首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mode of action of xylanase A from a phytopathogenic bacterium, Erwinia chrysanthemi, classified in glycoside hydrolase family 5, was investigated on xylooligosaccharides and polysaccharides using TLC, MALDI-TOF MS and enzyme treatment with exoglycosidases. The hydrolytic action of xylanase A was found to be absolutely dependent on the presence of 4-O-methyl-D-glucuronosyl (MeGlcA) side residues in both oligosaccharides and polysaccharides. Neutral linear beta-1,4-xylooligosaccharides and esterified aldouronic acids were resistant towards enzymatic action. Aldouronic acids of the structure MeGlcA(3)Xyl(3) (aldotetraouronic acid), MeGlcA(3)Xyl(4) (aldopentaouronic acid) and MeGlcA(3)Xyl(5) (aldohexaouronic acid) were cleaved with the enzyme to give xylose from the reducing end and products shorter by one xylopyranosyl residue: MeGlcA(2)Xyl(2), MeGlcA(2)Xyl(3) and MeGlcA(2)Xyl(4). As a rule, the enzyme attacked the second glycosidic linkage following the MeGlcA branch towards the reducing end. Depending on the distribution of MeGlcA residues on the glucuronoxylan main chain, the enzyme generated series of shorter and longer aldouronic acids of backbone polymerization degree 3-14, in which the MeGlcA is linked exclusively to the second xylopyranosyl residue from the reducing end. Upon incubation with beta-xylosidase, all acidic hydrolysis products of acidic oligosaccharides and hardwood glucuronoxylans were converted to aldotriouronic acid, MeGlcA(2)Xyl(2). In agreement with this mode of action, xylose and unsubstituted oligosaccharides were essentially absent in the hydrolysates. The E. chrysanthemi xylanase A thus appears to be an excellent biocatalyst for the production of large acidic oligosaccharides from glucuronoxylans as well as an invaluable tool for determination of the distribution of MeGlcA residues along the main chain of this major plant hemicellulose.  相似文献   

2.
Two minor extracellular endo-β-1,4-xylanases (XynB and XynC, EC 3.2.1.8) were purified from the culture filtrate of Schizophyllum commune grown on cellulose. The molecular mass of enzymes was estimated to be 30.5 kDa for XynB and 30 kDa for XynC according to SDS-PAGE. Both enzymes were acidic, with pI value 2.8 for XynB and 3.6 for XynC. The highest activities were achieved at 50 °C and pH 5.5 and enzymes were stable up to 40 °C in the pH range 5–7. A comparison of hydrolysis products of glucuronoxylan, rhodymenan and acetylxylan showed different mode of action of all three xylanases of S. commune. Known XynA generated products typical for family 11 of glycoside hydrolase – aldopentaouronic acid from glucuronoxylan and isomeric xylotetraose from rhodymenan. XynB released fragments by one xylopyranosyl unit shorter – aldotetraouronic acid MeGlcA1-2Xylβ1-4Xylβ1-4Xyl from glucuronoxylan and isomeric xylotriose from rhodymenan, products usually generated by xylanases from glycoside hydrolase family 10. XynC liberated aldotetraouronic acid Xylβ-1,4-(MeGlcA-1,2-)Xylβ-1,4-Xyl with glucuronoyl unit attached to the middle xylopyranosyl unit from glucuronoxylan and isomeric xylotetraose from rhodymenan. XynC was also able to release xylose from the reducing end of aldotetraouronic acid MeGlcA1-2Xylβ1-4Xylβ1-4Xyl.  相似文献   

3.
Katarína Kolenová 《FEBS letters》2010,584(18):4063-4068
α-Glucuronidases of glycoside hydrolase family 115 of the xylose-fermenting yeast Pichia stipitis and wood-destroying fungus Schizophyllum commune liberate 4-O-methyl-d-glucuronic acid residues from aldouronic acids and glucuronoxylan. The specific activities of both enzymes depended on polymerization degree of the acidic xylooligosaccharides and were inhibited by linear β-1,4-xylooligosaccharides. These results suggest interaction of the enzyme with several xylopyranosyl residues of the xylan main chain. Using 1H NMR spectroscopy and reduced aldopentaouronic acid (MeGlcA3Xyl4-ol) as a substrate, it was found that both enzymes are inverting glycoside hydrolases releasing 4-O-methyl-d-glucuronic acid (MeGlcA) as its β-anomer.  相似文献   

