首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gale  W. L.  Hill  M. S.  & Zydlewski  G. B. 《Journal of fish biology》2004,65(S1):328-329
In many parts of the world release of hatchery‐reared smolts has long been used to mitigate for the deleterious effects of habitat loss and overfishing on salmonid populations. Of increasing concern is whether this may cause harm by spreading non‐native stocks and potentially releasing incompetent smolts. The objective of this study was to determine if smolt physiology and behavior of juveniles produced from a recently founded native broodstock differ from their wild (naturally‐reared) counterparts. In the fall of 2002 and 2003 juvenile wild steelhead were captured, PIT tagged, and returned ( n  = 1360 in 2002 and n  = 2708 in 2003) to Abernathy Creek. In winter of 2003 and 2004 hatchery‐reared fish were PIT tagged and later released ( n  = 1100 in 2003 and n  = 1400 in 2004) into Abernathy Creek. Gill biopsies were collected from wild and hatchery fish throughout the rearing and out‐migration season. The timing and speed of outmigration was assessed using two stationary PIT tag antennas (92–97% efficient). Hatchery migrants in 2003 were larger, had significantly lower gill Na+, K+‐ATPase activities, and migrated slower than wild fish. Results from the 2004 migratory season will also be presented. This study shows that hatchery rearing can result in smolts which are physiologically and behaviourally different from genetically similar wild fish. Whether these differences are critical enough to affect the rate of adult returns will be determined in future years.  相似文献   

2.
In order to better understand the basis for the acquisition of euryhalinity by juvenile salmon and the role of endogeneous stimuli, experiments have been carried out to examine the dynamics of ionic and acid-base adjustments in fresh water (FW) and after direct transfer to full salinity (32 g l−1) sea water (SW) (1) on Atlantic salmon smolt during the natural period of smoltification in spring, (2) on presmolt salmon in autumn, after intraperitoneal implantation of pellets containing ovine growth hormone (oGH). During parr-smolt transformation in FW, gill Na+/K+ ATPase activity gradually rises, the plasma osmolality (Posm) is unaffected and the total CO2 of the plasma decreases significantly while whole blood pH fluctuates slightly. Direct transfer of smolt from FW to SW provokes only a slight increase in Posm and emphasizes the acid-base balance disruptions shown in FW. An oGHimplant in a presmolt stimulates gill Na+/K+ ATPase activity in FW, and affects the acid-base balance. After SW transfer (12 days after implantation), oGH treatment prevents the increase of osmotic pressure and the restoration of the acid-base, ionic equilibrium was faster for oGH-implanted fish than for sham-operated fish. These observations show that in FW smelting salmon develop most of the systems they need for migration and growth in SW and that oGH implants induce the development of physiological characteristics of smolts in a non-natural period of smolting.  相似文献   

3.
Danish rainbow trout, Salmo gairdneri Richardson, (40–65 g) were transferred to 28%o sea water at intervals throughout the early spring and summer. Gill Na+/K+-ATPase of fish kept in fresh water surged distinctly during May. Simultaneously, a body silvering occurred and plasma concentrations of Cl, Na+ and total thyroxine (T4) decreased. The seawater transfer-induced adaptive response in plasma electrolytes comprised a biphasic change, i.e., an adjustive peak phase and a regulatory phase lasting for 2 days and 1 week after transfer, respectively. Further, gill Na+/K+-ATPase activity increased to a new level after an initial lag phase of 2–3 days, but electrolyte regulation was mostly initiated prior to the adaptive change in ATPase activity. In spite of increasing pre-transfer freshwater Na+/K+-ATPase activity during the spring, the electrolyte peak level, the degree of muscle dehydration and the mortality of fish transferred to sea water increased from April to July. The apparent uncoupling of freshwater Na+/K+-ATPase activity and plasma electrolyte regulation in sea water is discussed in relation to smelting and prediction of hypo-osmoregulatory performance.  相似文献   

