on nature and properties of the paramagnetic centres induced by radiation in biological tissues are shortly reviewed.  相似文献   

19.
Abstract Membranes prepared from Methanosarcina barkeri cultured on acetate were examined for electron carriers using electron paramagnetic resonance (EPR) and optical spectroscopy. EPR analysis of membrane suspensions demonstrated multiple iron-sulfur centers of the 4Fe-4S type, a hihg-spin heme-like species and possibly rebredoxin. Optical spectroscopy demonstrated that a b -type cytochrome was reduced by molecular hydrogen and oxidized by methyl coenzyme M. A membrane-bound hydrogenase activity (14 μM · min−1 (mg protein)−1) was detected. This suggests a putative role for cytochrome b and hydrogenase in electron transfer and methyl-group reduction during aceticlastic methanogenesis.  相似文献   

20.
Electron paramagnetic resonance (EPR) spectra of complex biological systems contain information about the paramagnetic centres present. Retrieving such information is important since paramagnetic species are common intermediates of all redox reactions in both normal and abnormal metabolism. However, it is often difficult to determine the nature and content of all paramagnetic species present because the EPR signals from individual centres overlap. Here, we apply our deconvolution method based on spectra subtraction with variable coefficient to quantify individual paramagnetic components of human muscle biopsies taken from critically ill patients with severe sepsis. We use low temperature EPR spectroscopy to identify and quantify nine different paramagnetic species in the tissue. These include the majority of the mitochondrial iron-sulfur centres and the first in vivo report of a mitochondrial radical assigned to a spin-coupled pair of semiquinones (SQ*-SQ*). We have previously demonstrated in these same muscle biopsies that biochemical assays of mitochondrial dysfunction correlate with clinical outcomes (D. Brealey, M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, M. Singer, Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360 (2002) 219-223.). Analysis of the paramagnetic centres in the muscle confirms and extends these findings: the (SQ*-SQ*) radical species negatively correlates with the illness severity of the patient (APACHE II score) and a decreased concentration of mitochondrial Complex I iron-sulfur redox centres is linked to mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号