4.
When grown on beech-wood glucuronoxylan, two strains of the thermophilic fungus Thermomyces lanuginosius, IMI 84400 and IMI 96213, secreted endo-beta-1,4-xylanase of glycoside hydrolase family 11 and simultaneously accumulated an acidic pentasaccharide in the medium. The aldopentaouronic acid was purified and its structure was established by a combination of NMR spectroscopy and enzyme digestion with glycosidases as MeGlcA(3)Xyl(4). Both strains showed limited growth on wheat arabinoxylan as a carbon source. An essential part of the polysaccharide was not utilized, and it was converted to a series of arabinoxylooligosaccharides differing in the degree of polymerization. The structure of the shorter arabinoxylooligosaccharides remaining in the wheat arabinoxylan-spent medium was established using mass spectrometry and digestion with glycosidases. Xylose and linear beta-1,4-xylooligosaccharides generated extracellularly during growth on either hardwood or cereal xylan were efficiently taken up by the cells and metabolized intracellularly. The data suggest that due to a lack of extracellular beta-xylosidase, alpha-glucuronidase, and alpha-l-arabinofuranosidase, the widely used T. lanuginosus strains might become efficient producers of branched xylooligosaccharides from both types of xylans.  相似文献   

5.
Alpha-glucuronidase A from Aspergillus tubingensis was found to be capable of liberating 4-O-methyl-D-glucuronic acid (MeGlcA) only from those beechwood glucuronoxylan fragments in which the acid is attached to the non-reducing terminal xylopyranosyl residue. Reduced aldotetrauronic acid, 4-O-methyl-D-glucuronosyl-alpha-1,2-D-xylopyranosyl-beta-1,4-xylopyranosyl-beta-1,4-xylitol, was found to be a suitable substrate to follow the stereochemical course of the hydrolytic reaction catalyzed by the purified enzyme. The configuration of the liberated MeGlcA was followed in a D(2)O reaction mixture by (1)H-NMR spectroscopy. It was unambiguously established that MeGlcA was released from the substrate as its beta-anomer from which the alpha-anomer was formed on mutarotation. This result represents the first experimental evidence for the inverting character of a microbial alpha-glucuronidase, a member of glycosyl hydrolase family 67 (EC 3.1.1.139).  相似文献   

6.

Most studies of the mode of action of industrially important endoxylanases have been done on alkali extracted-plant xylan. In just few cases, the native form of the polysaccharide, acetylated xylan, was used as a substrate. In this work action of xylanases belonging to three glycoside hydrolase families, GH10, GH11, and GH30 was investigated on acetylglucuronoxylan directly in hardwood cell walls. Powdered eucalyptus wood was used as xylanase substrate. Enzyme-generated fragments were characterized by TLC, MALDI ToF MS, and NMR spectroscopy. All three xylanases generated from eucalyptus wood powder acetylated xylooligosaccharides. Those released by GH10 enzyme were the shortest, and those released by GH30 xylanase were of the largest diversity. For GH30 xylanase the 4-O-methyl-D-glucuronic acid (MeGlcA) side residues function as substrate specificity determinants regardless the acetylation of the neighboring hydroxyl group. Much simpler xylooligosaccharide patterns were observed when xylanases were applied in combination with carbohydrate esterase family 6 acetylxylan esterase. In the presence of the esterase, all aldouronic acids remained 3-O-acetylated on the xylopyranosyl (Xylp) residue substituted with MeGlcA. The 3-O-acetyl group, in contrast to the acetyl groups of otherwise unsubstituted Xylp residues, does not affect the mode of action of endoxylanases, but contributes to recalcitrance of the acidic xylan fragments. The results confirm importance of acetylxylan esterases in microbial degradation of acetylated hardwood glucuronoxylan. They also point to still unresolved question of efficient enzymatic removal of the 3-O-acetyl group on MeGlcA-substituted Xylp residues negatively affecting the saccharification yields.