4.
In stream-reared Atlantic salmon Salmo salar , plasma androgens were significantly greater in mature male parr than immature males and females in October, but had declined by January and did not differ significantly from immature fish throughout the spring. Immature fish in March were significantly larger and had greater gill Na+, K+-ATPase activity than their previously mature counterparts. Bimodal growth distribution was seen in hatchery-reared Atlantic salmon and a proportion of the male fish in the lower mode matured. Plasma testosterone (T) and 11-ketotestosterone (11-KT) were significantly elevated from September to December in mature male (1+ year) parr. In January, plasma androgens had declined in mature males and did not differ significantly from immature fish. By May all the hatchery fish were large enough to smolt and a proportion of the previously mature males had increased gill Na+, K+-ATPase activity. Therefore elevated androgens in the previous autumn do not prevent smolting. Parr with higher plasma T and 11-KT in April and May, that are presumably beginning to mature, had lower gill Na+, K+-ATPase activity, indicating that future maturation and associated increases in androgens may inhibit smolting.  相似文献   

5.
The metabolic response of juvenile coho salmon Oncorhynchus kisutch to different salinities was examined, using whole-animal oxygen consumption rates and gill Na+, K+-ATPase activities as indicators of osmoregulatory energetics. Coho salmon smolts were acclimated to fresh water (FW), isosmotic salinity (ISO, 10‰) and sea water (SW, 28‰) and were sampled for up to 6 weeks for plasma levels of cortisol, glucose and ions (Na+, K+, Cl), gill Na+, K+-ATPase activity and oxygen consumption rates. Following an initial adjustment period, plasma constituents in SW fish returned to near-FW values, indicating that the fish were acclimated to SW by day 21. Gill Na+, K+-ATPase activities on days 21 and 42 were lowest in ISO, higher in FW and highest in SW. This result is consistent with the idea that less energy would be required to maintain ion balance in an isosmotic environment, where the ionic gradients between extracellular fluid and water would be minimal. Oxygen consumption rates of swimming fish (1 body length s−1), however, did not differ significantly between the three test salinities after 6 weeks. The results of this study suggest that the metabolic response of juvenile salmonids to changes in salinity is dependent on life-history stage (e.g. fry v . smolt), and that oxygen consumption rates do not necessarily reflect osmoregulatory costs.  相似文献   

6.
Atlantic salmon Salmo salar juveniles were fed either fishmeal-based diets (FM) or diets in which soybean meal (SBM) partly replaced the FM from first feeding on. The fish were kept at continuous daylight during the juvenile stage. During the last 3 weeks before reaching 100 g body mass, all fish were subjected to 12L:12D. Starting at 100 g body mass, groups of 60 fish from each feeding background were subjected to continuous light for 12 weeks (short winter), or a square-wave photoperiod cycle to stimulate parr to smolt transformation with 8L:16D during the first 6 weeks, and then continuous light during the last 6 weeks (long winter). After the 12 weeks, 20 fish from each treatment were subjected to 0, 24 or 96 h seawater exposure at a water salinity of 34. Hypo-osmoregulatory ability at seawater exposure was assessed by mortality, intestinal pathology, plasma ion concentrations and osmolality, gill Na+/K+-ATPase activity and element concentrations in the cytoplasm of distal intestinal enterocytes using X-ray microanalysis. The hypo-osmoregulatory capacity was higher in fish kept at short winter than at long winter, apparently due to more rapid development of gill Na+/K+-ATPase activity. Fish fed SBM suffered typical soybean meal-induced histological alterations of the distal intestine and apparent reductions in digestive function in the more proximal gastrointestinal regions. The net osmoregulatory capacity of these fish was maintained, as indicated by higher gill Na+/K+-ATPase activity and lower plasma Na+, Ca2+ and osmolality compared to the FM-fed fish. Thus, feeding SBM did not impair the hypo-osmoregulatory ability of the Atlantic salmon following seawater exposure.  相似文献   

