首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Dinoflagellates from the genus Symbiodinium form symbiotic associations with cnidarians including corals and anemones. The photosynthetic apparatuses of these dinoflagellates possess a unique photosynthetic antenna system incorporating the peridinin–chlorophyll a–protein (PCP). It has been proposed that the appearance of a PCP-specific 77 K fluorescence emission band around 672–675 nm indicates that high light treatment results in PCP dissociation from intrinsic membrane antenna complexes, blocking excitation transfer to the intrinsic membrane-bound antenna complexes, chlorophyll a–chlorophyll c2–peridinin–protein-complex (acpPC) and associated photosystems (Reynolds et al., 2008 Proc Natl Acad Sci USA 105:13674–13678).We have tested this model using time-resolved fluorescence decay kinetics in conjunction with global fitting to compare the time-evolution of the PCP spectral bands before and after high light exposure. Our results show that no long-lived PCP fluorescence emission components appear either before or after high light treatment, indicating that the efficiency of excitation transfer from PCP to membrane antenna systems remains efficient and rapid even after exposure to high light. The apparent increased relative emission at around 675 nm was, instead, caused by strong preferential exciton quenching of the membrane antenna complexes associated with acpPC and reaction centers. This strong non-photochemical quenching (NPQ) is consistent with the activation of xanthophyll-associated quenching mechanisms and the generally-observed avoidance in nature of long-lived photoexcited states that can lead to oxidative damage. The acpPC component appears to be the most strongly quenched under high light exposure suggesting that it houses the photoprotective exciton quencher.  相似文献   

2.
Planktonic diatoms (Bacillariophyceae) have to cope with large fluctuations of light intensity and periodic exposure to high light. After a shift to high light, photoprotective dissipation of excess energy characterized by the nonphotochemical quenching of fluorescence (NPQ) and the concomitant deepoxidation of diadinoxanthin to diatoxanthin (DT) were measured in four different planktonic marine diatoms (Bacillariophyceae): Skeletonema costatum (Greville) Cleve, Cylindrotheca fusiformis Reimann et Lewin, Thalassiosira weissflogii (Grunow) Fryxell et Hasle, and Ditylum brightwellii (West) Grunow in comparison to the model organism Phaeodactylum tricornutum Böhlin. Upon a sudden increase of light intensity, deepoxidation was rapid and de novo synthesis of DT also occurred. In all species, NPQ was linearly related to the amount of DT formed during high light. In this report, we focused on the role of DT in the dissipation of energy that takes place in the light‐harvesting complex. In S. costatum for the same amount of DT, less NPQ was formed than in P. tricornutum and as a consequence the photoprotection of PSII was less efficient. The general features of photoprotection by harmless dissipation of excess energy in planktonic diatoms described here partly explain why diatoms are well adapted to light intensity fluctuations.  相似文献   

3.
The chlorophyll-protein CP43′ (isiA gene) induced by stress conditions in cyanobacteria is shown to serve as an antenna for Photosystem II (PSII), in addition to its known role as an antenna for Photosystem I (PSI). At high light intensity, this antenna is converted to an efficient trap for chlorophyll excitations that protects system II from photo-inhibition. In contrast to the ‘energy-dependent non-photochemical quenching’ (NPQ) in chloroplasts, this photoprotective energy dissipation in cyanobacteria is triggered by blue light. The induction is proportional to light intensity. Induction and decay of the quenching exhibit the same large temperature-dependence.  相似文献   

4.
Diatoms, which are primary producers in the oceans, can rapidly switch on/off efficient photoprotection to respond to fast light-intensity changes in moving waters. The corresponding thermal dissipation of excess-absorbed-light energy can be observed as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Fluorescence-induction measurements on Cyclotella meneghiniana diatoms show two NPQ processes: qE1 relaxes rapidly in the dark while qE2 remains present upon switching to darkness and is related to the presence of the xanthophyll-cycle pigment diatoxanthin (Dtx). We performed picosecond fluorescence measurements on cells locked in different (quenching) states, revealing the following sequence of events during full development of NPQ. At first, trimers of light-harvesting complexes (fucoxanthin–chlorophyll a/c proteins), or FCPa, become quenched, while being part of photosystem II (PSII), due to the induced pH gradient across the thylakoid membrane. This is followed by (partial) detachment of FCPa from PSII after which quenching persists. The pH gradient also causes the formation of Dtx which leads to further quenching of isolated PSII cores and some aggregated FCPa. In subsequent darkness, the pH gradient disappears but Dtx remains present and quenching partly pertains. Only in the presence of some light the system completely recovers to the unquenched state.  相似文献   

