首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a transmembrane potential difference upon the lipid microviscosity of cytochrome oxidase vesicles (COVs) and rat liver mitochondria (RLM) were investigated. COVs and RLM were labelled with the fluorescent probe 1,6-diphenylhexa-1,3,5-triene (DPH). The fluorescence polarization of the probe was then measured when potentials of different magnitudes were induced across the membranes of these particles. It was shown that the absolute value of the microviscosity changes to quite a significant extent, owing to the imposition of large membrane potentials. On relaxation of the membrane potential the lipid microviscosity was also shown to return to the value before the induction of the potential. The largest change in lipid microviscosity was observed when coupled respiration was initiated. This occurred in both the COV system and the RLM system. The absolute value of the lipid microviscosity was shown to change by as much as 22% with the induction of membrane potentials, owing to respiration. To confirm the viscosity measurements made with DPH, lipid microviscosity was also measured with the spin-labelled fatty acid 5-doxyl stearate. Measurements of the order parameters indicated that, in agreement with the results of fluorescence experiments, viscosity changes occurred that were due to the induction of a membrane potential. The significance of these findings to the regulation of metabolism is briefly discussed, the main conclusion being that, although there is certainly a significant variation of lipid microviscosity with electric field, mechanistic interpretations will require further studies.  相似文献   

2.
Y Barenholz  N F Moore  R R Wagner 《Biochemistry》1976,15(16):3563-3570
The fluorescence probe 1,6-diphenyl-1,3,5-hexatriene was used to study and compare the dynamic properties of the hydrophobic region of vesicular stomatitis virus grown on L-929 cells, plasma membrane of L-929 cells prepared by two different methods, liposomes prepared from virus lipids and plasma membrane lipids, and intact L-929 cells. The rate of penetration of the probe into the hydrophobic region of the lipid bilayer was found to be much faster in the lipid vesicle bilayer as compared with the intact membrane, but in all cases the fluorescence anisotropy was constant with time. The L-cell plasma membranes, the vesicles prepared from the lipids derived from the plasma membranes, and intact cells are found to have much lower microviscosity values than the virus or virus lipid vesicles throughout a wide range of temperatures. The microviscosity of plasma membrane and plasma membrane lipid vesicles was found to depend on the procedure for plasma membrane preparation as the membranes prepared by different methods had different microviscosities. The intact virus and liposomes prepared from the virus lipids were found to have very similar microviscosity values. Plasma membrane and liposomes prepared from plasma membrane lipids also had similar microviscosity values. Factors affecting microviscosity in natural membranes and artificially mixed lipid membranes are discussed.  相似文献   

3.
The degree of microviscosity, gh, (fluidity/rigidity behavior) of membrane lipids of normal and transformed mammalian fibroblasts obtained from mice, hamsters and rats was quantitatively monitored by fluorescence polarization, P, analysis of the fluorescent probe 1,6-diphenyl 1,3,5-hexatriene (DPH) when embedded in lipid regions of cellular membranes of intact viable cells. Analysis of membrane microviscosity of six different cell populations and of individual cells in each cell population have indicated that the membrane microviscosity of all cell types, both normal and transformed fibroblasts, changes as a function of the cell density in the growing cultures. The membrane microviscosity was found to be low (high lipid fluidity) in sparse conditions but high (high lipid rigidity) in dense conditions. The induced changes in membrane microviscosity are practically reversible for all cell types and a complete reversion can be obtained within a few hours after changing the cell density conditions from sparse to dense and vice versa.Comparative studies with normal and transformed fibroblasts have shown that transformed fibroblasts have a more rigid lipid layer in their cellular membranes than normal or untransformed fibroblasts. The difference in membrane microviscosity between transformed and normal fibroblasts is higher in confluent conditions as compared with subconfluent cultures. These differences in the degree of fluidity of membrane lipids that are controlled by possible differences in the cellto-cell contact in normal and transformed fibroblasts may play a major role in determining the growth behavior of normal and malignant cells that are growing as a solid tissue and may have a direct effect on the control mechanisms that determine the presence or absence of the “density dependent inhibition” of growth.  相似文献   