7.
Cichlids of the genus Oreochromis are fish of economic importance in African countries. They tolerate brackish water, however, with great variations between species. In this work, two species, both from the Ivory Coast but of different origins, O. niloticus (field and laboratory strains) and O. aureus (field strain) were compared during osmotic challenges (10, 20 and 30%o salinity) in order to provide physiological support for their specific behaviour when confronted with natural hypertonic environments. Tolerance to salinity was assessed by correlated observations on gill structure, plasma sodium levels and gill Na+/K+ ATPase activity. In fresh water (FW), all fish presented a gill epithelium structure characteristic of FW stenohaline fish: no chloride cells (CC) on the lamellae and few CC on the filaments. An increase in external salinity induced the proliferation of CC on filaments, a feature typical of seawater teleosts. This change in gill structure was accompanied by an increase of gill Na+/K+ ATPase activity. In the most tolerant strains, plasma Na+ did not change, indicating successful ion regulation in the hypertonic media. With regard to potential interest of field strains in fish culture, O. aureus acclimated more easily to brackish water than O. niloticus . Interestingly, O. niloticus , kept for several generations in the laboratory, performed best in our challenge studies. Plasma Na+ levels and gill CC proliferation upon transfer to an isotonic medium may be the parameters of choice when testing these fish for their response to a salinity change.  相似文献   

8.
Hatchery and wild juvenile populations of steelhead Oncorhynchus mykiss and coho salmon Oncorhynchus kisutch , in a small coastal watershed in central California, were sampled throughout the year in a stream and at a hatchery. Both species grew faster in captivity than in the wild. Hatchery fish of both species had elevated gill Na+, K+‐ATPase activity, and thus were ready to enter sea water when planted during the wild fish migration. Downstream migrant trapping and stream surveys indicated that hatchery smolts went to sea soon after planting, consequently avoiding the effects of competition and predation that commonly occur when hatchery‐bred juveniles are released. Adult steelhead were also sampled throughout the watershed. The return of hatchery steelhead was highly synchronized with that of wild steelhead, indicating that hatchery propagation had no adverse effects on the timing of the run. A disproportionate number of hatchery steelhead returned to the tributary where the hatchery was located, despite being planted throughout the watershed. Hatchery steelhead did not differ in mean age or size from wild steelhead. Observations of spawning indicated that hatchery and wild steelhead interbreed. Competition for mates or spawning substratum was rarely observed between hatchery and wild steelhead. Many of the problems commonly associated with artificial propagation can be avoided in small coastal watersheds when wild broodstock are used and fish are released as smolts.  相似文献   

9.
In two year classes of Willamette River spring chinook salmon, reared at the Willamette Hatchery, and two groups of Yakima River spring chinook salmon, one sampled from the Yakima River and the other reared in a hatchery, fish which had relatively high growth rates in the summer–autumn period smolted in the autumn as measured by increases in gill Na+ K+ AT Pase activity. In contrast, groups with relatively low growth rate did not smolt in the autumn. Plasma levels of insulin-like growth factor-I (IGF-I) showed discrete differences between groups, with high levels associated with increased gill Na+ K+ AT Pase activities. These results demonstrate that smolting is plastic in spring chinook salmon, occurring in the autumn or the spring. In addition, smolting appeared to be related to growth rate; however, the relationships shown were correlational and causal mechanisms were not elucidated. Yet, the results do indicate a relationship between growth, an endocrine growth factor and smolting, suggesting a mechanistic link between developmental plasticity and the environment mediated by the endocrine system.  相似文献   

