首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Progressive Kidney Degeneration in Mice Lacking Tensin   总被引:6,自引:1,他引:5       下载免费PDF全文
Tensin is a focal adhesion phosphoprotein that binds to F-actin and contains a functional Src homology 2 domain. To explore the biological functions of tensin, we cloned the mouse tensin gene, determined its program of expression, and used gene targeting to generate mice lacking tensin. Even though tensin is expressed in many different tissues during embryogenesis, tensin null mice developed normally and appeared healthy postnatally for at least several months. Over time, −/− mice became frail because of abnormalities in their kidneys, an organ that expresses high levels of tensin. Mice with overt signs of weakness exhibited signs of renal failure and possessed multiple large cysts in the proximal kidney tubules, but even in tensin null mice with normal blood analysis, cysts were prevalent. Ultrastructurally, noncystic areas showed typical cell– matrix junctions that readily labeled with antibodies against other focal adhesion molecules. In abnormal regions, cell–matrix junctions were disrupted and tubule cells lacked polarity. Taken together, our data imply that, in the kidney, loss of tensin leads to a weakening, rather than a severing, of focal adhesion. All other tissues appeared normal, suggesting that, in most cases, tensin's diverse functions are redundant and may be compensated for by other focal adhesion proteins.  相似文献   

3.
We report the functional characterization of the Drosophila ortholog of tensin, a protein implicated in linking integrins to the cytoskeleton and signaling pathways. A tensin null was generated and is viable with wing blisters, a phenotype characteristic of loss of integrin adhesion. In tensin mutants, mechanical abrasion is required during wing expansion to cause wing blisters, suggesting that tensin strengthens integrin adhesion. The localization of tensin requires integrins, talin, and integrin-linked kinase. The N-terminal domain and C-terminal PTB domain of tensin provide essential recruitment signals. The intervening SH2 domain is not localized on its own. We suggest a model where tensin is recruited to sites of integrin adhesion via its PTB and N-terminal domains, localizing the SH2 domain so that it can interact with phosphotyrosine-containing proteins, which stabilize the integrin link to the cytoskeleton.  相似文献   

4.
Cells organize diverse types of specialized adhesion sites upon attachment to extracellular matrix (ECM) components. One of the physiological roles of such cell-ECM interactions is to initiate and regulate adhesion-mediated signal transduction responses. The association of cells with fibronectin fibrils has been shown to regulate the JNK and p38 signaling pathways. We tested whether tensin, a cytoskeletal component localized to both focal contacts and fibronectin-associated fibrillar adhesions, can induce these signaling pathways. We found that tensin overexpression resulted in activation of both the c-Jun amino-terminal kinase (JNK) and p38 pathways. Tensin-mediated JNK activation was independent of the activities of the small GTP binding proteins Rac and Cdc42, but did depend on SEK, a kinase involved in the JNK pathway. We suggest that tensin may directly activate the JNK and p38 pathways, acting downstream or independent of the activities of the small GTP binding proteins Rac and Cdc42.  相似文献   

5.

Background

The Tensin family of intracellular proteins (Tensin1, -2, -3 and -4) are thought to act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Dysregulation of Tensin expression has previously been implicated in human cancer. Here, we have for the first time evaluated the significance of all four Tensins in a study of human renal cell carcinoma (RCC), as well as probed the biological function of Tensin3.

Principal Findings

Expression of Tensin2 and Tensin3 at mRNA and protein levels was largely absent in a panel of diverse human cancer cell lines. Quantitative RT-PCR analysis revealed mRNA expression of all four Tensin genes to be significantly downregulated in human kidney tumors (50–100% reduction versus normal kidney cortex; P<0.001). Furthermore, the mRNA expressions of Tensins mostly correlated positively with each other and negatively with tumor grade, but not tumor size. Immunohistochemical analysis revealed Tensin3 to be present in the cytoplasm of tubular epithelium in normal human kidney sections, whilst expression was weaker or absent in 41% of kidney tumors. A subset of tumor sections showed a preferential plasma membrane expression of Tensin3, which in clear cell RCC patients was correlated with longer survival. Stable expression of Tensin3 in HEK 293 cells markedly inhibited both cell migration and matrix invasion, a function independent of putative phosphatase activity in Tensin3. Conversely, siRNA knockdown of endogenous Tensin3 in human cancer cells significantly increased their migration.