4.
T Araiso  T Koyama 《Biorheology》1988,25(1-2):253-259
The absolute value of the viscosity in membrane lipid bilayers, which is different from the microviscosity advocated by Shinitzky, could be calculated from steady-state fluorescence depolarization of a hydrocarbon fluorophore, 1,6-diphenyl-1,3,5-hexatriene (DPH). This method was based on the theory of time-resolved fluorescence anisotropy and empirical relationships between fluorescence life time and the anisotropy parameters such as half cone angle in wobbling motion and wobbling diffusion rate of the fluorescent probe. Obtained viscosity values of various membranes from this method were consistent with those from time resolved method within experimental error.  相似文献   

5.
The effect of peroxidation on 5'-nucleotidase activity as well as on membrane microviscosity has been investigated in liver plasma membranes from Wistar rats. The peroxidation was performed with 100 microM H2O2 and 200 microM FeSO4 and/or with 5 mM t-butylhydroperoxide. Treatment of the membranes with these oxidizing agents resulted in an elevation of the transition temperatures of the polarization of the lipid fluorescent probes 1,6 diphenyl-1,3,5 hexatriene (DPH), 3-p-(6-phenyl) 1,3,5 hexatriene phenylpropionic acid (PA-DPH) as well as of the fluorescent thiol reagent N-(1-pyrene) maleimide (1-PM). The peroxidation resulted in a decrease of the activity of 5'nucleotidase. Our data support that the increase of membrane microviscosity of the lipid domain regulates the activity of 5'-nucleotidase.  相似文献   

6.
An investigation has been carried out of the relationship between changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and concomittant changes in the lateral diffusion of proteins and lipid probes in membranes. Plasma membranes from lymphocytes and a CH1 mouse lymphoma line were treated with up to 70 mol% (relative to the total membrane phospholipid) of oleic or linoleic fatty acids. Under these conditions the fluorescence polarization of DPH decreased by between 8 and 15% which, in the framework of the microviscosity approach, suggests a membrane fluidity change of between 20 and 50%. The lateral diffusion coefficients of surface immunoglobin and the lipid probes 3,3′-dioctadecylindocarbocyanine and pyrene were also measured in these membranes using the fluorescence photobleaching recovery technique and the rate of pyrene excimer formation. The diffusion rates were found to be unaffected by the presence of free fatty acids. Hence despite large ‘microviscosity’ changes as reported by depolarization of DPH fluorescence, lateral diffusion coefficients are essentially unchanged. This finding is consistent with the idea that perturbing agents such as free fatty acids do not cause a general fluidization of the membrane but act locally to alter, for example, protein function. It is also consistent with the suggestion that lateral mobility of membrane proteins is not modulated by the lipid viscosity.  相似文献   

7.
Summary The microviscosity of cellular membranes (or membrane fluidity) was measured in suspensions of single mucosal cells isolated from the urinary bladder of the toad,Bufo marinus, by the technique of polarized fluorescence emission spectroscopy utilizing the hydrophobic fluorescent probe, perylene. At 23°C, 5mm dibutyryl cyclic 3,5-AMP decreased the apparent microviscosity of the cell membranes from 3.31 to 3.07 P, a minimum decrease of 7.3% (P<0.001) with a physiological time course. Direct visualization of the cell suspension indicated that 98% of the cells were viable, as indicated by Trypan Blue dye exclusion. The fluorescent perylene could be seen only in plasma membranes, suggesting that the measured viscosity was that of plasma membrane with little contribution from the membranes of cellular organelles. Addition of antidiuretic hormone to intact hemibladders stained with perylene produced changes in fluorescence consistent with a similar 7% decrease in apparent microviscosity with a physiological time course. However, finite interpretation of the findings in intact tissue cannot be made because the location and the fluorescent lifetime of the probe could only be conducted on the isolated cells. Comparison with previously determined relationships between water permeability and microviscosity in artificial bilayers suggests that the 7% (a lower limit) decrease in microviscosity would produce only a 6.5% increase in water permeability.  相似文献   