10.
Out of five strains of Atlantic salmon Salmo salar of 1+ years released upstream of a fyke net in the River Gudenaa in 1996, three, Lagan, Ätran and Corrib, migrated immediately, 50% of the recaptured fish reaching the net in 3–6 days. Burrishoole and Conon fish migrated with a 15–19 day delay. Smolt development in 1997 at the hatchery showed a spring surge in gill Na+, K+-ATPase activity in all strains which was correlated with increased seawater tolerance. Differences in the timing of gill enzyme development matched the observed migration pattern well. Lagan, Ätran and Corrib strains reached high enzyme activity earlier than the Burrishoole and Conon strains, and strains with delayed enzyme development and migration showed a delayed regression of seawater tolerance compared with the early strains. Inter-strain differences in plasma growth hormone profiles could not be related to the observed patterns of Na+, K+-ATPase and seawater tolerance development. The study gives evidence of genetic influence on the timing and intensity of smolting and subsequent migration in Atlantic salmon.  相似文献   

11.
Kinetic studies of a microsomal (Na++ K++ Mg2+)ATPase from sugar beet roots ( Beta vulgaris L. cv. Monohill) show that sucrose influences the MgATPase in different ways depending on the presence of K+ and/or Na+ 1) In the presence of the substrate MgATP and Na+ the effect of sucrose follows simple Michaelis-Menten kinetics. 2) In the presence of substrate together with K+ or (K++ Na+), sucrose has little effect on the ATPase activity. 3) In the presence of Na+, onabain acts as an uncompetitive inhibitor with respect to MgATP. 4) In the presence of K+ or (K++ Na+), the inhibition by ouabain is somewhat depressed and shows non-linearity when 1/v is plotted versus 1/MgATP. 5) Sucrose and Na+ activate in a competitive way, so that a successive increase of the Na+ level decreases the activation by sucrose. Both Km and V-values are thereby changed. 6) The sucrose activation in the presence of Na+ is also influenced by ouabain. It is, therefore, suggested that Na+ may regulate the interference between the Na+/K+ pump and a sucrose sensitive system.  相似文献   

12.
Twenty‐day‐old sunflower plants ( Helianthus annuus L. cv. Sun‐Gro 380) grown in nutrient solutions with different KCl levels were used to study the effects of K+ status of the root and of abcisic acid (ABA) on the exudation rate (Jv), the hydraulic conductivity of the root (Lp), the fluxes of exuded K+ and Na+ (JK and JNa), and the gradient of osmotic pressure between the xylem and the external medium. Jv and Lp increased in direct proportion to the K+ starvation of the root. Also addition of ABA (4 µ M ) at the onset of exudation in the external medium made Jv and Lp rise, and this effect also increased with the degree of K+ starvation. Similarly, K+ starvation and ABA promoted both the flux of exuded Na+ and the accumulation of Na+ in the root. We suggest that ABA acts as a regulating signal for the radial transport of water across the root, and that potassium may be an effector of this mechanism.  相似文献   

13.
The H+/PPi stoichiometry of the mitochondrial H+‐PPiase from pea ( Pisum sativum L.) stem was determined by two kinetic approaches, and compared with the H+/substrate stoichiometries of the mitochondrial H+‐ATPase, and the vacuolar H+‐PPiase and H+‐ATPase. Using sub‐mitochondrial particles or preparations enriched in vacuolar membranes, the rates of substrate‐dependent H+‐transport were evaluated: by a mathematical model, describing the time‐course of H+‐gradient (ΔpH) formation; or by determining the rate of H+‐leakage following H+‐pumping inhibition by EDTA at the steady‐state ΔpH. When the H+‐transport rates were divided by those of PPi or ATP hydrolysis, measured under identical conditions, apparent stoichiometries of ca 2 were determined for the mitochondrial H+‐PPiase and H+‐ATPase, and for the vacuolar H+‐ATPase. The stoichiometry of the vacuolar H+‐PPiase was found to be ca 1. From these results, it is suggested that the mitochondrial H+‐PPiase may, in theory, function as a primary H+‐pump poised towards synthesis of PPi and, therefore, acting in parallel with the main H+‐ATPase.  相似文献   