Conclusions

Our findings indicate that the Tensins may represent a novel group of metastasis suppressors in the kidney, the loss of which leads to greater tumor cell motility and consequent metastasis. Moreover, tumorigenesis in the human kidney may be facilitated by a general downregulation of Tensins. Therefore, anti-metastatic therapies may benefit from restoring or preserving Tensin expression in primary tumors.  相似文献   

6.
Tensin 2 (TNS2), a focal adhesion protein, is considered to anchor focal adhesion proteins to β integrin as an integrin adaptor protein and/or serve as a scaffold to facilitate the interactions of these proteins. In the kidney, TNS2 localizes to the basolateral surface of glomerular epithelial cells, i.e., podocytes. Loss of TNS2 leads to the development of glomerular basement membrane lesions and abnormal accumulation of extracellular matrix in maturing glomeruli during the early postnatal stages. It subsequently results in podocyte foot process effacement, eventually leading to glomerulosclerosis. Histopathological features of the affected glomeruli in the middle stage of the disease include expansion of the mesangial matrix without mesangial cell proliferation. In this review, we provide an overview of TNS2-deficient nephropathy and discuss the potential mechanism underlying this mechanosensitive nephropathy, which may be applicable to other glomerulonephropathies, such as CD151-deficient nephropathy and Alport syndrome. The onset of TNS2-deficient nephropathy strictly depends on the genetic background, indicating the presence of critical modifier genes. A better understanding of molecular mechanisms of mechanosensitive nephropathy may open new avenues for the management of patients with glomerulonephropathies.  相似文献   

7.
Tensin, a focal adhesion protein, is expressed in renal tubular epithelial cells (TECs). Tensin-null mice develop multiple large cysts in the renal proximal tubules. However, the role of tensin in human glomeruli remains unclear. In this study, we assessed tensin localization in human kidney and interaction between tensin and other adhesion components. In human mesangial cells (MCs) and TECs, we confirmed mRNA and protein expressions of tensin by RT-PCR and immunoprecipitation. In normal kidney, immunohistochemistry revealed that tensin was localized in MCs and parietal epithelial cells as well as TECs. In biopsy specimens, the expression of tensin was significantly increased in areas of mesangial expansion in patients with IgA nephropathy and diabetic nephropathy. These results suggest that the expression of tensin is associated with extracellular matrix (ECM) production. In vitro, immunocytochemistry revealed that MCs express tensin mainly at the ends of actin stress fibers and apparently in the focal adhesion areas. Integrin 5, but not 1 and 3, colocalized with tensin. Vinculin and focal adhesion kinase (FAK) were coprecipitated by tensin, suggesting that tensin can mediate signal transduction between cell and ECM through these molecules. Tensin may play important roles in mesangial ECM production through an adhesion complex with integrin 5, FAK, and vinculin.  相似文献   

8.
Cytoskeletal proteins provide the structural foundation that allows cells to exist in a highly organized manner. Recent evidence suggests that certain cytoskeletal proteins not only maintain structural integrity, but might also be associated with signal transduction and suppression of tumorigenesis. Since the time of the discovery of tensin, a fair amount of data has been gathered which supports the notion that tensin is one such protein possessing these characteristics. In this review, we discuss recent studies that: (1) elucidate a role for tensin in maintenance of cellular structure and signal transduction; (2) implicate tensin as the anchor for actin filaments at the focal adhesion; (3) describe the phosphorylation of tensin; (4) describe potential targets for its Src homology region 2 domain; (5) describe the association between tensin and the nuclear protein p130; and (6) demonstrate that increased tensin expression in a cell line appears to reduce its transformation potential.  相似文献   

