首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Growth of Alcaligenes eutrophus JMP134 on 2,4-dichlorophenoxyacetate requires a 2,4-dichlorphenol hydroxylase encoded by gene tfdB. Catabolism of either 2,4-dichlorophenoxyacetate or 3-chlorobenzoate involves enzymes encoded by the chlorocatechol oxidative operon consisting of tfdCDEF, which converts 3-chloro- and 3,5-dichlorocatechol to maleylacetate and chloromaleylacetate, respectively. Transposon mutagenesis has localized tfdB and tfdCDEF to EcoRI fragment B of plasmid pJP4 (R. H. Don, A. J. Wieghtman, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 161:85-90, 1985). We present the complete nucleotide sequence of tfdB and tfdCDEF contained within a 7,954-base-pair HindIII-SstI fragment from EcoRI fragment B. Sequence and expression analysis of tfdB in Escherichia coli suggested that 2,4-dichlorophenol hydroxylase consists of a single subunit of 65 kilodaltons. The amino acid sequences of proteins encoded by tfdD and tfdE were found to be 63 and 53% identical to those of functionally similar enzymes encoded by clcB and clcD, respectively, from plasmid pAC27 of Pseudomonas putida. P. putida(pAC27) can utilize 3-chlorocatechol but not dichlorinated catechols. A region of DNA adjacent to clcD in pAC27 was found to be 47% identical in amino acid sequence to tfdF, a gene important in catabolizing dichlorocatechols. The region in pAC27 does not appear to encode a protein, suggesting that the absence of a functional trans-chlorodienelactone isomerase may prevent P. putida(pAC27) from utilizing 3,5-dichlorocatechol.  相似文献   

2.
Dienelactone hydrolase from Pseudomonas sp. strain B13.   总被引:6,自引:5,他引:1       下载免费PDF全文
Dienelactone hydrolase (EC 3.1.1.45) catalyzes the conversion of cis- or trans-4-carboxymethylenebut-2-en-4-olide (dienelactone) to maleylacetate. An approximately 24-fold purification from extracts of 3-chlorobenzoate-grown Pseudomonas sp. strain B13 yielded a homogeneous preparation of the enzyme. The purified enzyme crystallized readily and proved to be a monomer with a molecular weight of about 30,000. Each dienelactone hydrolase molecule contains two cysteinyl side chains. One of these was readily titrated by stoichiometric amounts of p-chloromercuribenzoate, resulting in inactivation of the enzyme; the inactivation could be reversed by the addition of dithiothreitol. The other cysteinyl side chain appeared to be protected in the native protein against chemical reaction with p-chloromercuribenzoate. The properties of sulfhydryl side chains in dienelactone hydrolase resembled those that have been characterized for bacterial 4-carboxymethylbut-3-en-4-olide (enol-lactone) hydrolases (EC 3.1.1.24), which also are monomers with molecular weights of about 30,000. The amino acid composition of the dienelactone hydrolase resembled the amino acid composition of enol-lactone hydrolase from Pseudomonas putida, and alignment of the NH2-terminal amino acid sequence of the dienelactone hydrolase with the corresponding sequence of an Acinetobacter calcoaceticus enol-lactone hydrolase revealed sequence identity at 8 of the 28 positions. These observations foster the hypothesis that the lactone hydrolases share a common ancestor. The lactone hydrolases differed in one significant property: the kcat of dienelactone hydrolase was 1,800 min-1, an order of magnitude below the kcat observed with enol-lactone hydrolases. The relatively low catalytic activity of dienelactone hydrolase may demand its production at the high levels observed for induced cultures of Pseudomonas sp. strain B13.  相似文献   