8.
M Donner  J F Stoltz 《Biorheology》1985,22(5):385-397
Important cellular functions, such as rheological properties of cells are presumably related to the membrane lipid fluidity which may be approached by the use of fluorescence polarization method. However, biological membranes represent very heterogeneous media and the knowledge of the fluidity of membrane compartments requires the use of different probes. Two fluorescent probes, DPH and its cationic derivative, TMA-DPH, have been employed to probe the lipid fluidity of human platelets and red cell membranes. The results show that the informations given by DPH and TMA-DPH can present important differences, suggesting that DPH and TMA-DPH are localized in different regions of cell membranes. In an attempt to investigate relations between lipid fluidity and rheological properties of red cells, the behavior of probes was studied in a "Couette" viscometer with a device for studying the emissive properties of probes when red cell membranes are under shear conditions.  相似文献   

9.
The conjugated phenyltetraene PTE-ET-18-OMe (all-(E)-1-O-(15'-phenylpentadeca-8',10',12',14'-tetraenyl)-2-O-methyl-rac-glycero-3-phosphocholine) is a recently developed fluorescent lysophospholipid analog of edelfosine, (Quesada et al. (2004) J. Med. Chem. 47, 5333-5335). We investigated the use of this analog as a probe of membrane structure. PTE-ET-18-OMe was found to have several properties that are favorable for fluorescence anisotropy (polarization) experiments in membranes, including low fluorescence in water and moderately strong association with lipid bilayers. PTE-ET-18-OMe has absorbance and fluorescence properties similar to those of diphenylhexatriene (DPH) probes, with about as large a difference between its fluorescence anisotropy in liquid disordered (Ld) and ordered states (gel and Lo) as observed for DPH. Also like DPH, PTE-ET-18-OMe has a moderate affinity for both gel state ordered domains and Lo state ordered domains (rafts). However, unlike fluorescent sterols or DPH (Megha and London (2004) J. Biol. Chem. 279, 9997-10004), PTE-ET-18-OMe is not displaced from ordered domains by ceramide. Also unlike DPH, PTE-ET-18-OMe shows only slow exchange between the inner and outer leaflets of membrane bilayers, and can thus be used to examine anisotropy of an individual leaflet of a lipid bilayer. Since PTE-ET-18-OMe is a zwitterionic molecule, it should not be as influenced by electrostatic interactions as are other probes that do not cross the lipid bilayer but have a net charge. We conclude that PTE-ET-18-OMe has some unique properties that should make it a useful fluorescence probe of membrane structure.  相似文献   

10.
Fluorescent probes 1,6-diphenyl-1,3,5-hexatriene (DPH) and pyrene were employed in studying the effect of aminazine and triftazin versus that of imipramine on microviscosity of rat brain cortex synaptosomal membranes. Unlike imipramine, the neuroleptics decrease microviscosity of membrane's lipid bilayer. All drugs decrease fluorescence of endogenous tryptophan, but fail to change fluorescence of L-tryptophan in the solution. It is concluded that neuroleptics induce conformational perturbations in membrane-bound proteins modifying microviscosity of lipid bilayer whereas imipramine changes the surface electric charge of lipid bilayer of synaptosomal membranes.  相似文献   

11.
The microviscosities of the hydrophobic regions of the membranes of intact Semliki forest and Sindbis viruses grown on BHK-21 cells, of liposomes derived from the extracted viral lipids, and of protease-treated virions were measured by fluorescence depolorization using the fluorescence probe 1, 6-diphenyl-1,3,5-hexatriene. The intact virus membranes were found to have a higher microviscosity than did virus-derived liposomes, indicating the viral envelope proteins contribute to microviscosity. However, protease-treated virus, devoid of protruding spikes but with residual lipophilic peptide tails, was found to have a microviscosity more similar to that of the intact virus than to that of protein-free liposomes. Sindbis virus grown in BHK-21 cells at 37 C had a much higher microviscosity than did Sindbis virus grown on Aedes albopicuts cells at 22 C. Sindbis virus grwon in A. albopictus and BHK-21 cells also gave higher microviscosity values than did the intact host cells. These data indicate that both the virion proteins and the cellular lipids selected during viral growth and maturation contribute to the increased microviscosity of togavirus membranes.  相似文献   