  相似文献   

7.
α-Glucuronidase A from Aspergillus tubingensis was found to be capable of liberating 4-O-methyl-D-glucuronic acid (MeGlcA) only from those beechwood glucuronoxylan fragments in which the acid is attached to the non-reducing terminal xylopyranosyl residue. Reduced aldotetrauronic acid, 4-O-methyl-D-glucuronosyl-α-1,2-D-xylopyranosyl-β-1,4-xylopyranosyl-β-1,4-xylitol, was found to be a suitable substrate to follow the stereochemical course of the hydrolytic reaction catalyzed by the purified enzyme. The configuration of the liberated MeGlcA was followed in a D2O reaction mixture by 1H-NMR spectroscopy. It was unambiguously established that MeGlcA was released from the substrate as its β-anomer from which the α-anomer was formed on mutarotation. This result represents the first experimental evidence for the inverting character of a microbial α-glucuronidase, a member of glycosyl hydrolase family 67 (EC 3.1.1.139).  相似文献   

8.
Xylo-oligosaccharides with degrees of polymerisation 5-13, formed by partial acid hydrolysis from an extract representative of olive pulp glucuronoxylans (GX), were analysed by electrospray ionisation mass spectrometry (ESI-MS), both in positive and negative modes. The positive spectrum showed the presence of xylo-oligosaccharides in the mass range between m/z 500 and 1500 corresponding to singly [M+Na](+) charged ions of neutral (Xyl(7-9)) and acidic xylo-oligosaccharides (Xyl(5-9)MeGlcA), and doubly [M+2Na](2+) charged ions of Xyl(9-13) and Xyl(7-11)MeGlcA. Ammonium adducts [M+NH(4)](+) were also observed for Xyl(5-9)MeGlcA. The negative spectra showed the contribution of ions in the mass range between m/z 600 and 1400, ascribed to the deprotonated molecules [M-H](-) of Xyl(3-9)MeGlcA. Tandem mass spectrometry (MS/MS) of the major ions observed in the MS spectra was performed. The MS/MS spectra of the [M+Na](+) adducts showed the loss of MeGlcA residues as the major fragmentation pathway and glycosidic fragment ions of Xyl(n) and Xyl(n)MeGlcA structures. The MS/MS spectra of the [M+NH(4)](+) adducts suggests the occurrence of isomers of Xyl(5-9)MeGlcA oligosaccharides with the MeGlcA residue at the reducing end and at the non-reducing end of the molecules, although other structural isomers can also occur. Both glycosidic bond and cross-ring cleavages in the MS/MS spectra of the [M-H](-) ion suggest the occurrence of Xyl(3-9)MeGlcA with the substituting group at the reducing end position of the xylose backbone, as the main fragmentation ions. The results obtained by ESI-MS/MS, both in positive and negative modes, of Xyl(7-13)- and Xyl(5-11)MeGlcA, allow to identify fragmentation patterns of the structural isomers with MeGlcA linked to the terminal xylosyl residues of the oligosaccharides. The occurrence of these higher molecular weight oligosaccharides with a low substitution pattern allows to infer a scatter and random distribution of MeGlcA along the xylan backbone of olive pulp.  相似文献   

9.
Mass spectrometric analysis was used to compare the roles of two acetyl esterases (AE, carbohydrate esterase family CE16) and three acetyl xylan esterases (AXE, families CE1 and CE5) in deacetylation of natural substrates, neutral (linear) and 4-O-methyl glucuronic acid (MeGlcA) substituted xylooligosaccharides (XOS). AEs were similarly restricted in their action and apparently removed in most cases only one acetyl group from the non-reducing end of XOS, acting as exo-deacetylases. In contrast, AXEs completely deacetylated longer neutral XOS but had difficulties with the shorter ones. Complete deacetylation of neutral XOS was obtained after the combined action of AEs and AXEs. MeGlcA substituents partially restricted the action of both types of esterases and the remaining acidic XOS were mainly substituted with one MeGlcA and one acetyl group, supposedly on the same xylopyranosyl residue. These resisting structures were degraded to great extent only after inclusion of α-glucuronidase, which acted with the esterases in a synergistic manner. When used together with xylan backbone degrading endoxylanase and β-xylosidase, both AE and AXE enhanced the hydrolysis of complex XOS equally.  相似文献   