3.
The maleylacetate reductase from Pseudomonas sp. strain B13 functioning in the modified ortho pathway was purified and digested with trypsin. The polypeptides separated by high-performance liquid chromatography were sequenced. Alignments with the polypeptides predicted from the tfdF and tcbF genes located on plasmids pJP4 of the 2,4-dichlorophenoxyacetate-degrading Alcaligenes eutrophus JMP134 and pP51 of the 1,2,4-trichlorobenzene-degrading Pseudomonas sp. strain P51 as well as polypeptides predicted from the tftE gene located on the chromosome of the 2,4,5-trichlorophenoxyacetate-degrading Burkholderia cepacia AC1100 were obtained. In addition, the deduced protein sequence encoded by the nucleotide sequence downstream of clcD on plasmid pAC27 of the 3-chlorobenzoate-degrading Pseudomonas putida AC866 was tested for homology. Significant sequence similarities with the polypeptides encoded by the tfdF, tcbF, and tftE genes as well as the nucleotide sequence downstream of the clcD gene gave evidence that these genes might encode maleylacetate reductases. A NAD-binding motif in a beta alpha beta-element was detected.  相似文献   

4.
D Ghosal  I S You 《Gene》1989,83(2):225-232
Alcaligenes eutrophus harboring plasmid pJP4 (strain JMP134) is capable of growing on both 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3-Cba), while Pseudomonas putida carrying plasmid pAC27 (strain AC867) can utilize only 3-Cba as the sole carbon source. The tfdCDEF operon of the pJP4 plasmid and the clcABD operon of plasmid pAC27 each encode enzymes for the degradation of chlorocatechols (Clc), key intermediates in the catabolism of 2,4-D and 3-Cba. Similarities in the nucleotide (nt) sequences of genes tfdC and clcA, encoding pyrocatechases, were reported earlier [Ghosal and You, Mol. Gen. Genet. 211 (1988a) 113-120]. Genes tfdD and clcB, encoding Clc-specific cycloisomerases, have been completely sequenced. The tfdD gene (1107 bp) is slightly smaller than gene clcB (1113 bp). Comparison of the two cycloisomerase-encoding genes reveals that the nt sequences are 63% homologous with 62% homology in the deduced amino acid (aa) sequences of the polypeptides they encode. Genes tfdD and tfdE are contiguous in the tfdCDEF operon, whereas the corresponding genes, clcB and clcD, of the clcABD operon, are known to be separated by a long open reading frame of unknown function. The predicted N-terminal aa sequences of the two hydrolase-encoding genes, tfdE and clcD, also show homology. The structural and nt homologies between the two Clc operons, tfdCDEF and clcABD, suggest their relatedness.  相似文献   

5.
从土壤中分离到一株降解2,4-二氯酚能力较强的假单胞菌菌株GT241-1,从中克隆出参与降解2,4-二氯酚的双烯内酯水解酶基因(dcpD)。该基因编码的双烯内酯水解酶可将顺式-2-氯双烯内酯水解成2-氯马来乙酸。采用的基因克隆策略是用Southem杂交对其邻近基因进行定位后构建基因组库,再用斑点杂交筛选目的转化子。经序列测定得知dcpD基因编码区702bp。核苷酸和推测编码的氨基酸序列分析表明,dcpD与已在GenBank登记的相关基因有一定的差异。  相似文献   

6.
A 14-kilobase-pair (kbp) EcoRI DNA fragment that encodes an enzyme capable of rapid hydrolysis of N-methylcarbamate insecticides (carbofuran hydrolase) was cloned from carbofuran-degrading Achromobacter sp. strain WM111. When used to probe Southern blots containing plasmid and total DNAs from WM111, this 14-kbp fragment hybridized strongly to a 14-kbp EcoRI fragment from the greater than 100-kbp plasmid harbored by this strain but weakly to EcoRI-digested total DNA from Achromobacter sp. strain WM111, indicating that the gene for N-methylcarbamate degradation (mcd) is plasmid encoded. Further subcloning localized the mcd gene on a 3-kbp ScaI-ClaI fragment. There was little or no expression of this gene in the alternative gram-negative hosts Pseudomonas putida, Alcaligenes eutrophus, Acinetobacter calcoaceticus, and Achromobacter pestifer. Western blotting (immunoblotting) of the protein products produced by low-level expression in P. putida confirmed that this 3-kbp fragment encodes the two 70+-kilodalton protein products seen in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified carbofuran hydrolase.  相似文献   