12.
Chloroplast thylakoid lipids have been isolated free of photosynthetic pigments using a combination of high performance liquid and thin layer chromatography. The hydrophobic fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH) has been incorporated into aqueous dispersions of the isolated lipids in order to investigate dynamic and structural properties of the resulting bilayer membranes. Time dependent fluorescence anisotropy decays have been measured and analysed assuming the wobbling-in-cone model (Kinosita et al., Biophys J 20 (1977) 289–305). The DPH fluorescence lifetimes and the static and dynamic fluorescence anisotropy decay parameters for the probe in a total lipid mixture or in pure digalactosyldiacylglycerol (DGDG), changed in a predictable way with increasing temperature (10°–36°C). For a given temperature, it was found that the total lipid mixture was in general less ordered and showed greater dynamic motion as judged from DPH fluorescence anisotropy and compared with the pure DGDG system, although at 36°C differences in dynamic parameters were less evident. Overall the results obtained emphasize the highly fluid nature of thylakoid membrane lipids and give a basis for investigating how intrinsic proteins modify structural and dynamic properties of the in vivo membrane.  相似文献   

13.
The blue emission anisotropy, r, of two lipophilic probes, diphenylhexatriene (DPH) and its trimethyl-ammonium derivative (TMA-DPH), has been measured in foliar Lupinus albus L. protoplasts for the first time by flow cytometry. Distinctive values have been obtained for protoplasts of epidermal and mesophyll origin, identified by their intensities of chlorophyll fluorescence. Fluorescence microscopy confirmed that TMA-DPH remained in the plasma membrane while DPH penetrated into intracellular lipid domains. Typical emission anisotropy values at 22°C for mesophyll and epidermal protoplasts, respectively, were 0.225 and 0.312 with TMA-DPH, and 0.083 and 0.104 with DPH. This indicates that epidermal cells—and notably their plasma membranes (TMA-DPH)—have higher lipid microviscosity and/or more ordered lipid structure. Two lupin genotypes characterized as resistant or susceptible to drought were analyzed with or without 9 days of water stress shown to increase ion leakage from foliar discs. Water stress greatly increased the apparent fluidity, and more so in the susceptible genotype; the effect was more pronounced in the chlorophyll-containing mesophyll cells than in the epidermal cells.  相似文献   

14.
The conjugated phenyltetraene PTE-ET-18-OMe (all-(E)-1-O-(15′-phenylpentadeca-8′,10′,12′,14′-tetraenyl)-2-O-methyl-rac-glycero-3-phosphocholine) is a recently developed fluorescent lysophospholipid analog of edelfosine, (Quesada et al. (2004) J. Med. Chem. 47, 5333-5335). We investigated the use of this analog as a probe of membrane structure. PTE-ET-18-OMe was found to have several properties that are favorable for fluorescence anisotropy (polarization) experiments in membranes, including low fluorescence in water and moderately strong association with lipid bilayers. PTE-ET-18-OMe has absorbance and fluorescence properties similar to those of diphenylhexatriene (DPH) probes, with about as large a difference between its fluorescence anisotropy in liquid disordered (Ld) and ordered states (gel and Lo) as observed for DPH. Also like DPH, PTE-ET-18-OMe has a moderate affinity for both gel state ordered domains and Lo state ordered domains (rafts). However, unlike fluorescent sterols or DPH (Megha and London (2004) J. Biol. Chem. 279, 9997-10004), PTE-ET-18-OMe is not displaced from ordered domains by ceramide. Also unlike DPH, PTE-ET-18-OMe shows only slow exchange between the inner and outer leaflets of membrane bilayers, and can thus be used to examine anisotropy of an individual leaflet of a lipid bilayer. Since PTE-ET-18-OMe is a zwitterionic molecule, it should not be as influenced by electrostatic interactions as are other probes that do not cross the lipid bilayer but have a net charge. We conclude that PTE-ET-18-OMe has some unique properties that should make it a useful fluorescence probe of membrane structure.  相似文献   