14.
Abstract: In primary cultures of cerebellar neurons glutamate neurotoxicity is mainly mediated by activation of the NMDA receptor, which allows the entry of Ca2+ and Na+ into the neuron. To maintain Na+ homeostasis, the excess Na+ entering through the ion channel should be removed by Na+,K+-ATPase. It is shown that incubation of primary cultured cerebellar neurons with glutamate resulted in activation of the Na+,K+-ATPase. The effect was rapid, peaking between 5 and 15 min (85% activation), and was maintained for at least 2 h. Glutamate-induced activation of Na+,K+-ATPase was dose dependent: It was appreciable (37%) at 0.1 µ M and peaked (85%) at 100 µ M . The increase in Na+,K+-ATPase activity by glutamate was prevented by MK-801, indicating that it is mediated by activation of the NMDA receptor. Activation of the ATPase was reversed by phorbol 12-myristate 13-acetate, an activator of protein kinase C, indicating that activation of Na+,K+-ATPase is due to decreased phosphorylation by protein kinase C. W-7 or cyclosporin, both inhibitors of calcineurin, prevented the activation of Na+,K+-ATPase by glutamate. These results suggest that activation of NMDA receptors leads to activation of calcineurin, which dephosphorylates an amino acid residue of the Na+,K+-ATPase that was previously phosphorylated by protein kinase C. This dephosphorylation leads to activation of Na+,K+-ATPase.  相似文献   

15.
Intracellular concentrations of Na+ and K+ were similar (∼75 mmol l−1) in rainbow trout Oncorhynchus mykiss hepatocytes directly following isolation by collagenase digestion, but partial recovery occurred over 6 h with K+ levels increasing to 110 mmol l−1 and Na+ levels decreasing to 42 mmol l−1. Black bullhead Ameiurus melas hepatocytes exhibited higher intracellular concentrations of K+ (90 mmol l−1) than Na+ (55 mmol l−1) with no recovery occurring over 6 h following cell isolation. Concentrations of Na+, K+ and Cl in eel Anguilla rostrata hepatocytes were similar (∼ 55 mmol l−1) following isolation, with no recovery occurring over time. Erythrocytes from all species apparently did not experience an intracellular ion imbalance following isolation as indicated by high K+ levels (<140 mmol l−1) and low Na+ levels (<40 mmol l−1) during the entire 24-h monitoring period. Although hepatocytes from all species exhibited an ion imbalance post-isolation, comparison of their in vitro intracellular Na+ and K+ concentrations with those in plasma demonstrated that directionally correct ion gradients still exist across the cell membrane, albeit differing from those that would be found in the tissue in vivo .  相似文献   

16.
In the present study, glass eels Anguilla anguilla in the Minho River estuary (41·5° N, 8·5° W) decreased in size (standard length, L S and mass, M ) from the beginning (autumn) to the end of the sampling season (summer). On the other hand elvers increased in L S and M from spring to summer and were significantly larger than glass eels in paired comparisons. Branchial Na+/K+-ATPase and vacuolar (V-type) proton ATPase ( in vitro activities), two important ion transporting pumps, did not show significant seasonal changes in either glass eels or elvers although in glass eels Na+/K+-ATPase (activity) expression was significantly higher than in elvers. In a single month comparison Na+/K+-ATPase branchial mRNA expression was also higher in glass eels as was the protein level expression of both Na+/K+-ATPase and NKCC (Na+:K+:2Cl co-transporter). Immunofluorescence microscopy indicated apical CFTR Cl channel labelling in Na+/K+-ATPase positive chloride cell in glass eels which was absent in elvers. Whole body sodium concentration and percentage water did not show significant seasonal differences in either glass eels or elvers although there were significant differences between these two groups during some months.  相似文献   