7.
Summary The 2,4-dichlorophenoxyacetate (2,4-D) catabolic plasmid pJP4 of Alcaligenes eutrophus JMP134 contains two sets of nonidentical chlorocatechol oxidation gene sequences physically separated by a 7 kb DNA region. We determined the nucleotide sequence of the 1.6 kb HindIII fragment containing the known genes tfdC and tfdD (Don et al. 1985) which encode pyrocatechase and cycloisomerase, respectively. The 1.3 kb BglII-HindIII segment of recombinant plasmid pDC25 containing at least three chlorocatechol (clc) oxidation genes of the pAC27 plasmid in Pseudomonas putida AC868 (Ghosal et al. 1985a; Frantz and Chakrabarty 1986), was also sequenced. When the tfdC gene of the pJP4 plasmid was compared with gene clcA of plasmid pAC27, which encodes the chlorocatechol specific pyrocatechase (pyrocatechase II), the two genes showed 63% nucleotide sequence homology with 60% homology in their amino acid sequences. In both plasmid pJP4 and pAC27, the two genes encoding the pyrocatechase and the cycloisomerase showed a 4 bp overlap spanning the initiation codon of the cycloisomerase gene and the termination codon of the pyrocatechase gene. The sizes of the polypeptides encoded by the isofunctional genes tfdC and clcA are very similar and thus reflect their functional homology.  相似文献   

8.
The lpd gene encoding lipoamide dehydrogenase (dihydrolipoamide dehydrogenase; EC 1.8.1.4) was isolated from a library of Pseudomonas fluorescens DNA cloned in Escherichia coli TG2 by use of serum raised against lipoamide dehydrogenase from Azotobacter vinelandii. Large amounts (up to 15% of total cellular protein) of the P. fluorescens lipoamide dehydrogenase were produced by the E. coli clone harbouring plasmid pCJB94 with the lipoamide dehydrogenase gene. The enzyme was purified to homogeneity by a three-step procedure. The gene was subcloned from plasmid pCJB94 and the complete nucleotide sequence of the subcloned fragment (3610 bp) was determined. The derived amino acid sequence of P. fluorescens lipoamide dehydrogenase showed 84% and 42% homology when compared to the amino acid sequences of lipoamide dehydrogenase from A. vinelandii and E. coli, respectively. The lpd gene of P. fluorescens is clustered in the genome with genes for the other components of the 2-oxoglutarate dehydrogenase complex.  相似文献   

9.
Fine structure of the gene of 6-aminohexanoic acid cyclic dimer hydrolase, one of the enzymes responsible for the degradation of the nylon oligomer (6-aminohexanoic acid cyclic dimer), on the plasmid pOAD2 harbored in Flavobacterium sp. KI72 was determined by constructing miniplasmids from plasmid pNDH5 (a hybrid plasmid consisting of pBR322 and a 9.1-kilobase-pair HindIII fragment of pOAD2 ). The 6-aminohexanoic acid cyclic dimer hydrolase produced by cells of Escherichia coli C600 harboring pNDH5 or its miniplasmid was examined immunologically and electrophoretically and was found to be identical to that of Flavobacterium sp. KI72 . A fragment of pOAD2 (17.2- to 19.1-kilobase-pair region on pOAD2 ) was detected as hybridized fragment by Southern blotting experiments, indicating the presence of the DNA region analogous to the 6-aminohexanoic acid cyclic dimer hydrolase gene on the plasmid.  相似文献   

10.
The newly isolated strain Pseudomonas sp. ON-4a converts D,L-2-amino-delta2-thiazoline-4-carboxylic acid to L-cysteine via N-carbamoyl-L-cysteine. A genomic DNA fragment from this strain containing the gene(s) encoding enzymes that convert D,L-2-amino-delta2-thiazoline-4-carboxylic acid into L-cysteine was cloned in Escherichia coli. Transformants expressing cysteine-forming activity were selected by growth of an E. coli mutant defective in the cysB gene. A positive clone, denoted CM1, carrying the plasmid pCM1 with an insert DNA of approximately 3.4 kb was obtained, and the nucleotide sequence of a complementing region was analyzed. Analysis of the sequence found two open reading frames, ORF1 and ORF2, which encoded proteins of 183 and 435 amino acid residues, respectively. E. coli DH5alpha harboring pTrCM1, which was constructed by inserting the subcloned sequence into an expression vector, expressed two proteins of 25 kDa and 45 kDa. From the analyses of crude extracts of E. coli DH5alpha carrying deletion derivatives of pTrCM1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by enzymatic activity, it was found that the 25-kDa protein encoded by ORF1 was the enzyme L-2-amino-delta2-thiazoline-4-carboxylic acid hydrolase, which catalyzes the conversion of L-2-amino-delta2-thiazoline-4-carboxylic acid to N-carbamoyl-L-cysteine, and that the 45-kDa protein encoded by ORF2 was the enzyme N-carbamoyl-L-cysteine amidohydrolase, which catalyzes the conversion of N-carbamoyl-L-cysteine to L-cysteine.  相似文献   