15.
C E Martin  D C Foyt 《Biochemistry》1978,17(17):3587-3591
Measurement of the time-resolved fluorescence depolarization of 1,6-diphenylhexatriene (DPH) in artificial bilayers of microsomal membrane lipids from Tetrahymena gives detailed information concerning the molecular motion of this probe and fluid properties of the membrane lipids which are obscured with steady-state methods. The rotational motion of DPH in these lipids from cells acclimated to 15 and 39.5 degrees C growth temperatures was anisotropic, which agrees with recent time-resolved studies of this probe in synthetic phospholipid systems. Evaluation of DPH polarization data obtained from these lipid fractions at their respective growth temperatures showed differences in physical properties which suggest that "viscosity", per se, of the microsomal lipids is not a strictly regulated as it is in prokaryotic systems. Rotational relaxation of DPH in 39.5 degrees C microsomal lipids measured at 15 degrees C is more complex than that of either lipid fraction measured at its actual growth temperature, suggesting that the probe has partitioned into two dissimilar environments within the bilayer. Similar effects are observed in the microsomes of 39.5 degrees C cells by freeze-fracture electron microscopy following rapid cooling to 15 degrees C. Under these conditions, two distinct regions are observed on the fracture faces, suggesting a correlation between lipid phase changes and alterations in membrane structure.  相似文献   

16.
Fluorescence steady-state anisotropy and phase-modulation lifetime techniques have been utilized to study the interactions of pyrethroid compounds with fluid-phase phosphatidylcholine membranes containing the polypeptide gramicidin. This polypeptide is considered to be a model of hydrophobic regions of cellular integral membrane proteins. The pyrethroids disorder lipid packing in cellular membranes and gel-phase liposomes but do not disorder lipid packing in fluid-phase lipid (Stelzer, K.J. and Gordon, M.A. (1984) J. Immunopharmacol. 6, 381-410; (1985) Biochim. Biophys. Acta 812, 361-368) Irrespective of liposomal size, gramicidin incorporation resulted in a substantial increase in anisotropy of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), in fluid phase lipid. In the absence of gramicidin, permethrin and three other pyrethroids, allethrin, cypermethrin and fenpropathrin, increased DPH anisotropy. In these fluid phase systems, as the protein:lipid ratio was increased, the extent of the pyrethroid-mediated increase in fluorescence anisotropy diminished. Also, the pyrethroids shortened DPH fluorescence lifetimes. At high gramicidin:lipid ratios, permethrin substantially lowered anisotropy in the fluid phase lipid, relative to controls. The data suggest that pyrethroids disturb fluid-phase lipids which have been promoted to a relative state of order by proximity to an integral membrane protein. This type of order is one which is represented by DPH fluorescence anisotropy. A model based on these results is proposed to explain the effects of pyrethroids on lipid packing order in cellular membranes, as determined by DPH fluorescence anisotropy.  相似文献   

17.
An experimental approach has been developed to study human erythrocyte vesiculation, using the fluorescent probes diphenylhexatriene (DPH), trimethylamino-diphenylhexatriene (TMA-DPH) and heptadecyl-hydroxycoumarin (C17-HC). Acetylcholinesterase (AChE) enzyme activity measurements confirmed the presence of exovesicles released from erythrocyte membranes labeled with DPH, TMA-DPH or C17-HC. The fluorescence intensity and anisotropy values obtained showed that the amphiphilic probes TMA-DPH and C17-HC are preferentially incorporated in the exovesicles (when compared with DPH). There is a significant decrease of the cholesterol content of the exovesicle suspensions with time, independently of the fluorescence probe used, reaching undetectable cholesterol levels for the samples incubated for 48 hr. The ratios between the concentration of cholesterol released in the exovesicles after 1 hr incubation with DPH, TMA-DPH or C17-HC and the probe concentration used in the incubation were 84.7, 3.82 and 0.074, respectively. The size of the released vesicles was evaluated by dynamic light scattering spectroscopy. Some hypotheses are proposed that could explain the resemblance and differences between the results obtained for erythrocytes labeled with each probe, considering the present knowledge of membrane vesiculation mechanisms, lipid microdomains (rafts), erythrocyte membrane phospholipid asymmetry and AChE inhibition by TMA-DPH and C17-HC. This work demonstrates that the fluorescent probes DPH, TMA-DPH and C17-HC induce rapid erythrocyte exovesiculation; their use can lead to new methodologies for the study of this still poorly understood mechanism.  相似文献   

