首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Experiments on conscious rabbits were made to elaborate motor conditioned reflexes through pairing stimuli with electrocutaneous reinforcement applied every 30 s. Neuronal activity in the sensorimotor cortex and putamen was recorded during formation and reproduction of the conditioned reflexes before and after haloperidol injection (0.2 mg/kg i. v.). In the putamen, haloperidol increased the number of neurons exhibiting trace conditioned activity and made the intensity and duration of these processes rise. The changes seen in the sensorimotor cortex were opposite in nature. Inhibition of trace conditioned activity in the sensorimotor cortex depended mainly on the decreased amplitude of the reaction conditioned component. The role of the dopaminergic system in the interaction of the neostriatum and sensorimotor cortex and in formation and reproduction of trace conditioned activity of both the structures is discussed.  相似文献   

2.
Chronic administration of haloperidol induced supersensitivity of the pre- and postsynaptic dopaminergic receptors in rat brain. The response of the presynaptic receptors was determined by an enhanced inhibitory effect of apomorphine on dopamine synthesis after gamma-butyrolactone injection. This change in the receptor function was detected both in the nigrostriatal and mesolimbic pathways. Haloperidol also increased the 3H-spiperone binding sites in striatal membranes, indicating supersensitivity of the postsynaptic receptors. Subsequent prolonged treatment with high doses of L-DOPA/carbidopa resulted in a decrease in 3H-spiperone binding sites, but had no effect on the supersensitive presynaptic receptors. It is suggested that tardive dyskinesia may be a state of both pre- and postsynaptic dopamine receptor supersensitivity and that chronic L-DOPA treatment may have a differential effect on these sites.  相似文献   

3.
In dogs, the influence of chronic administration of the agonist (L-DOPA) and antagonist (haloperidol) of central dopamine processes on functional interrelations of the brain structures was studied by dynamics of evoked potentials. Cortical-subcortical relations during formation of a motor habit are described in intact animals: basic functional regimes of central integration are singled out--sensory and motor one. Change of their equilibrium is the general principle of systemic reconstructions elicited by differently directed interferences in dopamine processes. Against the background of chronic administration of haloperidol, a sensory-motor imbalance is formed due to uniform functioning of the basal ganglia as analyzer of the signal stimulus; simultaneously the utilization of afferentation elicited by the movement is limited. A variant is revealed of intercentral relations corresponding to bradykinesia development. Under chronic administration of L-DOPA, interrelations of sensory and motor regimes become competitive; basal ganglia are provided with nontypical kinds of afferentations. Intercentral relations variant is examined corresponding to development of psycho-motor excitation. The results are discussed in connection with pathogenic and compensatory mechanisms of some symptoms of parkinsonism and schizophrenia.  相似文献   

4.
Abstract: Aromatic L-amino acid decarboxylase (AAAD) activity is enhanced in the striatum of control and MPTP-treated mice after administration of a single dose of the dopamine receptor antagonists haloperidol, sulpiride, and SCH 23390. MPTP-treated mice appear more sensitive to the antagonists, i.e., respond earlier and to lower doses of antagonists than control mice. The rise of AAAD activity induced by the antagonists is prevented by pretreatment with cycloheximide. The apparent K m values for L-3,4-dihydroxyphenylalanine (L-DOPA) and pyridoxal 5-phosphate appear unchanged after treatment with the antagonists. Increased AAAD activity was observed also after subchronic administration of dopamine receptor antagonists or treatment with reserpine. A single dose of a selective dopamine receptor agonists had no effect on AAAD activity. In contrast, administration of L-DOPA, quinpirole, or SKF 23390 for 7 days lowers AAAD activity in the striatum. We conclude that AAAD is modulated in striatum via dopaminergic receptors.  相似文献   

5.
A blockade of the dopaminergic D1/D2 receptors by systemic administration of haloperidol (0.05-0.5 mg/kg) produced a dose-dependent increase in inhibition of conditioned alimentary behavior in cats under conditions of choice between a valuable delayed reward and a less valuable immediate reward. Administration of haloperidol produced a progressive decrease in the number of effective instrumental reactions, but did not affect the choice between short- and long-latency reactions and their mean latencies. The data obtained do not support a hypothesis that the blockade of dopaminergic receptors shifts behavior towards impulsive reactions. The reasons why the results do not support the hypothesis are discussed.  相似文献   