5.
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679?nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis.  相似文献   

6.
In diatoms, the non-photochemical fluorescence quenching (NPQ) regulates photosynthesis during light fluctuations. NPQ is associated with an enzymatic xanthophyll cycle (XC) which is controlled by the light-driven transthylakoid proton gradient (delta pH). In this report, special illumination conditions and chemicals were used to perturb the kinetics of the delta pH build-up, of the XC and of NPQ. We found that the delta pH-related acidification of the lumen is also needed for NPQ to develop by switching the xanthophylls to an 'activated' state, probably via the protonation of light-harvesting antenna proteins. It confirms the NPQ model previously proposed for diatoms.  相似文献   

7.
8.
N. Berne  T. Fabryova  B. Istaz  P. Cardol  B. Bailleul 《BBA》2018,1859(7):491-500
In changing light conditions, photosynthetic organisms develop different strategies to maintain a fine balance between light harvesting, photochemistry, and photoprotection. One of the most widespread photoprotective mechanisms consists in the dissipation of excess light energy in the form of heat in the photosystem II antenna, which participates to the Non Photochemical Quenching (NPQ) of chlorophyll fluorescence. It is tightly related to the reversible epoxidation of xanthophyll pigments, catalyzed by the two enzymes, the violaxanthin deepoxidase and the zeaxanthin epoxidase. In Phaeomonas sp. (Pinguiophyte, Stramenopiles), we show that the regulation of the heat dissipation process is different from that of the green lineage: the NPQ is strictly proportional to the amount of the xanthophyll pigment zeaxanthin and the xanthophyll cycle enzymes are differently regulated. The violaxanthin deepoxidase is already active in the dark, because of a low luminal pH, and the zeaxanthin epoxidase shows a maximal activity under moderate light conditions, being almost inactive in the dark and under high light. This light-dependency mirrors the one of NPQ: Phaeomonas sp. displays a large NPQ in the dark as well as under high light, which recovers under moderate light. Our results pinpoint zeaxanthin epoxidase activity as the prime regulator of NPQ in Phaeomonas sp. and therefore challenge the deepoxidase-regulated xanthophyll cycle dogma.  相似文献   

9.
Non-photochemical quenching (NPQ) of excess absorbed light energy is a fundamental process that regulates photosynthetic light harvesting in higher plants. Among several proposed NPQ mechanisms, aggregation-dependent quenching (ADQ) and charge transfer quenching have received the most attention. In vitro spectroscopic features of both mechanisms correlate with very similar signals detected in more intact systems and in vivo, where full NPQ can be observed. A major difference between the models is the proposed quenching site, which is predominantly the major trimeric light-harvesting complex II in ADQ and exclusively monomeric Lhcb proteins in charge transfer quenching. Here, we studied ADQ in both monomeric and trimeric Lhcb proteins, investigating the activities of each antenna subunit and their dependence on zeaxanthin, a major modulator of NPQ in vivo. We found that monomeric Lhcb proteins undergo stronger quenching than light-harvesting complex II during aggregation and that this is enhanced by binding to zeaxanthin, as occurs during NPQ in vivo. Finally, the analysis of Lhcb5 mutants showed that chlorophyll 612 and 613, in close contact with lutein bound at site L1, are important facilitators of ADQ.  相似文献   