18.
Treatment of the S3G strain of HeLa cells with dexamethasone inhibits cholesterol synthesis and thus results in decreased plasma membrane cholesterol-to-protein ratios. Incubation of HeLa cells with dexamethasone for 24 h lowers the steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) in intact cell plasma membranes and isolated plasma membranes (Johnston, D. and Melnykovych, G. (1980) Biochim. Biophys. Acta 596, 320–324). We have examined the effect of dexamethasone treatment of S3G HeLa cells on the lateral diffusion of the fluorescent lipid analogue 3,3′-dioctadecylindocarbocyanine iodide (DiI) by the fluorescence photobleaching recovery technique. The lateral diffusion of DiI was measured in cells 0, 2, 6, 12, and 24 h following treatment with dexamethasone and in cells identically handled without dexamethasone at 37°C. The diffusion constants of DiI in the treated and untreated cell membranes at zero time were (4.52±0.30) · 10?9 cm2/s and (4.56±0.24) · 10?9 cm2/s, respectively. There was no significant change in the lateral diffusion of DiI in the untreated cells over the 24 h period. The lateral diffusion of the lipid probe in the dexamethasone-treated cells began to increase 6 h following treatment and reached (6.43±0.27) · 10?9 cm2/s at 24 h. The lateral diffusion of DiI was also measured at 25, 17, 10 and 4°C following 24 h incubation with and without dexamethasone. The effect of dexamethasone treatment on the lipid probe lateral diffusion observed at 37°C is decreased at 25°C and reversed in direction at 10 and 4°C. These results agree with those obtained in artificial systems containing varying amounts of cholesterol and support the suggestion that cholesterol acts to suppress phospholipid phase changes in animal cells. The lateral diffusion of DiI localized as a monolayer at a mineral oil-water interface was measured by fluorescence photobleaching recovery. The resulting data and the viscosity of the mineral oil were used to calculate the microviscosities of the plasma membranes of untreated and dexamethasone-treated cells at 25°C. Membrane microviscosities were also calculated from the fluorescence polarization studies cited above. In both cases the dexamethasone treatment reduced the apparent microviscosity by approximately 25%. However, the absolute microviscosity values obtained by the two techniques differ by a factor of 3.  相似文献   

19.
Kunes J  Devynck MA  Zicha J 《Life sciences》2000,67(8):959-967
Lipid metabolism disorders were proposed to mediate numerous cell membrane alterations in various forms of hypertension. Elevated plasma triglycerides were found to be associated with changes in membrane structure and function related to altered microviscosity in particular domains of the cell membrane. The aim of our study was to determine if an abnormal triglyceride metabolism might play a causal role in these alterations of membrane dynamics. Using genetically hypertensive rats of the Prague hereditary hypertriglyceridemic (HTG) strain we investigated whether the elevation of circulating triglycerides induced by high fructose intake and/or their lowering by chronic gemfibrozil treatment (for 10 weeks starting at the age of 6 weeks) are followed by reciprocal changes in membrane microviscosity. Two different fluorescent probes exploring either the outer membrane leaflet (TMA-DPH anisotropy) or the membrane lipid core (DPH anisotropy) were used in platelets of HTG rats. DPH (diphenylhexatriene) fluorescence anisotropy was decreased in platelets of fructose-treated HTG animals with highly elevated plasma triglyceride levels, whereas it was increased in gemfibrozil-treated HTG rats in which triglyceride levels were almost normalized. On the contrary, TMA-DPH (trimethylamino-diphenylhexatriene) anisotropy was not substantially altered in platelets from HTG rats by the above modifications of circulating triglycerides. No changes of plasma cholesterol or blood pressure were associated with the triglyceride-dependent modifications of membrane core microviscosity. Our interventional study demonstrates a major causal role of circulating triglycerides in the control of the microviscosity of membrane lipid core.  相似文献   

20.
The partitioning of fluorescence probes into intracellular organelles poses a major problem when fluorescence methods are applied to evaluate the fluidity properties of cell plasma membranes with intact cells. This work describes a method for resolution of fluidity parameters of the plasma membrane in intact cells labelled with the fluorescence polarization probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The method is based on selective quenching, by nonradiative energy transfer, of the fluorescence emitted from the plasma membrane after tagging the cell with a suitable membrane impermeable electron acceptor. Such selective quenching is obtained by chemical binding of 2,4,6-trinitrobenzene sulfonate (TNBS), or by incorporation of N-bixinoyl glucosamine (BGA) to DPH-labelled cells. The procedures for determination of lipid fluidity in plasma membranes of intact cells by this method are simple and straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号