6.
The effects and the mediation of the action of the proenkephalin derivative Met(5)-enkephalin-Arg(6)-Phe(7) (MERF) on the hypothalamo-pituitary-adrenal (HPA) system and open-field behavior were investigated in mice. Intracerebroventricular injection of the heptapeptide increased square crossing, rearing, and plasma corticosterone level. To characterize the receptors involved in these neuroendocrine processes, animals were pretreated either with the nonselective opioid antagonist naloxone or the kappa-antagonist nor-binaltorphimine (nor-BNI). Both antagonists dose-dependently attenuated the HPA activation elicited by MERF. Naloxone also blocked the behavioral responses, but nor-binaltorphimine did not elicit a significant inhibition. The dopamine antagonist haloperidol and a corticotropin-releasing hormone (CRH) antagonist were also preadministered to shed light on the transmission of the actions of MERF. Both the motor responses and the HPA activation were diminished by the preadministration of the CRH antagonist, while haloperidol attenuated only square crossing and rearing. To investigate the direct effect of MERF on the dopaminergic system, dopamine release of striatal slices was measured in a superfusion system. Neither the basal nor the electric impulse-evoked dopamine release was modified by MERF. The results suggest that opioid-mediation predominate in the neuroendocrine actions of MERF, and the effect of the heptapeptide on the HPA system seems to be mediated by kappa-receptors. In the behavioral responses evoked by MERF, both CRH release and the action of the dopaminergic neurons of the subcortical motor system might be involved. MERF also appears to activate the paraventricular CRH neurons, but dopaminergic transmission does not seem to play a significant role in its hypothalamic action.  相似文献   

7.
The correlation between rotational behaviors and neurochemical changes associated with the striatal damage induced by an unilateral microinjection of kainic acid were investigated. Shortly after the unilateral striatal injection of kainic acid, rats exhibited contralateral rotational behaviors, and these changes were antagonized by the simultaneous striatal injection of haloperidol. On the other hand, systemic injection of methamphetamine to animals having the lesion on nigro-striatal dopaminergic neurons exhibited ipsilateral turnings. In addition, it was found that the release of [14C]dopamine from striatal slices was increased by the in vitro addition of kainic acid. Following 2 days after the striatal injection of kainic acid and thereafter, the rats exhibited ipsilateral rotational behaviors and microinjection of muscimol into the ipsilateral substantia nigra of these animals altered turning movements to a contralateral type. Simultaneous nigral injection of bicuculline antagonized to the muscimol-induced contralateral turnings. These results suggest that the increase of dopamine release from dopaminergic neurons in the striatum may be involved in the occurrence of contralateral turning behaviors observed shortly after the striatal kainic acid treatment. The present results also suggest that changes in the functional states of striatonigral GABA-ergic neurons may play an important role in the occurrence of ipsilateral rotational movements at a late stage following the striatal injection of this agent.  相似文献   

8.
Behavioral effects of cyclo (Leu-Gly) (cLG), administered either acutely or chronically, were assessed in combination with haloperidol in the rat. cLG administered chronically, produced a significant reduction in the increase in apomorphine-induced stereotypy produced by chronic haloperidol infusion. On the other hand, the same dose of cLG which reduced this induction of dopamine receptor supersensitivity due to chronic haloperidol treatment, failed to produce a change in the potency of haloperidol in blocking conditioned avoidance responding in the rat. Furthermore, degeneration-induced supersensitivity of dopamine neurons, produced by unilateral destruction of the nigrostriatal pathway, was not reduced by acute or chronic treatment with cLG as measured by apomorphine-induced rotation. These data suggest that cLG may decrease motor system side effects thought to be caused by chronic antipsychotic administration without affecting the therapeutic efficacy of the antipsychotic agent.  相似文献   