11.
The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources.  相似文献   

12.
The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources.  相似文献   

13.
This report describes the isolation and preliminary characterization of a 5.0-kilobase-pair (kbp) EcoRI DNA restriction fragment carrying the catBCDE genes from Acinetobacter calcoaceticus. The respective genes encode enzymes that catalyze four consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catB, muconate lactonizing enzyme (EC 5.5.1.1); catC, muconolactone isomerase (EC 5.3.3.4); catD, beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24); and catE, beta-ketoadipate succinyl-coenzyme A transferase (EC 2.8.3.6). In A. calcoaceticus, pcaDE genes encode products with the same enzyme activities as those encoded by the respective catDE genes. In Pseudomonas putida, the requirements for both catDE and pcaDE genes are met by a single set of genes, designated pcaDE. A P. putida mutant with a dysfunctional pcaE gene was used to select a recombinant pKT230 plasmid carrying the 5.0-kbp EcoRI restriction fragment containing the A. calcoaceticus catE structural gene. The recombinant plasmid, pAN1, complemented P. putida mutants with lesions in catB, catC, pcaD, and pcaE genes; the complemented activities were expressed constitutively in the recombinant P. putida strains. After introduction into Escherichia coli, the pAN1 plasmid expressed the activities constitutively but at much lower levels that those found in the P. putida transformants or in fully induced cultures of A. calcoaceticus or P. putida. When placed under the control of a lac promoter on a recombinant pUC13 plasmid in E. coli, the A. calcoaceticus restriction fragment expressed catBCDE activities at levels severalfold higher than those found in fully induced cultures of A. calcoaceticus. Thus there is no translational barrier to expression of the A. calcoaceticus genes at high levels in E. coli. The genetic origin of the cloned catBCDE genes was demonstrated by the fact that the 5.0-kbp EcoRI restriction fragment hybridized with a corresponding fragment from wild-type A. calcoaceticus DNA. This fragment was missing in DNA from an A. calcoaceticus mutant in which the cat genes had been removed by deletion. The properties of the cloned fragment demonstrate physical linkage of the catBCDE genes and suggest that they are coordinately transcribed.  相似文献   

14.
A 5.5-kb DNA fragment containing the indole-3-acetyl-aspartic acid (IAA-asp) hydrolase gene (iaaspH) was isolated from Enterobacter agglomerans strain GK12 using a hybridization probe based on the N-terminal amino acid sequence of the protein. The DNA sequence of a 2.4-kb region of this fragment was determined and revealed a 1311-nucleotide ORF large enough to encode the 45-kDa IAA-asp hydrolase. A 1.5-kb DNA fragment containing iaaspH was subcloned into the Escherichia coli expression plasmid pTTQ8 to yield plasmid pJCC2. Extracts of IPTG-induced E. coli cultures containing the pJCC2 recombinant plasmid showed IAA-asp hydrolase levels 5 to 10-fold higher than those in E. agglomerans extracts. Homology searches revealed that the IAA-asp hydrolase was similar to a variety of amidohydrolases. In addition, IAA-asp hydrolase showed 70% sequence identity to a putative thermostable carboxypeptidase of E. coli.  相似文献   