10.
Caldicellulosiruptor lactoaceticus 6A, an anaerobic and extremely thermophilic bacterium, uses natural xylan as carbon source. The encoded genes of C. lactoaceticus 6A for glycoside hydrolase (GH) provide a platform for xylan degradation. The GH family 10 xylanase (Xyn10A) and GH67 α-glucuronidase (Agu67A) from C. lactoaceticus 6A were heterologously expressed, purified and characterized. Both Xyn10A and Agu67A are predicted as intracellular enzymes as no signal peptides identified. Xyn10A and Agu67A had molecular weight of 47.0 kDa and 80.0 kDa respectively as determined by SDS-PAGE, while both appeared as homodimer when analyzed by gel filtration. Xyn10A displayed the highest activity at 80°C and pH 6.5, as 75°C and pH 6.5 for Agu67A. Xyn10A had good stability at 75°C, 80°C, and pH 4.5–8.5, respectively, and was sensitive to various metal ions and reagents. Xyn10A possessed hydrolytic activity towards xylo-oligosaccharides (XOs) and beechwood xylan. At optimum conditions, the specific activity of Xyn10A was 44.6 IU/mg with beechwood xylan as substrate, and liberated branched XOs, xylobiose, and xylose. Agu67A was active on branched XOs with methyl-glucuronic acids (MeGlcA) sub-chains, and primarily generated XOs equivalents and MeGlcA. The specific activity of Agu67A was 1.3 IU/mg with aldobiouronic acid as substrate. The synergistic action of Xyn10A and Agu67A was observed with MeGlcA branched XOs and xylan as substrates, both backbone and branched chain of substrates were degraded, and liberated xylose, xylobiose, and MeGlcA. The synergism of Xyn10A and Agu67A provided not only a thermophilic method for natural xylan degradation, but also insight into the mechanisms for xylan utilization of C. lactoaceticus.  相似文献   

11.
Endo-β-1,4-xylanase I previously purified from Thermoascus aurantiacus solid state culture was further characterized. The enzyme had a molecular weight of 33 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 31 kDa by gel filtration. Thin layer chromatography (TLC) analysis showed that endoxylanase liberates aldotetrauronic acid MeGlcA-1,2-Xylβ-1,4-Xylβ-1,4-Xyl as the shortest acidic fragment from glucuronoxylan and an isomeric xylotriose (Xyl3) of the structure Xylβ1-3Xylβ1-4Xyl from rhodymenan. The enzyme performed ideally on O-acetyl-4-O-methylglucuronoxylan, liberating large amounts of short acetylated and non-acetylated fragments. Also, the enzyme was capable to hydrolyse arabinoxylan to arabinose (Arab), xylose (Xyl) and xylobiose (Xyl2). The enzyme degraded pNPX (4-nitrophenyl β- -xylopyranoside) by a complex reaction pathway that involved both hydrolysis and glycosyl transfer reactions. The enzyme tolerates the replacement of β-xylopyranosyl units in several artificial substrates by β-glucopyranosyl, - -arabinopyranosyl and - -arabinofuranosyl units and was active on pNPC (4-nitrophenyl β- -cellobioside), pNP-Arap (4-nitrophenyl - -arabinopyranoside) and pNPAraf (4-nitrophenyl - -arabinofuranoside). The enzyme also hydrolysed the 4-methylumbelliferyl glycosides of β- -xylobiose and β- -xylotriose at the agluconic linkage. The results suggested that the xylanase I from T. aurantiacus has catalytic properties similar to those belonging to family 10.  相似文献   

12.
Xylanase A from the phytopathogenic bacterium Erwinia chrysanthemi is classified as a glycoside hydrolase family 30 enzyme (previously in family 5) and is specialized for degradation of glucuronoxylan. The recombinant enzyme was crystallized with the aldotetraouronic acid β-D-xylopyranosyl-(1→4)-[4-O-methyl-α-D-glucuronosyl-(1→2)]-β-D-xylopyranosyl-(1→4)-D-xylose as a ligand. The crystal structure of the enzyme-ligand complex was solved at 1.39 ? resolution. The ligand xylotriose moiety occupies subsites -1, -2 and -3, whereas the methyl glucuronic acid residue attached to the middle xylopyranosyl residue of xylotriose is bound to the enzyme through hydrogen bonds to five amino acids and by the ionic interaction of the methyl glucuronic acid carboxylate with the positively charged guanidinium group of Arg293. The interaction of the enzyme with the methyl glucuronic acid residue appears to be indispensable for proper distortion of the xylan chain and its effective hydrolysis. Such a distortion does not occur with linear β-1,4-xylooligosaccharides, which are hydrolyzed by the enzyme at a negligible rate. DATABASE: Structural and experimental data are available in the Protein Data Bank database under accession number 2y24 [45].  相似文献   