10.
The nonphotochemical quenching (NPQ) of fluorescence is an important photoprotective mechanism in particular under dynamic light conditions. Its photoprotective potential was suggested to be a functional trait of algal diversity. In the present study, the influence of the photoprotective capacity on the growth balance was investigated in two diatoms, which possess different NPQ characteristics. It was hypothesized that under fluctuating light conditions Cyclotella meneghiniana Kütz. would benefit from its large and flexible NPQ potential, whereas the comparably small NPQ capacity in Skeletonema costatum (Grev.) Cleve should exert an unfavorable impact on growth. The results of the study clearly falsify this hypothesis. Although C. meneghiniana possesses a fast NPQ component, this diatom was not able to recover its full NPQ capacity under fluctuating light. On the other hand, the induction of NPQ at relatively low irradiance in S. costatum resulted in rather small differences in the fraction of energy dissipation by the NPQ mechanism in the comparison of both diatoms. Larger differences were found in the metabolic characteristics. Both diatoms differed in their biomass composition, with a higher content of lipids in C. meneghiniana but higher amounts of carbohydrates in S. costatum. Finally, the lower degree of reduction in the biomass compensated for the higher respiration rates in S. costatum and resulted in a higher quantum efficiency of biomass production. An indirect correlation between the photoprotective and the metabolic capacity is discussed.  相似文献   

11.
Non-photochemical quenching (NPQ) is a fast acting photoprotective response to high light stress triggered by over excitation of photosystem II. The mechanism for NPQ in the globally important diatom algae has been principally attributed to a xanthophyll cycle, analogous to the well-described qE quenching of higher plants. This study compared the short-term NPQ responses in two pennate, benthic diatom species cultured under identical conditions but which originate from unique light climates. Variable chlorophyll fluorescence was used to monitor photochemical and non-photochemical excitation energy dissipation during high light transitions; whereas whole cell steady state 77 K absorption and emission were used to measure high light elicited changes in the excited state landscapes of the thylakoid. The marine shoreline species Nitzschia curvilineata was found to have an antenna system capable of entering a deeply quenched, yet reversible state in response to high light, with NPQ being highly sensitive to dithiothreitol (a known inhibitor of the xanthophyll cycle). Conversely, the salt flat species Navicula sp. 110-1 exhibited a less robust NPQ that remained largely locked-in after the light stress was removed; however, a lower amplitude, but now highly reversible NPQ persisted in cells treated with dithiothreitol. Furthermore, dithiothreitol inhibition of NPQ had no functional effect on the ability of Navicula cells to balance PSII excitation/de-excitation. These different approaches for non-photochemical excitation energy dissipation are discussed in the context of native light climate.  相似文献   

12.
Irina Grouneva 《BBA》2009,1787(7):929-5353
Intact cells of diatoms are characterized by a rapid diatoxanthin epoxidation during low light periods following high light illumination while epoxidation is severely restricted in phases of complete darkness. The present study shows that rapid diatoxanthin epoxidation is dependent on the availability of the cofactor of diatoxanthin epoxidase, NADPH, which cannot be generated in darkness due to the inactivity of PSI. In the diatom Phaeodactylum tricornutum, NADPH production during low light is dependent on PSII activity, and addition of DCMU consequently abolishes diatoxanthin epoxidation. In contrast to P. tricornutum, DCMU does not affect diatoxanthin epoxidation in Cyclotella meneghiniana, which shows the same rapid epoxidation in low light both in the absence or presence of DCMU. Measurements of the reduction state of the PQ pool and PSI activity indicate that, in the presence of DCMU, NADPH production in C. meneghiniana occurs via alternative electron transport, which includes electron donation from the chloroplast stroma to the PQ pool and, in a second step, from PQ to PSI. Similar electron flow to PQ is also observed during high light illumination of DCMU-treated P. tricornutum cells. In contrast to C. meneghiniana, the electrons are not directed to PSI, but most likely to a plastoquinone oxidase. This chlororespiratory electron transport leads to the establishment of an uncoupler-sensitive proton gradient in the presence of DCMU, which induces diadinoxanthin de-epoxidation and NPQ. In C. meneghiniana, electron flow to the plastoquinone oxidase is restricted, and consequently, diadinoxanthin de-epoxidation and NPQ is not observed after addition of DCMU.  相似文献   