17.
The effect of Mg2+, Na+, K+, ouabain and pH on ATPase activity of purified membrane fractions enriched in plasmalemma fragments from Hordeum vulgare L. (glycophyte) and Halocnemum strobilaceum L. (halophyte) was studied. Membrane ATPases from both plants were synergistically activated by K+ and Na+ in the presence of Mg2+. The maximum activity of the enzymes were observed at the ratio Na/K = 2–3. Ouabain (10-4 M) almost completely eliminated the (Na++ K+)-stimulated component of the ATPase activity. The Na, K, Mg-ATPase of Hordeum had a single pH optimum (pH 8), but that of the Halocnemum had two optima(pH 6 and 8). It appears that similar enzymes operate in the cells of both plants studied. The higher Na, K, Mg-ATPase activity of the halophyte compared to that of the glycophyte suggests the involvement of the enzyme in the extrusion of Na+ from the cytoplasm of cells of both plants.  相似文献   

18.
As Atlantic salmon return from the ocean to undertake the anadromous spawning migration up the river of origin, profound changes in calcium metabolism and osmoregulation take place. Using tartrate resistant acid phosphatase as a marker, scale osteoclast activity was found to increase throughout sexual maturation and spawning migration. Thus, the participation of osteoclasts in the elevated scale resorption observed during this phase is established. As calcium was simultaneously accumulated in the female gonads, it is proposed that the scales are resorbed in order to provide calcium for the growing ovaries. Plasma oestradiol-17 β levels were elevated in females during sexual maturation, and had decreased at the time of spawning. Plasma testosterone levels were similar in males and females during the first part of the upriver migration, but had increased in males and decreased in females at spawning. In addition to the role of these sex steroids in the gonadal growth, their possible involvement in the increased scale resorption during this phase is discussed. Plasma growth hormone and thyroxine levels were elevated in both sexes at spawning, with the triiodothyronine/thyroxine (T3/T4) ratio declining sharply, indicating possible roles for these hormones in the maturational process. The relatively low gill Na+, K+-ATPase activity of salmon caught in the estuary implies that the fish had already adapted to a hypoosmotic environment. During the upriver migration, the gill Na+, K+-ATPase activity decreased further, indicating that the hypoosmoregulatory ability was suppressed further during sexual maturation and spawning migration.  相似文献   

19.
Na+ influx and efflux in Neurospora crassa RL21a can be studied separately to calculate net Na+ movements. In the absence of external K+, Na+ influx was independent of the K+ content of the cells, but when K+ was present, the inhibition of Na+ influx by external K+ was higher the higher the K+ content. Efflux depended on the K+ and Na+ content, and on the history of the cells. Efflux was higher the higher the Na+ and K+ contents, and, in low-K+ cells, the efflux was also higher in cells grown in the presence of Na+ than when Na+ was given to cells grown in the absence of Na+. Addition of K+ to cells in steady state with external Na+ resulted in a net Na+-loss. In cells grown without Na+ this loss was a consequence of the inhibition of Na+ influx. In Na+-grown cells, addition of K+ inhibited Na+ influx and increased Na+ efflux.  相似文献   

20.
To clarify the reaction mechanism of a (Na++ K++ Mg2+)ATPase activity in sugar beet roots ( Beta vulgaris L. cv. Monohill) phloridzin, oligomycin (inhibitors of animal ATPases) and metavanadate (NH4VO3) have been used. Kinetic studies showed that: 1) Phloridzin inhibition is uncompetitive with respect to MgATP and not influenced by Na+ or K+. 2) This inhibition is only found in preparations made in the absence of sucrose. 3) Oligomycin and vanadate inhibit the ATPase in different ways. Omission of sucrose from the preparation medium favours vanadate inhibition but suppresses oligomycin inhibition. 4) The kinetic pattern of the Na+ activation of the ATPase differs in preparations made in the absence and presence of sucrose, but that of K+ activation is the same. – These results indicate that inclusion as against omission of sucrose from the preparation medium causes a conformational change of the membrane fragments/vesicles, which then expose different surfaces to the surrounding medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号