13.
The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a β1,4-linked xylose polysaccharide that is decorated with α-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan α-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four-domain protein in which the active site, comprising a pocket that abuts a cleft-like structure, is housed in the second domain that adopts a TIM barrel-fold. The third domain, a five-helical bundle, and the C-terminal β-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan.  相似文献   

14.
Thermobifida fusca grows well on cellulose and xylan, and produces a number of cellulases and xylanases. The gene encoding a previously unstudied endoxylanase, xyl10B, was overexpressed in E. coli, and the protein was purified and characterized. Mature Xyl10B is a 43-kDa glycohydrolase with a short basic domain at the C-terminus. It has moderate thermostability, maintaining 50% of its activity after incubation for 16 h at 62 degrees C, and is most active between pH 5 and 8. Xyl10B is produced by growth of T. fusca on xylan or Solka Floc but not on pure cellulose. Mass spectroscopic analysis showed that Xyl10B produces xylobiose as the major product from birchwood and oat spelts xylan and that its hydrolysis products differ from those of T. fusca Xyl11A. Xyl10B hydrolyzes various p-nitrophenyl-sugars, including p-nitrophenyl alpha-D-arabinofuranoside, p-nitrophenyl-beta-D-xylobioside, p-nitrophenyl-beta-D-xyloside, and p-nitrophenyl-beta-D-cellobioside. Xyl11A has higher activity on xylan substrates, but Xyl10B produced more reducing sugars from corn fiber than did Xyl11A.  相似文献   

15.

Background

In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study was to compare the biochemical and hydrolytic properties of two thermostable recombinant glycosyl hydrolase families 10 and 11 (GH10 and GH11, respectively) xylanases with respect to their potential application in the hydrolysis of lignocellulosic substrates.

Results

The xylanases from Nonomuraea flexuosa (Nf Xyn11A) and from Thermoascus aurantiacus (Ta Xyn10A) were purified by heat treatment and gel permeation chromatography. Ta Xyn10A exhibited higher hydrolytic efficiency than Nf Xyn11A toward birchwood glucuronoxylan, insoluble oat spelt arabinoxylan and hydrothermally pretreated wheat straw, and it produced more reducing sugars. Oligosaccharides from xylobiose to xylopentaose as well as higher degree of polymerization (DP) xylooligosaccharides (XOSs), but not xylose, were released during the initial hydrolysis of xylans by Nf Xyn11A, indicating its potential for the production of XOS. The mode of action of Nf Xyn11A and Ta Xyn10A on glucuronoxylan and arabinoxylan showed typical production patterns of endoxylanases belonging to GH11 and GH10, respectively.

Conclusions

Because of its high catalytic activity and good thermostability, T. aurantiacus xylanase shows great potential for applications aimed at total hydrolysis of lignocellulosic materials for platform sugars, whereas N. flexuosa xylanase shows more significant potential for the production of XOSs.  相似文献   

16.
The three dimensional structure (3D structure) of GH-11 xylanase from Thermomyces lanuginosus was obtained through homology modeling. To study the enzyme interaction with an end product of enzyme catalysis, the xylanase two sugar molecules xylose and xylobiose has been docked into the active site of GH-11 xylanase through molecular docking. Based on the free binding energy and Inhibition constant, concluded xylose makes more stable complex than xylobiose. Further, the molecular dynamic simulation studies were carried out at different temperature, i.e. 323, 333, 343 and 353 K (i.e. 50, 60, 70 and 80 °C). It has been observed that there was minor structural modification in 3D-structure of xylanase at 323, 333, and 343 K. But the helix and sheets moved out of the initial structure when simulation carried out at during 353 K (80 °C).  相似文献   