13.
The relationship between the diadinoxanthin cycle and changes in fluorescence yield in the diatom Chaetoceros muelleri Lemm. (clone CH10, Amorient Aquafarm, Inc., Hawaii) was investigated. High-light-induced changes in fluorescence yield and xanthophyll de-epoxidation occurred very rapidly (first order rate constant 1.60 min?1). The observed light-induced changes in diatoxanthin and diadinoxanthin concentration were consistent with a two-pool scheme for diadinoxanthin, one of which does not undergo de-epoxidation. Changes in xanthophyll concentration correlated with changes in in vivo absorbance indicating that diadinoxanthin cycle activity in vivo can be monitored spectrophotometrically. However, changes in cell absorbance were small relative to total optical absorption cross section. Increases in the concentration of diatoxanthin were linearly correlated with increases in the rate constant for thermal de-excitation in the antenna of photosystem II (PSII). Antenna quenching produced or mediated by diatoxanthin may, thus, protect the PSII reaction center in diatoms. Changes in the maximum fluorescence yield suggested that changes in the reaction center also contributed to nonphotochemical quenching of fluorescence. Thus, reaction center quenching affected the relationship between antenna quenching and changes in photochemical efficiency producing the effect of a decrease in fluorescence yield without a decrease in photochemical efficiency.  相似文献   

14.
Over-excitation of photosynthetic apparatus causing photoinhibition is counteracted by non-photochemical quenching (NPQ) of chlorophyll fluorescence, dissipating excess absorbed energy into heat. The PsbS protein plays a key role in this process, thus making the PsbS-less npq4 mutant unable to carry out qE, the major and most rapid component of NPQ. It was proposed that npq4 does perform qE-type quenching, although at lower rate than WT Arabidopsis. Here, we investigated the kinetics of NPQ in PsbS-depleted mutants of Arabidopsis. We show that red light was less effective than white light in decreasing maximal fluorescence in npq4 mutants. Also, the kinetics of fluorescence dark recovery included a decay component, qM, exhibiting the same amplitude and half-life in both WT and npq4 mutants. This component was uncoupler-sensitive and unaffected by photosystem II repair or mitochondrial ATP synthesis inhibitors. Targeted reverse genetic analysis showed that traits affecting composition of the photosynthetic apparatus, carotenoid biosynthesis and state transitions did not affect qM. This was depleted in the npq4phot2 mutant which is impaired in chloroplast photorelocation, implying that fluorescence decay, previously described as a quenching component in npq4 is, in fact, the result of decreased photon absorption caused by chloroplast relocation rather than a change in the activity of quenching reactions.  相似文献   

15.
Background and Aims In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community.Methods A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light.Key Results NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ.Conclusions The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in xanthophylls correlated with H2O2 concentrations. Alternative NPQ mechanisms in algae involving proteins of the light-harvesting complex type and antioxidant protection of the thylakoid membrane by de-epoxidized carotenoids are discussed.  相似文献   

16.
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures — from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 μmol photons m− 2 s− 1. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

17.
A high non-photochemical quenching (NPQ) appeared below the phase transition temperature when Microcystis aeruginosa PCC7806 cells were exposed to saturated light for a short time. This suggested that a component of NPQ, independent from state transition or photo-inhibition, had been generated in the PSII complex; this was a fast component responding to high intensity light. Glutaraldehyde (GA), commonly used to stabilize membrane protein conformations, resulted in more energy transfer to PSII reaction centers, affecting the energy absorption and dissipation process rather than the transfer process of phycobilisome (PBS). In comparison experiments with and without GA, the rapid light curves (RLCs) and fluorescence induction dynamics of the fast phase showed that excess excitation energy was dissipated by conformational change in the photosynthetic pigment proteins on the thylakoid membrane (PPPTM). Based on deconvolution of NPQ relaxation kinetics, we concluded that the fast quenching component (NPQf) was closely related to PPPTM conformational change, as it accounted for as much as 39.42% of the total NPQ. We hypothesize therefore, that NPQf induced by PPPTM conformation is an important adaptation mechanism for Microcystis blooms under high-intensity light during summer and autumn.  相似文献   

