首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the cya locus of Escherichia coli   总被引:6,自引:0,他引:6  
A H Koop  M Hartley  S Bourgeois 《Gene》1984,28(2):133-146
A 9500-bp DNA segment containing the adenylate cyclase gene (cya) of Escherichia coli has been isolated and analyzed. Four large proteins are encoded within this fragment - the adenylate cyclase protein (92 kDal), two proteins of unknown function (37 and 32 kDal), and a part of the uvrD-coded protein. Various truncated adenylate cyclase proteins, made from cya genes having as much as 60% of their carboxy-terminal end deleted, are sufficient to complement cya- hosts. When these truncated cya genes are present on a multicopy plasmid in a cya- host, the synthesis of beta-galactosidase is still regulated by glucose. The "maxicell" technique was used to visualize the four proteins encoded by this region and some of the truncated adenylate cyclase proteins.  相似文献   

2.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

3.
Summary A mutational alteration either in adenylate cyclase (cya -) or in cyclic-35-AMP (cAMP) receptor protein (crp -) rendered Salmonella typhimurium incapable of producing flagella. The amount of mRNA specific for flagellin in these mutants was almost negligible when assayed in an in vitro protein synthesizing system. A secondary mutation, cfs, partially suppressing the cya - mutation, was identified among the revertants of cya -. A mutation in the same cistron as cfs resulted in a non-flagellate phenotype either by itself or in combination with cfs. The cistron, which was given the gene symbol flaT, was located between flaE and flaL. It was suggested that cAMP receptor protein together with cAMP modulates the gene flaT, which in turn acts as a positive effector on the synthesis of active mRNA specific for flagellin.  相似文献   

4.
A cyaA gene, encoding an adenylate cyclase, was isolated from a filamentous cyanobacterium, Spirulina platensis, by functional complementation of a cya mutant of Escherichia coli, defective in adenylate cyclase activity. The predicted gene product of cyaA contains a signal peptide-like domain, a putative sensor domain similar to the gene product of vsrA of Pseudomonas solanacearum, a putative membrane-spanning domain and an adenylate cyclase-like catalytic domain. Two other positive clones that complemented the E. coli mutant were isolated from the same cyanobacterium, suggesting that several cya genes are functioning in S. platensis.  相似文献   

5.
6.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

7.
Summary The ptsG gene of Bacillus subtilis encodes Enzyme IIG1c of the phosphoenolpyruvate: glucose phosphotransferase system. The 3 end of the gene was previously cloned and the encoded polypeptide found to resemble the Enzymes IIIGlc of Escherichia coli and Salmonella typhimurium. We report here cloning of the complete ptsG gene of B. subtilis and determination of the nucleotide sequence of the 5 end. These results, combined with the sequence of the 3 end of the gene, revealed that ptsG encodes a protein consisting of 699 amino acids and which is similar to other Enzymes II. The N-terminal domain contains two small additional fragments, which share no similarities with the closely related Enzymes IIGlc and IINag of E. coli but which are present in the IIG1c-like protein encoded by the E. coli malX gene.  相似文献   

8.
Endotoxin, the lipopolysaccharide from the cell wall of Gram-negative bacteria, causes blood clotting in the horseshoe crab,Limulus polyphemus. Minute amounts of endotoxin stimulate the amebocytes in the blood to undergo exocytosis, which release the contents of their secretory granules to form a clot. An endotoxin-binding protein that possesses calmodulin-like activity has been isolated from the amebocyte plasma membrane. This endotoxin-binding protein can activate adenylate cyclase fromBordetella pertussis to the same extent as rat testes calmodulin. The effect of endotoxin and the endotoxin-binding protein on cyclic AMP synthesis inLimulus amebocytes was examined. Amebocytes exposed to endotoxin have increased levels of intracellular cyclic AMP. Amebocyte membranes contain an adenylate cyclase which is stimulated by NaF, guanosine (,r-imido)triphosphate, and for skolin. This adenylate cyclase is also stimulated by the endotoxin-binding protein and calcium. Exposure of amebocytes to forskolin or dibutyryl cyclic AMP are stimulated to secrete clot components. Activation of adenylate cyclasein vivo by endotoxin via the endotoxin-binding protein may be one of the ways in which endotoxin stimulates secretion. It is suggested that endotoxin may have two actions in theLimulus system: (1) binding of endotoxin to the endotoxin-binding protein activates adenylate cyclase, promoting secretion by the amebocytes; and (2) endotoxin catalyzes a reaction on the secreted material to form a blood clot. This latter reaction is not elicited by forskolin or dibutyryl cyclic AMP.A preliminary report of this work has been presented elsewhere (Liu and Liang, 1984).  相似文献   