9.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.  相似文献   

10.
The debate about the toxicity of L-DOPA to dopaminergic neurons has not been resolved. Even though enzymatic and nonenzymatic metabolism of L-DOPA can produce hydrogen peroxide and oxygen free radicals, there has been controversy as to whether L-DOPA generates an oxidant stress in vivo. This study determined whether acute or repeated administration of L-DOPA caused in vivo production of hydroxyl radicals in striatum and other brain regions in rats with a unilateral 6-hydroxydopamine lesion of the dopaminergic nigrostriatal projections. Salicylate trapping combined with in vivo microdialysis provided measurements of extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA) in striatum following L-DOPA administration systemically (100 mg/kg, i.p.) or by intrastriatal perfusion (1 mM, via the microdialysis probe). Tissue concentrations of 2,3-DHBA and salicylate were also measured in striatum, ventral midbrain, and cerebellum following repeated administration of L-DOPA (50 mg/kg, i.p., once daily for 16 days). In each instance, treatment with L-DOPA did not increase 2,3-DHBA concentrations, regardless of the nigrostriatal dopamine system's integrity. When added to the microdialysis perfusion medium, L-DOPA resulted in a significant decrease in the striatal extracellular concentration of 2,3-DHBA. These results suggest that administration of L-DOPA, even at high doses, does not induce hydroxyl radical formation in vivo and under some conditions may actually diminish hydroxyl radical activity. Furthermore, prior damage to the nigrostriatal dopamine system does not appear to predispose surviving dopaminergic neurons to increased hydroxyl radical formation following L-DOPA administration. Unlike L-DOPA, systemic administration of methamphetamine (10 mg/kg, s.c.) produced a significant increase in the concentration of 2,3-DHBA in striatal dialysate, suggesting that increased formation of hydroxyl radicals may contribute to methamphetamine neurotoxicity.  相似文献   

11.
(1) The treatment of choice for Parkinson’s disease (PD) is 3,4-dihydroxyphenylalanine (L-DOPA) with peripheral decarboxylase inhibitor, but long-term therapy leads to motor and psychiatric complications. In the present study we investigated 5-hydroxytryptamine (5-HT) and dopamine concentrations in serotonergic and dopaminergic nuclei following chronic administration of L-DOPA to find whether the neurotransmitter synthesis in these brain areas are compensated. (2) Rats were administered L-DOPA (250 mg/kg) and carbidopa (25 mg/kg) daily for 59 and 60 days, and killed on the 60th day, respectively at 24 h and 30 min after the last dose. L-DOPA, norepinephrine, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), dopamine, homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in striatum, nucleus raphe dorsalis (NRD), nucleus accumbens (NAc), substantia nigra, cerebellum, and cortex employing HPLC-electrochemical procedure. (3) Prolonged treatment of L-DOPA caused depression in the animals as revealed in a forced swim test. Serotonin content was significantly decreased in all brain regions studied 30 min after long-term L-DOPA, except in NAc. The cortex and striatum showed lowered levels of this indoleamine 24 h after 59 doses of L-DOPA. Dopamine, HVA, and DOPAC concentrations were significantly higher in all the regions studied after 30 min, and in the cerebellum after 24 h of L-DOPA. The levels of DOPAC were elevated in all the brain areas studied 24 h after prolonged L-DOPA treatment. (4) The present results suggest that long-term L-DOPA treatment results in significant loss of 5-HT in serotonergic and dopaminergic regions of the brain. Furthermore, while L-DOPA metabolism per se was uninfluenced, dopamine synthesis was severely impaired in all the regions. The imbalance of serotonin and dopamine formation may be the cause of overt cognitive, motor, and psychological functional aberrations seen in parkinsonian patients following prolonged L-DOPA treatment.  相似文献   

12.
A dopaminergic system in the zona incerta stimulates LH release and may mediate the positive feedback effects of the gonadal steroids on LH release. In this study the mechanisms by which steroids might increase dopamine activity in the zona incerta were investigated. In addition, experiments were conducted to determine whether the inhibitory effects of gamma-aminobutyric acid (GABA) on LH release in the zona incerta are due to suppression of dopamine activity in this area or conversely whether the stimulatory effects of dopamine on LH release are due to suppression of a tonic inhibitory GABAergic system. Ovariectomized rats were treated s.c. with oil, 5 micrograms oestradiol benzoate or 5 micrograms oestradiol benzoate followed 48 h later by 0.5 mg progesterone, and killed 54 h after the oestradiol benzoate injection. At this time the LH concentrations were suppressed in the oestradiol benzoate group and increased in the group treated with oestradiol benzoate and progesterone. The ratio of tyrosine hydroxylase:beta-actin mRNA in the zona incerta was significantly increased by the oestradiol benzoate treatment, but the addition of progesterone resulted in values similar to those in the control group. At the same time, the progesterone treatment increased tyrosine hydroxylase activity in the zona incerta as indicated by an increase in L-dihydroxyphenylalanine (L-DOPA) accumulation after 100 mg 3-hydroxybenzylhydrazine hydrochloric acid (NSD1015) kg-1 and an increase in dopamine release as indicated by a increase in dihydroxyphenylacetic acid (DOPAC) concentrations (one of the major metabolites of dopamine). Ovariectomized rats treated with oestradiol benzoate plus progesterone were also injected i.p. with 75 mg gamma-acetylenic GABA kg-1 (a GABA transaminase inhibitor) to increase GABA concentrations in the brain. This treatment had no effect on the ratio of tyrosine hydroxylase:beta-actin mRNA but decreased L-DOPA accumulation and DOPAC concentrations in the zona incerta, indicating a post-translational inhibition of dopamine synthesis and release. Treatment of ovariectomized rats with oestradiol benzoate followed by 100 mg L-DOPA i.p. to increase dopamine concentrations in the whole brain had no effect on glutamic acid decarboxylase mRNA expression in the zona incerta, although it increased the glutamic acid decarboxylase:beta-actin mRNA ratio in other hypothalamic areas (that is, the medical preoptic area, ventromedial nucleus and arcuate nucleus). In conclusion, the steroids act to increase dopamine activity in different ways: oestrogen increases tyrosine hydroxylase mRNA expression and progesterone acts after translation to increase tyrosine hydroxylase activity and dopamine release (as indicated by increases in DOPAC concentrations). This latter effect may be due to progesterone removing a tonic GABAergic inhibition from the dopaminergic system.  相似文献   

