首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The B-lymphotropic Epstein-Barr virus (EBV) encodes two isoforms of latent membrane protein 2 (LMP2), LMP2A and LMP2B, which are expressed during latency in B cells. The function of LMP2B is largely unknown, whereas LMP2A blocks B-cell receptor (BCR) signaling transduction and induction of lytic EBV infection, thereby promoting B-cell survival. Transfection experiments on LMP2B in EBV-negative B cells and the silencing of LMP2B in EBV-harboring Burkitt's lymphoma-derived Akata cells suggest that LMP2B interferes with the function of LMP2A, but the role of LMP2B in the presence of functional EBV has not been established. Here, LMP2B, LMP2A, or both were overexpressed in EBV-harboring Akata cells to study the function of LMP2B. The overexpression of LMP2B increased the magnitude of EBV switching from its latent to its lytic form upon BCR cross-linking, as indicated by a more-enhanced upregulation and expression of EBV lytic genes and significantly increased production of transforming EBV compared to Akata vector control cells or LMP2A-overexpressing cells. Moreover, LMP2B lowered the degree of BCR cross-linking required to induce lytic EBV infection. Finally, LMP2B colocalized with LMP2A as demonstrated by immunoprecipitation and immunofluorescence and restored calcium mobilization upon BCR cross-linking, a signaling process inhibited by LMP2A. Thus, our findings suggest that LMP2B negatively regulates the function of LMP2A in preventing the switch from latent to lytic EBV replication.  相似文献   

2.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is expressed on the membranes of B lymphocytes and blocks B-cell receptor (BCR) signaling in EBV-transformed B lymphocytes in vitro. The phosphotyrosine motifs at positions 74 or 85 and 112 within the LMP2A amino-terminal domain are essential for the LMP2A-mediated block of B-cell signal transduction. In vivo studies indicate that LMP2A allows B-cell survival in the absence of normal BCR signals. A possible role for Akt in the LMP2A-mediated B-cell survival was investigated. The protein kinase Akt is a crucial regulator of cell survival and is activated within B lymphocytes upon BCR cross-linking. LMP2A expression resulted in the constitutive phosphorylation of Akt, and this LMP2A effect is dependent on phosphatidylinositol 3-kinase activity. In addition, recruitment of Syk and Lyn protein tyrosine kinases (PTKs) to tyrosines 74 or 85 and 112, respectively, are critical for LMP2A-mediated Akt phosphorylation. However, the ability of LMP2A to mediate a survival phenotype downstream of Akt could not be detected in EBV-negative Akata cells. This would indicate that LMP2A is not responsible for EBV-dependent Burkitt's lymphoma cell survival.  相似文献   

3.
Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity.  相似文献   

4.
Latent membrane protein 2A (LMP2A) is one of only two viral proteins expressed during latent Epstein-Barr virus (EBV) infections in human peripheral B cells. LMP2A blocks B-cell receptor (BCR) signal transduction in vitro by modulation of the Syk and Lyn protein tyrosine kinases. Five genetically unique LMP2A transgenic mouse lines (EmuLMP2A) with B-cell lineage expression of LMP2A were generated in this study to analyze the importance of LMP2A expression in vivo. These animals can be grouped into EmuLMP2A(BCR+) (TgB, Tg6, and TgC) and EmuLMP2A(BCR-) (Tg7 and TgE) lines based on B-cell phenotype. LMP2A expression in bone marrow cells of EmuLMP2A(BCR-) lines was associated with a bypass of normal B-lymphocyte developmental checkpoints inasmuch as immunoglobulin light-chain gene rearrangement occurred in the absence of complete immunoglobulin heavy-chain gene rearrangement. The resulting BCR-negative B cells were able to exit the bone marrow and colonize peripheral lymphoid organs. LMP2A expression in EmuLMP2A(BCR+) lines was not associated with altered B-cell development in a genetically wild-type background. When crossed into a recombinase activating null (RAG(-/-)) genetic background, LMP2A expression in either RAG(-/-) EmuLMP2A(BCR+) or RAG(-/-) EmuLMP2A(BCR-) animals was able to provide a survival signal to BCR-negative splenic B cells. Additionally, bone marrow cells from all EmuLMP2A animals were able to proliferate in response to interleukin-7-dependent developmental signals in vitro. These studies illustrate that LMP2A can provide a survival signal to BCR-negative B cells in two different groups of EmuLMP2A transgenic mice.  相似文献   