9.
Regulation of tyrosine phosphorylation on insulin receptor substrate-1 (IRS-1) is essential for insulin signaling. The protein tyrosine phosphatase (PTP) C1-Ten/Tensin2 has been implicated in the regulation of IRS-1, but the molecular basis of this dephosphorylation is not fully understood. Here, we demonstrate that the cellular phosphatase activity of C1-Ten/Tensin2 on IRS-1 is mediated by the binding of the C1-Ten/Tensin2 Src-homology 2 (SH2) domain to phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). We show that the role of C1-Ten/Tensin2 is dependent on insulin-induced phosphoinositide 3-kinase activity. The C1-Ten/Tensin2 SH2 domain showed strong preference and high affinity for PtdIns(3,4,5)P3. Using site-directed mutagenesis, we identified three basic residues in the C1-Ten/Tensin2 SH2 domain that were critical for PtdIns(3,4,5)P3 binding but were not involved in phosphotyrosine binding and PTP activity. Using a PtdIns(3,4,5)P3 binding-deficient mutant, we showed that the specific binding of the C1-Ten/Tensin2 SH2 domain to PtdIns(3,4,5)P3 allowed C1-Ten/Tensin2 to function as a PTP in cells. Collectively, our findings suggest that the interaction between the C1-Ten/Tensin2 SH2 domain and PtdIns(3,4,5)P3 produces a negative feedback loop of insulin signaling through IRS-1.  相似文献   

10.
Tensins are large intracellular proteins believed to link the extracellular matrix to the cytoskeleton via integrins. Tensins are multidomain proteins consisting of homologous C1, PTPase, C2, SH2 and PTB domains. Full-length Tensin proteins can undergo cleavage inside cells, thus yielding domains in isolation that may have discrete subcellular localisations and downstream effects. We expressed different isoforms of Tensin2 and their individual domains as recombinant green fluorescent protein (GFP)-fusion constructs in DU145 human prostate cancer cells. Under fluorescence confocal microscopy, the isolated domains of Tensin2 all displayed discrete distributions throughout the cytoplasm and the nucleus. In particular, partial constructs containing the C1 domain localised preferentially to the nucleus, including the isolated C1 domain and the PTPase domain. In contrast, all three full-length isoforms of Tensin2 were present exclusively in discrete punctate bodies throughout the cytoplasm. This punctate staining showed colocalisation with the tumour suppressor protein DLC-1 as well as with actin (phalloidin). Furthermore, DU145 cells transiently expressing partial Tensin2 constructs containing the PTB domain showed an increased haptotactic migration. In addition, stimulation of renal carcinoma cells stably expressing Tensin2 by the survival factor Gas6 caused phosphorylation of its receptor Axl, but no effect on Tensin2, which was already maximally phosphorylated at time 0. In conclusion, our results indicate that differential proteolytic cleavage of Tensin2 can liberate domains with discrete localisations and functions, which has implications for the role of Tensins in cancer cell survival and motility.  相似文献   

11.
Tensins are proposed cytoskeleton-regulating proteins. However, Tensin2 additionally inhibits Akt signalling and cell survival. Structural modelling of the Tensin2 phosphatase (PTPase) domain revealed an active site-like pocket receptive towards phosphoinositides. Tensin2-expressing HEK293 cells displayed negligible levels of plasma membrane phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) under confocal microscopy. However, mock-transfected cells, and Tensin2 cells harbouring a putative phosphatase-inactivating mutation, exhibited significant PtdIns(3,4,5)P3 levels, which decreased upon phosphatidylinositol 3-kinase inhibition with LY294002. In contrast, wtTensin3, mock and mutant cells were identical in membrane PtdIns(3,4,5)P3 and Akt phosphorylation. In vitro lipid PTPase activity was however undetectable in isolated recombinant PTPase domains of both Tensins, indicating a possible loss of structural stability when expressed in isolation. In summary, we provide evidence that Tensin2, in addition to regulating cytoskeletal dynamics, influences phosphoinositide-Akt signalling through its PTPase domain.  相似文献   

12.
The formation of healthy tissue involves continuous remodeling of the extracellular matrix (ECM). Whilst it is known that this requires integrin-associated cell-ECM adhesion sites (CMAs) and actomyosin-mediated forces, the underlying mechanisms remain unclear. Here, we examine how tensin3 contributes to the formation of fibrillar adhesions (FBs) and fibronectin fibrillogenesis. Using BioID mass spectrometry and a mitochondrial targeting assay, we establish that tensin3 associates with the mechanosensors such as talin and vinculin. We show that the talin R11 rod domain binds directly to a helical motif within the central intrinsically disordered region (IDR) of tensin3, whilst vinculin binds indirectly to tensin3 via talin. Using CRISPR knock-out cells in combination with defined tensin3 mutations, we show (i) that tensin3 is critical for the formation of α5β1-integrin FBs and for fibronectin fibrillogenesis, and (ii) the talin/tensin3 interaction drives this process, with vinculin acting to potentiate it.  相似文献   