18.
In this work, using a PAM-fluorimetry technique, we have compared effects of plant adaptation to the light or dark conditions on the kinetics of chlorophyll a fluorescence yield in Tradecantia leaves of several species (Tradescantia albiflora, Tradescantia fluminensis, Tradescantia navicularis, and Tradescantia sillamontana), which represent plants of different ecotypes. Two fluorescence parameters were used to assess photosynthetic performance in vivo: non-photochemical quenching (NPQ) of chlorophyll fluorescence (qNPQ) determined by energy losses in the light-harvesting antenna of photosystem 2 (PS2), and PS2 operating efficiency (ΦPSII). Comparative study of light-induced changes in qNPQ and ΦPSII has demonstrated that shade-tolerant Tradecantia species (T. albiflora Kunth, T. fluminensis Vell.) reveal higher capacities for NPQ and demonstrate slower transitions between the ‘light-adapted’ and ‘dark-adapted’ states than succulent species T. navicularis and T. sillamontana, which are typical habitats of semi-deserts. We analyze the photosynthetic performance of Tradescantia species in the context of their adaptabilities to variable environment conditions. The ability of shade-tolerant plants to retain a relatively long-term (∼40-60 min) ‘memory’ for illumination history may be associated with the regulatory mechanisms that provide the flexibility of photosynthetic apparatus in response to fluctuations of light intensity.  相似文献   

19.
The mechanism of the severe quenching of chlorophyll (Chl) fluorescence under drought stress was studied in a lichen Physciella melanchla, which contains a photobiont green alga, Trebouxia sp., using a streak camera and a reflection-mode fluorescence up-conversion system. We detected a large 0.31 ps rise of fluorescence at 715 and 740 nm in the dry lichen suggesting the rapid energy influx to the 715-740 nm bands from the shorter-wavelength Chls with a small contribution from the internal conversion from Soret bands. The fluorescence, then, decayed with time constants of 23 and 112 ps, suggesting the rapid dissipation into heat through the quencher. The result confirms the accelerated 40 ps decay of fluorescence reported in another lichen (Veerman et al., 2007 [36]) and gives a direct evidence for the rapid energy transfer from bulk Chls to the longer-wavelength quencher. We simulated the entire PS II fluorescence kinetics by a global analysis and estimated the 20.2 ns− 1 or 55.0 ns− 1 energy transfer rate to the quencher that is connected either to the LHC II or to the PS II core antenna. The strong quenching with the 3-12 times higher rate compared to the reported NPQ rate, suggests the operation of a new type of quenching, such as the extreme case of Chl-aggregation in LHCII or a new type of quenching in PS II core antenna in dry lichens.  相似文献   

20.
The minor light-harvesting complexes CP24, CP26, and CP29 have been proposed to play a key role in the zeaxanthin (Zx)-dependent high light-induced regulation (NPQ) of excitation energy in higher plants. To characterize the detailed roles of these minor complexes in NPQ and to determine their specific quenching effects we have studied the ultrafast fluorescence kinetics in knockout (ko) mutants koCP26, koCP29, and the double mutant koCP24/CP26. The data provide detailed insight into the quenching processes and the reorganization of the Photosystem (PS) II supercomplex under quenching conditions. All genotypes showed two NPQ quenching sites. Quenching site Q1 is formed by a light-induced functional detachment of parts of the PSII supercomplex and a pronounced quenching of the detached antenna parts. The antenna remaining bound to the PSII core was also quenched substantially in all genotypes under NPQ conditions (quenching site Q2) as compared with the dark-adapted state. The latter quenching was about equally strong in koCP26 and the koCP24/CP26 mutants as in the WT. Q2 quenching was substantially reduced, however, in koCP29 mutants suggesting a key role for CP29 in the total NPQ. The observed quenching effects in the knockout mutants are complicated by the fact that other minor antenna complexes do compensate in part for the lack of the CP24 and/or CP29 complexes. Their lack also causes some LHCII dissociation already in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号