5.
Epstein-Barr virus (EBV) is a human herpesvirus that establishes a lifelong latent infection of B cells. Within the immune system, apoptosis is a central mechanism in normal lymphocyte homeostasis both during early lymphocyte development and in response to antigenic stimuli. In this study, we found that latent membrane protein 2A (LMP2A) inhibited B-cell receptor (BCR)-induced apoptosis in Burkitt's lymphoma cell lines. Genistein, a specific inhibitor of tyrosine-specific protein kinases, blocked BCR-induced apoptosis and EBV reactivation in the cells. These findings indicate that LMP2A blocks BCR-induced cell apoptosis and EBV reactivation through the inhibition of activation of tyrosine kinases by BCR cross-linking.  相似文献   

6.
The oncogenic Epstein-Barr virus (EBV) infects the majority of the human population without doing harm and establishes a latent infection in the memory B-cell compartment. To accomplish this, EBV hijacks B-cell differentiation pathways and uses its own viral genes to interfere with B-cell signalling to achieve life-long persistence. EBV latent membrane protein 2A (LMP2A) provides a surrogate B-cell receptor signal essential for cell survival and is believed to have a crucial role in the maintenance of latency by blocking B-cell activation which would otherwise lead to lytic EBV infection. These two functions demand tight control of LMP2A activity and expression levels. Based on recent insights in the function of LMP2B, an isoform of LMP2A, we propose a model for how LMP2B modulates the activity of LMP2A contributing to maintenance of EBV latency.  相似文献   

7.
8.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is expressed constitutively in lipid rafts in latently infected B lymphocytes. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids selective for specific protein association. Lipid rafts have been shown to be necessary for B-cell receptor (BCR) signal transduction. LMP2A prevents BCR recruitment to lipid rafts, thereby abrogating BCR function. As LMP2A is palmitoylated, whether this fatty acid modification is necessary for LMP2A to localize to lipid rafts and for protein function was investigated. LMP2A palmitoylation was confirmed in latently infected B cells. LMP2A was found to be palmitoylated on multiple cysteines only by S acylation. An LMP2A mutant that was not palmitoylated was identified and functioned similar to wild-type LMP2A; unmodified LMP2A localized to lipid rafts, was tyrosine phosphorylated, was associated with LMP2A-associated proteins, was ubiquitinated, and was able to block calcium mobilization following BCR cross-linking. Therefore, palmitoylation of LMP2A is not required for LMP2A targeting to buoyant complexes or for function.  相似文献   

9.
In Epstein-Barr virus-transformed B cells, known as lymphoblastoid cell lines (LCLs), LMP2A binds the tyrosine kinases Syk and Lyn, blocking B-cell receptor (BCR) signaling and viral lytic replication. SH2 domains in Syk mediate binding to a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) in LMP2A. Mutation of the LMP2A ITAM in LCLs eliminates Syk binding and allows for full BCR signaling, thereby delineating the significance of the LMP2A-Syk interaction. In transgenic mice, LMP2A causes a developmental alteration characterized by a block in surface immunoglobulin rearrangement resulting in BCR-negative B cells. Normally B cells lacking cognate BCR are rapidly apoptosed; however, LMP2A transgenic B cells develop and survive without a BCR. When bred into the recombinase activating gene 1 null (RAG(-/-)) background, all LMP2A transgenic lines produce BCR-negative B cells that develop and survive in the periphery. These data indicate that LMP2A imparts developmental and survival signals to B cells in vivo. In this study, LMP2A ITAM mutant transgenic mice were generated to investigate whether the LMP2A ITAM is essential for the survival phenotype in vivo. LMP2A ITAM mutant B cells develop normally, although transgene expression is comparable to that in previously described nonmutated LMP2A transgenic B cells. Additionally, LMP2A ITAM mutant mice are unable to promote B-cell development or survival when bred into the RAG(-/-) background or when grown in methylcellulose containing interleukin-7. These data demonstrate that the LMP2A ITAM is required for LMP2A-mediated developmental and survival signals in vivo.  相似文献   