13.
Parkinson's disease is a neurodegenerative disorder which is mainly characterized by degeneration of the dopaminergic cells in the nigro-striatal system. Due to a lowered L-tyrosine 3-monooxygenase activity, L-tyrosine is not sufficiently transformed to L-DOPA. To date the most common therapy is the administration of the dopamine precursor L-DOPA, with severe collateral effects. Therefore, the substitution of the lacking tyrosine hydroxylase with tyrosinase might be a novel therapeutical approach that would generate specifically L-DOPA from L-tyrosine. We present here evidence that stereotaxic injection of liposome-entrapped tyrosinase is able to significatively increase the levels of dopamine in the rat brain. The catecholamines L-DOPA, dopamine, L-epinephrine, L-norepinephrine were extracted by acid treatment from the brains and detected by HPLC.  相似文献   

14.
In vivo microdialysis and behavioural studies in the domestic chick have shown that glutamatergic as well as monoaminergic neurotransmission in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) is altered after auditory filial imprinting. In the present study, using pharmaco-behavioural and in vivo microdialysis approaches, the role of dopaminergic neurotransmission in this juvenile learning event was further evaluated. The results revealed that: (i) the systemic application of the potent dopamine receptor antagonist haloperidol (7.5 mg/kg) strongly impairs auditory filial imprinting; (ii) systemic haloperidol induces a tetrodotoxin-sensitive increase of extracellular levels of the dopamine metabolite, homovanillic acid, in the MNH, whereas the levels of glutamate, taurine and the serotonin metabolite, 5-hydroxyindole-3-acetic acid, remain unchanged; (iii) haloperidol (0.01, 0.1, 1 mm) infused locally into the MNH increases glutamate, taurine and 5- hydroxyindole-3-acetic acid levels in a dose-dependent manner, whereas homovanillic acid levels remain unchanged; (iv) systemic haloperidol infusion reinforces the N-methyl-d-aspartate receptor-mediated inhibitory modulation of the dopaminergic neurotransmission within the MNH. These results indicate that the modulation of dopaminergic function and its interaction with other neurotransmitter systems in a higher associative forebrain region of the juvenile avian brain displays similar neurochemical characteristics as the adult mammalian prefrontal cortex. Furthermore, we were able to show that the pharmacological manipulation of monoaminergic regulatory mechanisms interferes with learning and memory formation, events which in a similar fashion might occur in young or adult mammals.  相似文献   

15.
Functional significance of GABA-structures of the caudate nucleus was studied by EEG analysis of the influence of stimulation of these structures on the development of the effect of systemic introduction of the blockader of dopaminergic receptors haloperidol. Microinjections of GABA to the caudate nucleus prevented the suppressing action of haloperidol on food-procuring cats behaviour and led to restoration of the EEG-reaction to conditioned sound stimuli. A conclusion is made about an important role of GABA-ergic structures in the mechanisms of dopaminergic control of the inhibitory function of the caudate nucleus.  相似文献   

16.
Latent inhibition (LI) is a reduction in the rate of acquisition of a conditioned response that results from repeated preexposure of an animal to a conditioned stimulus (CS). The present experiment was conducted to assess the effect of bilateral lesions of 5-OT terminals of the nucleus accumbens on LI in a conditioned passive avoidance response paradigm. The lesions were produced by administration of 5,7-DHT and resulted in disruption of LI. Sham-operated animals displayed the delay of conditioning (LI) in comparison with the non-preexposed controls. Disruption of the LI was prevented by systemic injection of haloperidol. Involvement of 5-HT substrate of the nucleus accumbens and its interaction with dopaminergic system in the process of the LI development is discussed.  相似文献   