9.
Summary The expression of an acetolactate synthase (ALS) gene isolated from the cruciferous plant Brassica napus was investigated in Salmonella typhimurium. Using an expression plasmid containing the highly active trc (trp-lac) promoter, several plant ALS constructs were made containing successive in-frame truncations from the 5 end of the coding region. Functional complementation by these plant ALS constructs of a S. typhimurium mutant devoid of ALS enzymic activity was assayed on minimal medium. Truncations which eliminated a large portion of the transit peptide coding sequence proved to act as efficient ALS genes in the bacterial host. Truncations close to the putative processing site of the plant protein were inactive in the complementation test. A full length copy of the gene, including the entire transit peptide coding region, was also inactive. The efficiency of the complementation, estimated by comparison to the growth rate of wild-type S. typhimurium, was found to correlate with levels of ALS activity in the transformed bacteria. Specific mutations, known to produce herbicide resistance in plants, were introduced into the truncated ALS coding sequence by site-directed mutagenesis. When expressed in bacteria these constructs conferred a herbicide resistance phenotype on the host. The potential of this system for mutagenesis and enzymological studies of plant proteins is discussed.  相似文献   

10.
Summary Thirty-three insertions of transposon Tn10l6l7 into genes involved in the control of rod cell shape were isolated in Salmonella typhimurium by the characteristic glossy appearance of colonies composed of spherical cells. Genetic tests demonstrated that 25 (76%) were insertions in the rodA gene, 7 (21 %) were mre mutants, and 1 (3%) was a divD mutant. No insertion in the pbpA gene were found. Insertions in cell shape genes only appeared when strains displaying resistance to mecillinam (not caused by -lactamase production) were employed. Neither rodA nor mre insertions could be transduced to wild-type strains but they were normally accepted by mecillinam-resistant derivatives and by cya and crp mutants, which, unlike the corresponding Escherichia coli strains, did not display resistance to mecillinam. On the other hand, the divD insertion could be efficiently transduced to any strain. It is concluded that the rodA, mre, and divD genes are involved in the control of rod cell shape but, in addition, the RodA and Mre products perform some function(s) that is essential for wild-type cells but dispensable for some mecillinam-resistant strains, and for cya and crp mutants.  相似文献   

11.
Summary An out-of-frame fusion between the penicillinase gene (penP) of Bacillus licheniformis and the -galactosidase gene (lacZ) of Escherichia coli was shown to direct the synthesis of an active -galactosidase with the same electrophoretic mobility as the wild-type protein, both in B. subtilis and E. coli. This synthesis was dependent on translation of the truncated penP gene and appeared to result from translational coupling. The fusion point between penP and lacZ contained the sequence AUAG, in which the UAG and AUA codons were in-frame with the penP and lacZ reading units, respectively. N-terminal amino acid sequence analysis of the -galactosidase protein suggested that, both in B. subtilis and E. coli, reinitiation of translation occurred at the AUA codon present at the gene fusion point.  相似文献   

12.
Summary Plasmids pMH1 and pDR1461, possessing the control region and 22% or 73% of the E. coli recA gene, conferred UV sensitivity to wild-type uvrA, and umuC bacteria. Sensitization was less in recA441 (tif-1) mutants and absent in lexA cells. Radiosensitization correlated with inhibition of recombinational repair, even through induced recA protein synthesis and recombination in Hfr matings were normal. Plasmids pMH1 and pDR1461 also prevented induction of some, but not all, SOS functions. Mutagenic reversion to tryptophan prototrophy and induced reactivation of UV-irradiated phage were eliminated, and the efficiency of lysogenic induction reduced. However, naladixic acid induced filamentous growth, mitomycin-C induced uvrA gene expression and post UV-irradiation DNA degradation control were little changed. Explanations of these effects are discussed which involve the presence of either truncated recA protein or multiple copies of the recA gene control sequence.A preliminary account of this work is presented in Chromosome Damage and Repair, edited by E. Seeberg and K. Klepper, to be published by Plenum Press  相似文献   

13.
14.
Summary Various truncated CYR1 genes of Saccharomyces cerevisiae were fused to efficient promoters and expressed in Escherichia coli and S. cerevisiae cells with or without the RAS genes. The catalytic domain of adenylate cyclase encoded by the 3-terminal 1.3 kb region of the open reading frame of the CYR1 gene produced cyclic AMP, irrespective of the presence of RAS genes. The product of the 3-terminal 2.1 kb region of CYR1 showed guanine nucleotidedependent adenylate cyclase activity and produced a large amount of cAMP in the presence of the RAS gene. Thus, the domain encoded by the 0.8 kb region adjacent to the catalytic domain is associated with the regulatory function of the RAS products. The cyr1 RAS1 RAS2 cells carrying the 3-terminal 1.3 kb region of CYR1 were unable to respond to environmental signals such as sulfur starvation and temperature shift, but the cyr1 cells carrying the 2.1 kb region and at least one RAS gene were able to respond to these signals. The environmental signals may be transferred to the adenylate cyclase system through the RAS products.  相似文献   