13.
Tensin1 is the archetype of a family of focal adhesion proteins. Tensin1 has a phosphotyrosine binding domain that binds the cytoplasmic tail of β-integrin, a Src homology 2 domain that binds focal adhesion kinase, p130Cas, and the RhoGAP called deleted in liver cancer-1, a phosphatase and tensin homology domain that binds protein phosphatase-1α and other regions that bind F-actin. The association between tensin1 and these partners affects cell polarization, migration, and invasion. In this study we analyzed the phosphorylation of human S-tag-tensin1 expressed in HEK293 cells by mass spectrometry. Peptides covering >90% of the sequence initially revealed 50 phosphorylated serine/phosphorylated threonine (pSer/pThr) but no phosphorylated tyrosine (pTyr) sites. Addition of peroxyvanadate to cells to inhibit protein tyrosine phosphatases exposed 10 pTyr sites and addition of calyculin A to cells to inhibit protein phosphatases type 1 and 2A gave a total of 62 pSer/pThr sites. We also characterized two sites modified by O-linked N-acetylglucosamine. Tensin1 F302A, which does not bind protein phosphatase-1, showed > twofold enhanced phosphorylation of seven sites. The majority of pSer/pThr have adjacent proline (Pro) residues and we show endogenous p38 mitogen activated protein kinase (MAPK) associated with and phosphorylated tensin1 in an in vitro kinase assay. Recombinant p38α MAPK also phosphorylated S-tag-tensin1, resulting in decreased binding with deleted in liver cancer-1. Activation of p38 MAPK in cells by sorbitol-induced hyperosmotic stress increased phosphorylation of S-tag-tensin1, which reduced binding to deleted in liver cancer-1 and increased binding to endogenous pTyr proteins, including p130Cas and focal adhesion kinase. These data demonstrate that tensin1 is extensively phosphorylated on Ser/Thr residues in cells and phosphorylation by p38 MAPK regulates the specificity of the tensin1 Src homology 2 domain for binding to different proteins. Tensin1 provides a hub for connecting signaling pathways involving p38 MAP kinase, tyrosine kinases and RhoGTPases.Tensin1 is a protein localized at focal adhesions that acts as a scaffold for signaling (1). The tensin1 phosphotyrosine binding (PTB)1 domain binds the cytoplasmic tail of β-integrin (2), presumed to be the basis for focal adhesion localization. Human tensin1 interacts with actin by capping the barbed ends and cross-linking actin filaments through two different actin binding regions (3). Actin binding regions were identified in chicken tensin1 at residues 1–263, 263–463, and 889–1143 (4). The C terminus region of tensin1, as well as family members tensin2, tensin3, and c-ten, has adjacent Src homology 2 (SH2) and PTB domains that interact with the tyrosine phosphorylated proteins Dok2 and PDK1 (5) as well as PI3 kinase, p130Cas, and focal adhesion kinase (FAK) (6), thereby posing a role for tensin1 in multiple signal transduction pathways. The N-terminal region of tensin1 contains a domain that is related in sequence to the tumor suppressor protein and PIP3 phosphatase called phosphatase and tensin homologue (PTEN) (3). This domain of tensin1 binds the alpha isoform of protein phosphatase 1 (PP1) (7), the major protein Ser/Thr phosphatase in cells that regulates a variety of signaling pathways. The SH2 domain of tensin1 also associates with a RhoGAP protein called deleted in liver cancer-1 (DLC-1) but does not require Tyr phosphorylation of DLC-1 (8). DLC-1 has a role in cell migration and is a negative regulator of tumor formation (810). Human breast carcinoma, prostate carcinoma, head and neck squamous cell carcinoma, and melanoma all exhibit reduced expression of tensin1, suggesting a tumor suppressor action (11). In addition, various cancer cell lines do not express detectable levels of tensin1 protein relative to normal fibroblasts that have abundant expression (1, 7). Re-expression of tensin1 in cancer cells promoted formation of focal adhesions (4) and decreased migration and invasion of MDA MB 231 human breast cancer cells (12). Taken together, these studies support a model for tensin1 as a tumor suppressor that acts as a scaffold protein for various signaling enzymes.Tensin1 was first shown to be tyrosine phosphorylated following concentration by immunoprecipitation and immunoblotting with a pTyr antibody (6). Tyrosine phosphorylation of tensin1 was only detected if fibroblasts were plated on fibronectin, laminin, or vitronectin (13), suggesting that tensin1 tyrosine phosphorylation depends on integrin-mediated signaling. Jiang et al. (14) showed increased tyrosine phosphorylation of tensin1 when cells were treated with platelet-derived growth factor. In addition, epidermal growth factor treatment of human gastric epithelial cells stimulated tyrosine phosphorylation of tensin1 and this stimulation was inhibited with the nonsteroidal anti-inflammatory drug indomethacin (15). Cells transformed by the oncogene p210BCR/ABL contained tyrosine phosphorylated tensin1 (16). Treatment of rat aortic smooth muscle cells with angiotensin or thrombin also showed an increase in tensin1 tyrosine phosphorylation (17). Rapid turnover of pTyr by phosphatases presumably keeps tensin1 pTyr levels low in cells following stimulation. Different publications report tensin1 is phosphorylated on Ser and Thr residues, but data supporting these claims was not shown (1, 3, 18, 19). Phosphoproteomics implementing shotgun mass spectrometry techniques have turned up as many as 20 pTyr, 30 pSer, and 8 pThr peptides from human tensin (www.phosphosite.org). However, to date no comprehensive analysis of tensin1 phosphorylation has been reported.We previously identified residue F302 in the KVEF motif in tensin1 as necessary for PP1α binding (12). Tensin1 F302A showed a reduced electrophoretic mobility in SDS-PAGE compared with tensin1 wild type, suggesting an increase in tensin1 phosphorylation because of absence of bound PP1. We also observed less DLC-1 binding to tensin1 F302A, but it is not known whether this was because of an increase in tensin1 phosphorylation (12). The tensin1 F302A did not suppress cancer cell invasion like tensin1 wild type (12), and this could be because of loss of PP1 binding, or less DLC-1 binding, or changes in phosphorylation.In the present study we comprehensively analyze the phosphorylation of human S-tag-tensin1. Addition of phosphatase inhibitors to cells is shown to enhance phosphorylation to yield a total of 62 Ser/Thr phosphorylation sites and expose 10 Tyr sites not otherwise seen. The majority of Ser/Thr sites have adjacent proline residues and we identify p38α MAPK activity associated with tensin1. The p38MAPK phosphorylation of tensin1 alters binding of DLC-1, p130Cas and FAK. Our results demonstrate that tensin1 is extensively phosphorylated on Ser/Thr residues in addition to Tyr residues and this phosphorylation alters association with its SH2 domain binding partners.  相似文献   