10.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is important for maintenance of latency in infected B lymphocytes. Through its immunoreceptor tyrosine-based activation motif (ITAM) and PY motifs, LMP2A is able to block B-cell receptor (BCR) signaling, bind BCR-associated kinases, and manipulate the turnover of itself and these kinases via a PY-mediated interaction with the Nedd4 family of ubiquitin ligases. In epithelial cells, LMP2A has been shown to activate the phosphatidylinositol 3'-OH kinase/Akt and beta-catenin signaling pathways. In the present study, the biological consequences of LMP2A expression in the normal human foreskin keratinocyte (HFK) cell line were investigated and the importance of the ITAM and PY motifs for LMP2A signaling effects in HFK cells was ascertained. The ITAM was essential for the activation of Akt by LMP2A in HFK cells, while both the ITAM and PY motifs contributed to LMP2A-mediated accumulation and nuclear translocation of the oncoprotein beta-catenin. LMP2A inhibited induction of differentiation in an assay conducted with semisolid methylcellulose medium, and the PY motifs were critical for this inhibition. LMP2A is expressed in the EBV-associated epithelial malignancies nasopharyngeal carcinoma and gastric carcinoma, and these data indicate that LMP2A affects cellular processes that likely contribute to carcinogenesis.  相似文献   

11.
EBV is associated with systemic lupus erythematosus (SLE), but how it might contribute to the etiology is not clear. Since EBV-encoded latent membrane protein 2A (LMP2A) interferes with normal B cell differentiation and function, we sought to determine its effect on B cell tolerance. Mice transgenic for both LMP2A and the Ig transgene 2-12H specific for the ribonucleoprotein Smith (Sm), a target of the immune system in SLE, develop a spontaneous anti-Sm response. LMP2A allows anti-Sm B cells to overcome the regulatory checkpoint at the early preplasma cell stage by a self-Ag-dependent mechanism. LMP2A induces a heightened sensitivity to TLR ligand stimulation, resulting in increased proliferation or Ab-secreting cell differentiation or both. Thus, we propose a model whereby LMP2A induces hypersensitivity to TLR stimulation, leading to activation of anti-Sm B cells through the BCR/TLR pathway. These data further implicate TLRs in the etiology of SLE and suggest a mechanistic link between EBV infection and SLE.  相似文献   

12.
13.
Epstein-Barr virus (EBV) establishes latent infections in a significant percentage of the population. Latent membrane protein 2A (LMP2A) is an EBV protein expressed during latency that inhibits B-cell receptor signaling in lymphoblastoid cell lines. In the present study, we have utilized a transgenic mouse system in which LMP2A is expressed in B cells that are specific for hen egg lysozyme (E/HEL-Tg). To determine if LMP2A allows B cells to respond to antigen, E/HEL-Tg mice were immunized with hen egg lysozyme. E/HEL-Tg mice produced antibody in response to antigen, indicating that LMP2A allows B cells to respond to antigen. In addition, E/HEL-Tg mice produced more antibody and an increased percentage of plasma cells after immunization compared to HEL-Tg littermates, suggesting that LMP2A increased the antibody response in vivo. Finally, in vitro studies determined that LMP2A acts directly on the B cell to increase antibody production by augmenting the expansion and survival of the activated B cells, as well as increasing the percentage of plasma cells generated. Taken together, these data suggest that LMP2A enhances, not diminishes, B-cell-specific antibody responses in vivo and in vitro in the E/HEL-Tg system.  相似文献   