15.
Summary The regulation of the synthesis of nucleoside metabolizing enzymes has been studied in cya and crp mutant strains of Escherichia coli.The synthesis of the cyt-enzymes, cytidine deaminase and uridine phosphorylase regulated by the cytR gene product, is activated by the cAMP-CRP complex. On the other hand the synthesis of the deoenzymes: deoxyriboaldolase, thymidine phosphorylase, phosphodeoxyribomutase and purine nucleoside phosphorylase, appears to be increased if an active cAMP-CRP complex cannot be formed.It also seems that nucleosides serve as poor carbon sources for cya and crp mutants; this could not solely be explained by low levels of nucleoside metabolizing enzymes nor by a deficiency in nucleoside uptake. Addition of casamino acids stimulated the growth of cya and crp mutants, with nucleosides as carbon sources. When grown on glucose and casamino acids growth could be stimulated by adenine and hypoxanthine nucleosides; these results suggest an impaired nitrogen metabolism in cya and crp mutants.Abbreviations and Symbols cAMP cyclic adenosine 3:5-monophosphate - CRP cAMP receptor protein. Genes coding for: adenyl cyclase - cya cAMP receptor protein - crp cytidine deaminase - cdd uridine phosphorylase - udp thymidine phosphorylase - tpp purine nucleoside phosphorylase - pup; cytR regulatory gene for cdd, udp, dra, tpp, drm, and pup - deoR regulatory gene for dra, tpp, drm, and pup  相似文献   

16.
We have determined the nucleotide sequence of a 3.5 kb segment in the recF region of the Staphylococcus aureus chromosome. The gene order at this locus, dnaA-dnaN-recF-gyrB is similar to that found in the replication origin region of many other bacteria. S. aureus RecF protein (predicted molecular mass 42.3 kDa), has 57% amino acid sequence identity with the Bacillus subtilis RecF protein (42.2 kDa), but only 26% with the Escherichia coli RecF protein (40.5 kDa). We have shown that the S. aureus recF gene partially complements the defect of a B. subtilis recF mutant, but does not complement an E. coli recF strain. The amino acid sequence alignment of seven available RecF proteins (five of them from bacteria of gram-negative origin) allowed us to identify eight highly conserved regions ( to ) and to predict five new conserved regions within the gram-positive group (a to f). We suggest that the basic mechanism of homologous recombination is conserved among free-living bacteria.  相似文献   

17.
18.
Summary Vitreoscilla hemoglobin is involved in oxygen metabolism of this bacterium, possibly in an unusual role for a microbe. We have isolated the Vitreoscilla hemoglobin structural gene from a pUC19 genomic library using mixed oligodeoxy-nucleotide probes based on the reported amino acid sequence of the protein. The gene is expressed in Escherichia coli from its natural promoter as a major cellular protein. The nucleotide sequence, which is in complete agrecment with the known amino acid sequence of the protein, suggests the existence of promoter and ribosome binding sites with a high degree of homology to consensus E. coli upstream sequences. In the case of at least some amino acids, a codon usage bias can be detected which is different from the biased codon usage pattern in E. coli. The down-stream sequence exhibits homology with the 3 end sequences of several plant leghemoglobin genes. E. coli cells expressing the gene contain greater than fivefold more heme than controls.  相似文献   

19.
Two adenylyl cyclase genes (cyaA and cyaB) from the myxobacterium Stigmatella aurantiaca were cloned by complementation of Escherichia coli mutants defective in the cya gene. cyaA codes for a protein of 424 amino acid residues (AC1), while cyaB encodes a protein of 352 residues (AC2). Both cyclases are sensitive to adenosine: cAMP production was strongly inhibited in E coli cells and cell extracts expressing these genes. AC1 comprises a hydrophobic domain of six transmembrane helices coupled to a cytoplasmic catalytic domain endowed with adenylyl cyclase activity. A 17 amino acid residue sequence, which is a signature of G-protein coupled receptors, as well as of slime mold Dictyostelium discoideum cyclic AMP receptors, was found in the membrane domain. AC2 displays features also indicating that it is a bifunctional enzyme. The domain located upstream from the catalytic adenylyl cyclase domain shows strong similarity to receiver modules of response regulators of two-component bacterial signaling systems. In vitro mutagenesis of conserved aspartate residues in this domain was shown to interfere with cAMP synthesis.  相似文献   

20.
Summary A 24 kilobase pair region of the E. coli chromosome surrounding the dnaG gene has been cloned and characterized. A phage library was first constructed by ligating a Sau3A (GATC) partial DNA digest of the entire E. coli chromosome into the BamHI (G GATCC) cloning vector charon 28. Partial digestion was performed to generate overlapping chromosomal fragments and to allow one to walk along the chromosome. This library was probed with a nick-translated plasmid (pRRB1) containing the rpoD gene, which maps adjacent to dnaG at 66 min. Four bacteriophages: 3, 4, 5, 6 that hybridized to the probe were isolated from the 2,500 plaques screened. One phage recombinant 4, was shown to contain the dnaG gene. Three recombinant plasmids containing dnaG: pGL444, pGL445, pBS105, were constructed via subcloning of 4 using different restriction fragments. Plasmids pGL444 and pBS105 were subjected to transposon Tn5 mutagenesis and 88 Tn5 inserts into the cloned region were isolated. The location of the Tn5 inserts were mapped by restriction enzyme analysis of the plasmids and the insertion mutations were checked for ability to complement a dnaGts chromosomal marker at nonpermissive 40° C. In this manner a correlated physical and genetic map of dnaG was determined. A large number of Tn5 inserts map to a specific 900 b.p. region which we propose may be involved in the regulation of dnaG gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号