14.
Tensin 1 was originally described as a focal adhesion adaptor protein, playing a role in extracellular matrix and cytoskeletal interactions. Three other Tensin proteins were subsequently discovered, and the family was grouped as Tensin. It is now recognized that these proteins interact with multiple cell signalling cascades that are implicated in tumorigenesis. To understand the role of Tensin 1–3 in neoplasia, current molecular evidence is categorized by the hallmarks of cancer model. Additionally, clinical data involving Tensin 1–3 are reviewed to investigate the correlation between cellular effects and clinical phenotype. Tensin proteins commonly interact with the tumour suppressor, DLC1. The ability of Tensin to promote tumour progression is directly correlated with DLC1 expression. Members of the Tensin family appear to have tumour subtype-dependent effects on oncogenesis; despite numerous data evidencing a tumour suppressor role for Tensin 2, association of Tensins 1–3 with an oncogenic role notably in colorectal carcinoma and pancreatic ductal adenocarcinoma is of potential clinical relevance. The complex interplay between these focal adhesion adaptor proteins and signalling pathways are discussed to provide an up to date review of their role in cancer biology.  相似文献   

15.

Background

Src homology 2 (SH2) domain is a conserved module involved in various biological processes. Tensin family member was reported to be involved in tumor suppression by interacting with DLC-1 (deleted-in-liver-cancer-1) via its SH2 domain. We explore here the important questions that what the structure of tensin2 SH2 domain is, and how it binds to DLC-1, which might reveal a novel binding mode.

Principal Findings

Tensin2 SH2 domain adopts a conserved SH2 fold that mainly consists of five β-strands flanked by two α-helices. Most SH2 domains recognize phosphorylated ligands specifically. However, tensin2 SH2 domain was identified to interact with nonphosphorylated ligand (DLC-1) as well as phosphorylated ligand.