15.
A gene bank from the chlorinated hydrocarbon-degrading bacterium Xanthobacter autotrophicus GJ10 was prepared in the broad-host-range cosmid vector pLAFR1. By using mutants impaired in dichloroethane utilization and strains lacking dehalogenase activities, several genes involved in 1,2-dichloroethane metabolism were isolated. The haloalkane dehalogenase gene dhlA was subcloned, and it was efficiently expressed from its own constitutive promoter in strains of a Pseudomonas sp., Escherichia coli, and a Xanthobacter sp. at levels up to 30% of the total soluble cellular protein. A 3-kilobase-pair BamHI DNA fragment on which the dhlA gene is localized was sequenced. The haloalkane dehalogenase gene was identified by the known N-terminal amino acid sequence of its product and found to encode a 310-amino-acid protein of molecular weight 35,143. Upstream of the dehalogenase gene, a good ribosome-binding site and two consensus E. coli promoter sequences were present.  相似文献   

16.
17.
Summary Growth in a chemostat of the 3-chlorobenzoatepositive Pseudomonas putida cells harboring the plasmid pAC25, in presence of cells harboring the TOL plasmid, allows emergence of cells that can also utilize 4-chlorobenzoate (4Cba). Isolation of plasmid DNA from such cells demonstrate the deletion of a 11kb (Kilobase pair) EcoR1 fragment from the pAC25 plasmid; a portion of the TOL plasmid (41.5 kb TOL*) is also found to be transposed onto the chromosome of such cells. Further enrichment of the 4-chlorobenzoate-positive cells with 3,5-dichlorobenzoate (3,5-Dcb) as a sole carbon source has produced cells that can also slowly utilize 3,5-dichlorobenzoate. Isolation of plasmid DNA from such cells demonstrates the appearance of a second plasmid (pAC29). Restriction hybridization of pAC29 EcoRI fragments with pAC25 and TOL demonstrates that pAC29 is derived primarily by duplication of a segment of the pAC27 plasmid and a fragment from TOL, with further mutational divergence. Southern hybridization of the EcoRI-digested chromosomal DNA with 32P-labeled TOL, pTS11 and pTS71 plasmid DNAs demonstrates the presence of the TOL* transposon containing xylD, G, E and F genes in both 4Cba+ (pAC27+) and 3,5-DCb+ (pAC27+, pAC29+) cells. Isolation of plasmid DNA from 3,5-Dcb+ faster growing variants, obtained from slow-growing pAC27+ pAC29+ cells, demonstrates the presence of a single type of plasmid, with identical size and EcoRI digestion profile as pAC27. The implications of gene duplications and subsequent homologous recombination with regard to the biochemical pathway of 3,5-dichlorobenzoate degradation have been discussed.  相似文献   

18.
We determined the entire nucleotide sequence of the Klebsiella aerogenes W70 pullulanase gene (pulA) contained on a 4.2-kilobase-pair fragment of plasmid pPB174. The amino acid composition deduced from an open reading frame of 3,288 base pairs agreed closely with that determined for the intracellular pullalanase. The precursor enzyme consisted of 1,096 amino acid residues and contained a hydrophobic N-terminal signal peptide and the consensus sequence for the bacterial prelipoprotein signal peptide cleavage site.  相似文献   

19.
A 5.5-kb DNA fragment containing the indole-3-acetyl-aspartic acid (IAA-asp) hydrolase gene (iaaspH) was isolated from Enterobacter agglomerans strain GK12 using a hybridization probe based on the N-terminal amino acid sequence of the protein. The DNA sequence of a 2.4-kb region of this fragment was determined and revealed a 1311-nucleotide ORF large enough to encode the 45-kDa IAA-asp hydrolase. A 1.5-kb DNA fragment containing iaaspH was subcloned into the Escherichia coli expression plasmid pTTQ8 to yield plasmid pJCC2. Extracts of IPTG-induced E. coli cultures containing the pJCC2 recombinant plasmid showed IAA-asp hydrolase levels 5 to 10-fold higher than those in E. agglomerans extracts. Homology searches revealed that the IAA-asp hydrolase was similar to a variety of amidohydrolases. In addition, IAA-asp hydrolase showed 70% sequence identity to a putative thermostable carboxypeptidase of E. coli. Received: 12 March 1998 / Accepted: 30 March 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号