14.
The latent membrane protein (LMP) 2A of Epstein-Barr virus (EBV) is implicated in the maintenance of viral latency and appears to function in part by inhibiting B-cell receptor (BCR) signaling. The N-terminal cytoplasmic region of LMP2A has multiple tyrosine residues that upon phosphorylation bind the SH2 domains of the Syk tyrosine kinase and the Src family kinase Lyn. The LMP2A N-terminal region also has two conserved PPPPY motifs. Here we show that the PPPPY motifs of LMP2A bind multiple WW domains of E3 protein-ubiquitin ligases of the Nedd4 family, including AIP4 and KIAA0439, and demonstrate that AIP4 and KIAA0439 form physiological complexes with LMP2A in EBV-positive B cells. In addition to a C2 domain and four WW domains, these proteins have a C-terminal Hect catalytic domain implicated in the ubiquitination of target proteins. LMP2A enhances Lyn and Syk ubiquitination in vivo in a fashion that depends on the activity of Nedd4 family members and correlates with destabilization of the Lyn tyrosine kinase. These results suggest that LMP2A serves as a molecular scaffold to recruit both B-cell tyrosine kinases and C2/WW/Hect domain E3 protein-ubiquitin ligases. This may promote Lyn and Syk ubiquitination in a fashion that contributes to a block in B-cell signaling. LMP2A may potentiate a normal mechanism by which Nedd4 family E3 enzymes regulate B-cell signaling.  相似文献   

15.
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) is expressed on the plasma membrane of B lymphocytes latently infected with EBV and blocks B-cell receptor (BCR) signal transduction in EBV-immortalized B cells in vitro. The LMP2A amino-terminal domain that is essential for the LMP2A-mediated block on BCR signal transduction contains eight tyrosine residues. Association of Syk protein tyrosine kinase (PTK) with LMP2A occurs at the two tyrosines of the LMP2A immunoreceptor tyrosine-based activation motif, and it is hypothesized that Lyn PTK associates with the YEEA amino acid motif at LMP2A tyrosine 112 (Y112). To examine the specific association of Lyn PTK to LMP2A, a panel of LMP2A cDNA expression vectors containing LMP2A mutations were transfected into an EBV-negative B-cell line and analyzed for Lyn and LMP2A coimmunoprecipitation. Lyn associates with wild-type LMP2A and other LMP2A mutant constructs, but Lyn association is lost in the LMP2A construct containing a tyrosine (Y)-to-phenylalanine (F) mutation at LMP2A residue Y112 (LMP2AY112F). Next, the LMP2AY112F mutation was recombined into the EBV genome to generate stable lymphoblastoid cell lines (LCLs) transformed with the LMP2AY112F mutant virus. Analysis of BCR-mediated signal transduction in the LMP2AY112F LCLs revealed loss of the LMP2A-mediated block in BCR signal transduction. In addition, LMP2A was not tyrosine phosphorylated in LMP2AY112F LCLs. Together these data indicate the importance of the LMP2A Y112 residue in the ability of LMP2A to block BCR-mediated signal transduction and place the role of this residue and its interaction with Lyn PTK as essential to LMP2A phosphorylation, PTK loading, and down-modulation of PTKs involved in BCR-mediated signal transduction.  相似文献   

16.
Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors.  相似文献   

17.
18.
19.
Epstein-Barr virus (EBV) latent infection of B cells blocks the interrelated signaling and antigen-trafficking functions of the BCR through the activity of its latent membrane protein 2A (LMP2A). At present, the molecular mechanisms by which LMP2A exerts its control of BCR functions are only poorly understood. Earlier studies showed that in B cells expressing LMP2A containing a tyrosine mutation at position 112 in its cytoplasmic domain (Y112-LMP2A), the BCR could initiate signaling but could not properly traffic antigen for processing. Here, we show that BCR signaling in Y112-LMP2A-expressing cells is attenuated with a reduction in both the degree and duration of phosphorylation of key components of the BCR signaling cascade including Syk, BLNK, PI3K, and Btk. Notably, Y112-LMP2A expression completely blocked the BCR-induced activation of phospholipase D (PLD), a lipase implicated in the intracellular trafficking of a variety of surface receptors. We show that blocking PLD activity, by expressing Y112-LMP2A, treating cells with the PLD inhibitor 1-butanol or reducing PLD expression by siRNA, blocked BCR trafficking to class II-containing compartments. Moreover, Y112-LMP2A expression blocked the recruitment of phosphorylated forms of the downstream BCR signaling components, Erk and JNK, through both PLD-dependent and PLD-independent mechanisms. Thus, the investigation of the mechanism by which Y112-LMP2A blocks BCR function revealed an essential role for PLD in BCR trafficking for antigen processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号