17.
A possible mechanism of participation of cholinergic striatal interneurons and dopaminergic cells in conditioned selection of a certain types of motor activity is proposed. This selection is triggered by simultaneous increase in the activity of dopaminergic cells and a pause in the activity of cholinergic interneurons in response to a conditioned stimulus. This pause is promoted by activation of striatal inhibitory interneurons and action of dopamine at D2 receptors on cholinergic cells. Opposite changes in dopamine and acetylcholine concentration synergistically modulate the efficacy of corticostriatal inputs, modulation rules for the "strong" and "weak" corticostriatal inputs are opposite. Subsequent reorganization of neuronal firing in the loop cortex--basal ganglia--thalamus--cortex results in amplification of activity of the group of cortical neurons that strongly activate striatal cells, and simultaneous suppression of activity of another group of cortical neurons that weakly activate striatal cells. These changes can underlie a conditioned selection of motor activity performed with involvement of the motor cortex. As follows from the proposed model, if the time delay between conditioned and unconditioned stimuli does not exceed the latency of responses of dopaminergic and cholinergic cells (about 100 ms), conditioned selection of motor activity and learning is problematic.  相似文献   

18.
The binding of [3H]-spiroperidol after 4 weeks of hyperglycemia was determined in the rat striatum and anterior pituitary. Alloxan-induced diabetes increased the number of dopaminergic binding sites in the striatum but not in the anterior pituitary. The interaction of metoclopramide with striatal dopaminergic receptors was slightly modified, while that of dopamine, bromocriptine and haloperidol was unaffected. These results suggest that chronic hyperglycemia exerts selective effects on nigrostriatal dopaminergic system in the rat.  相似文献   

19.
P D Thut  N R Myslinski 《Life sciences》1976,19(10):1569-1578
L-DOPA (320 mg/kg, i.p.) increased the duration of the clonic phase of post-decapitation convulsions (PDC) by 60% in mice pretreated with the peripheral decarboxylase inhibitor, Ro 4-4602 (50 mg/kg, i.p.). Assays of brains at the time of decapitation showed a 300% increase in dopamine (DM), an 80% reduction in serotonin (5-HT) and no change in norepinephrine (NE) levels. The effect of L-DOPA on PDC was not blocked by haloperidol (0.5 – 5.0 mg/kg), a blocker of DM receptors, nor by diethyldithiocarbamate (400 mg/kg) an inhibitor of NE synthesis. Parachlorophenylalanine (300 mg/kg × 3 days) produced an 80% reduction in 5-HT and a prolongation of PDC similar to that observed after L-DOPA. Prolongation of PDC was also seen after the 5-HT antagonists methysergide (5 mg/kg) and cinanserin (10 mg/kg), but not after cyproheptadine (10 mg/kg). The 5-HT precursor, 5-hydroxytryptophan (100 mg/kg), produced no change in PDC when used alone but inhibited L-DOPA's prolongation of PDC. The results suggest that L-DOPA acts by depleting 5-HT in bulbospinal pathways and thus enhancing reflex activity in the spinal cord.  相似文献   

20.
The influence of L-DOPA and reserpine on extracellular dopamine (DA) levels in the striatum of intact and dopaminergic denervated rats was studied using the brain microdialysis technique. In intact rats, reserpine (5 mg/kg s.c.) reduced extracellular DA levels to 4% of basal values. L-DOPA (50 mg/kg i.p.) had no effect on extracellular DA levels in reserpine-pretreated rats. In rats with 6-hydroxydopamine-induced lesion of the nigrostriatal dopaminergic system, basal levels of extracellular DA were low but markedly increased by L-DOPA (50 mg/kg i.p.). In 6-hydroxydopamine-lesioned rats, pretreatment with reserpine (5 mg/kg s.c.) diminished L-DOPA (50 mg/kg i.p.)-induced increases in extracellular DA levels to 16% of those obtained in denervated animals not pretreated with reserpine (p<0.01). These results suggest that in the intact striatum, extracellular DA stems mainly from vesicular storage sites and that in the striatum with dopaminergic denervation, a large part of the L-DOPA-derived extracellular DA is also derived from a vesicular pool that is released by an exocytosis mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号