17.
A simple procedure has been elaborated for preparation of 4-nitrophenyl beta-d-xylopyranosyl-1,4-beta-d-xylopyranoside (NPX(2)), a chromogenic substrate of some endo-beta-1,4-xylanases. The procedure is based on a self-transfer reaction from 4-nitrophenyl beta-d-xylopyranoside catalyzed by an Aureobasidium pullulans and Aspergillus niger beta-xylosidases. Both enzymes catalyzed only the formation of 4-nitrophenyl glycosides of beta-1,4-xylobiose with a small admixture of 4-nitrophenyl glycoside of beta-1,3-xylobiose. The highest yields of the NPX(2) (19.4%) was obtained at pH 5.5. The removal of the beta-1,3-isomer from NPX(2) is not necessary for quantification of endo-beta-1,4-xylanase activity since it is not attacked by endo-beta-1,4-xylanases. In contrast to GH family 5 xylanase from Erwinia chrysanthemi, which did not attack NPX(2), all family 10 and 11 xylanases cleaved the chromogenic substrate exclusively between xylobiose and the aromatic aglycone. Significant differences in the K(m) values of GH10 and GH11 xylanases suggested that activities of these enzymes could be selectively quantified in the mixtures using various concentrations of NPX(2). Moreover, NPX(2) could serve as an ideal substrate to follow the interaction of endo-beta-1,4-xylanases with various xylanase inhibitors.  相似文献   

18.
Microsomal membranes from etiolated wheat (Triticum aestivum) seedlings cooperatively incorporated xylose (Xyl), arabinose, and glucuronic acid residues from their corresponding uridine 5'-diphosphosugars into an ethanol-insoluble glucurono(arabino)xylan (GAX)-like product. A glucuronyltransferase activity that is enhanced by the presence of UDP-Xyl was also identified in these microsomes. Wheat glucuronyltransferase activity was optimal at pH 7 and required manganese ions, and several lines of evidence suggest its involvement in GAX-like biosynthesis. The GAX characteristics of the 14C-product were confirmed by digestion with a purified endo-xylanase from Aspergillus awamori (endo-xylanase III) and by total acid hydrolysis, resulting in a Xyl:arabinose:glucuronic acid molar ratio of approximately 105:34:1. Endo-xylanase III released only three types of oligosaccharides in addition to free Xyl. No radiolabel was released as xylobiose, xylotriose, or xylotetraose, indicating the absence of long stretches of unbranched Xyl residues in the nascent GAX-like product. High-pH anion exchange chromatography analysis of the resulting oligosaccharides along with known arabinoxylan oligosaccharide standards suggests that a portion of the nascent GAX-like product has a relatively regular structure. The other portion of the [14C]GAX-like polymer was resistant to proteinase K, endo-polygalacturonase, and endo-xylanase III (GH11 family) but was degraded by Driselase, supporting the hypothesis that the xylan backbone in this portion of the product is most likely highly substituted. Size exclusion chromatography indicated that the nascent GAX-like polymer had an apparent molecular mass of approximately 10 to 15 kD; however, mature GAXs from wheat cell walls had larger apparent molecular masses (>66 kD).  相似文献   

19.
Acidic oligosaccharides were obtained from birchwood xylan by treatment with a Thermoascus aurantiacus family 10 and a Sporotrichum thermophile family 11 endoxylanases. The main difference between the products liberated by xylanases of family 10 and 11 concerned the length of the products containing 4-O-methyl-D-glucuronic acid. The xylanase from T. aurantiacus liberate from glucuronoxylan an aldotetrauronic acid as the shortest acidic fragment in contrast with the enzyme from S. thermophile, which liberated an aldopentauronic acid. Acidic xylooligosaccharides were separated from the hydrolysate by anion-exchange and size-exclusion chromatography (SEC) and the primary structure was determined by 13C NMR spectroscopy. The acidic xylo-oligosaccharides were tested against three Gram-positive and three Gram-negative aerobically grown bacteria, as well as against Helicobacter pylori. Aldopentauronic acid was proved more active against the Gram-positive bacteria and against H. pylori.  相似文献   

20.
Fluorogenic substrates of endo-beta-(1-->4)-xylanases (EXs), 4-methylumbelliferyl beta-glycosides of xylobiose and xylotriose were synthesized from fully acetylated oligosaccharides using the alpha-trichloroacetimidate procedure. A commercially available syrup containing xylose and xylo-oligosaccharides was used as the starting material. Both fluorogenic glycosides were found to be suitable substrates for EXs, particularly for sensitive detection of the enzymes in electrophoretic gels and their in situ localization on sections of fruiting bodies of some plants, such as tomato, potato and eggplant, all of the family Solanaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号