Conclusions

We determined the solution structure of tensin2 SH2 domain using NMR spectroscopy, and revealed the interactions between tensin2 SH2 domain and its ligands in a phosphotyrosine-independent manner.  相似文献   

16.
Cytoskeletal proteins of the tensin family couple integrins to the actin cytoskeleton. They are found in both focal adhesions and the fibrillar adhesions formed between cells and the fibronectin matrix. There are four tensin genes which encode three large (~200 kDa) tensin isoforms (tensin 1, 2, 3) and one short isoform (cten). However, the subcellular localization and function of the individual isoforms is poorly understood. Using human foreskin fibroblasts (HFFs), and imaging on both fixed and live cells, we show that GFP‐tensin 2 is enriched in dynamic focal adhesions at the leading edge of the cell, whereas GFP‐tensin 3 translocates rearward, and is enriched in fibrillar adhesions. To investigate the possible role of tensins in cell‐matrix remodeling, we used siRNAs to knockdown each tensin isoform. We discovered that tensin 2 knockdown significantly reduced the ability of HFFs to contract 3D collagen gels, whilst no effect on fibronectin fibrillogenesis was observed. This inhibition of collagen gel contraction was associated with a substantial reduction in Rho activity, and it was reversed by depletion of DLC1, a RhoGAP that binds to tensin in focal adhesions. These findings suggest that focal adhesion‐localized tensin 2 negatively regulates DLC1 to permit Rho‐mediated actomyosin contraction and remodeling of collagen fibers. J. Cell. Biochem. 109: 808–817, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.

Background and aims

Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown.

Methods

Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection.

Results

Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake.

Conclusions

Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients.  相似文献   

18.
19.
Glomerular expression of tensin was immunohistochemically studied in normal and diseased rat kidneys to determine whether tensin might be related to specific binding in individual glomerular cells. Normal rat kidneys displayed an intense immunofluorescence reaction for tensin along the basal aspects of proximal and distal tubule cells and parietal epithelial cells of Bowman's capsules. In glomeruli, a positive reaction for tensin was detected only in the mesangial areas. Immunoelectron microscopy revealed a positive reaction in the mesangial cell (MC) processes. RT-PCR and immunoprecipitation demonstrated mRNA and protein levels of tensin in cultured rat MCs. Mesangial tensin expression was decreased when the mesangium was injured by Habu snake venom. During the regenerative process after mesangiolysis, tensin expression was not detected in early-phase proliferating MCs that did not have extracellular matrix (ECM). The expression of tensin recovered in late-phase proliferating MCs, which became attached to regenerated ECM. It appears that tensin is related to MC attachment to surrounding ECM, which suggests that signal transduction regulated by tensin may be related to a specific mechanism of MC matrix regeneration. Furthermore, tensin can act as a marker for rat MCs because the expression of tensin was detected only in MCs in glomeruli.  相似文献   

20.
Thrombopoietin (TPO) and its receptor c-Mpl are essential in the regulation of the hematopoietic stem and progenitors cells as well as for the differentiation of megakaryocytes into mature platelets. Once TPO binds to its receptor, an intracellular signaling process is initiated through Janus kinase (JAK-2)-induced phosphorylation of the c-Mpl intracellular domain. Although some protein mediators that transmit the effects of TPO have been identified, many remain undiscovered. Using an unbiased approach with peptide microarrays that contained virtually every Src Homology (SH)2 and Phosphotyrosine Binding (PTB) domains in the human genome, we discovered a previously unreported interaction between c-Mpl at phospho-Tyrosine631 (pY631) and Tensin2, a protein for which limited information is available. Confirming the findings of the microarrays, we discovered that Tensin2 co-precipitates with a pY631 bearing peptide. Furthermore, we found that Tensin2 becomes phosphorylated in a TPO dependent manner. The functional consequence of Tensin2 was tested via knockdown of Tensin2, which dramatically decreased TPO-dependent cellular proliferation of UT7-TPO cell line as well as their activation of Akt signaling. These studies affirm the use of these arrays as an unbiased screening tool of protein-protein interactions. We conclude that Tensin2 is an important new mediator in TPO/c-Mpl pathway and has a positive affect on cellular growth, at least in part through its effect on the PI3K/Akt signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号