首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

2.
The force enhancement of a twitch after a maximal conditioning muscle contraction [i.e., postactivation potentiation (PAP)] is reduced with aging, but its influence on the summation of force in response to repetitive stimulation at different frequencies is not known. The purpose of this work was to compare the electrically evoked mechanical responses of the tibialis anterior muscle between young and elderly adults after a 6-s maximal voluntary contraction (MVC). The results showed that, immediately after the conditioning MVC, twitch torque and its maximal rate of development and relaxation were significantly enhanced in both groups, but the magnitude of potentiation was greater in young (148.0 +/- 14.2, 123.7 +/- 16.5, and 185.4 +/- 36.5%, respectively) compared with elderly adults (87.4 +/- 15.2, 63.8 +/- 9.9, and 62.9 +/- 11.0%, respectively). This age-related difference in potentiation of the twitch disappeared completely 1 min after the conditioning MVC. The potentiation of torque and speed-related parameters in response to two- and three-pulse trains, delivered at a constant interval of 10 ms (100 Hz), was less than for a single pulse for both groups. In young adults, the magnitude of PAP on the successive individual mechanical contributions within a train of stimuli declined progressively such that the third contribution did not differ significantly from the same contribution before the conditioning MVC. In contrast, the second and third contributions did not potentiate (P > 0.05) in elderly adults. Although these contributions did potentiate significantly at a lower frequency of stimulation (20 Hz) in the two groups, the difference in PAP between young and elderly adults still persisted. This overall attenuation of potentiation with aging, however, appears to have a moderate influence on the decrement of the muscular performance.  相似文献   

3.
We aimed to examine whether the influence of conditioning contraction intensity on the extent of postactivation potentiation (PAP) is muscle dependent. Eleven healthy males performed both thumb adduction and plantar flexion as a conditioning contraction. The conditioning contraction intensities were set at 20%, 40%, 60%, 80%, or 100% of the maximal voluntary isometric contraction (MVC).Before and after the conditioning contraction, twitch torque was measured for the respective joint to calculate the extent of PAP. In plantar flexion, the extent of PAP became significantly larger as the conditioning contraction intensity increased up to 80% MVC (p < 0.05). In contrast, the extent of PAP in thumb adduction increased significantly only up to 60% MVC (p < 0.05), but not at higher intensities.These results indicate that the influence of the conditioning contraction intensity on the extent of PAP is muscle dependent. Our results suggest that a conditioning contraction with submaximal intensity can sufficiently evoke sizable PAP in the muscle where most of muscle fibers are recruited at submaximal intensities, thereby attenuating muscle fatigue induced by the conditioning contraction.  相似文献   

4.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

5.
In small mammals, muscles with shorter twitch contraction times and a predominance of fast-twitch, type II fibers exhibit greater posttetanic twitch force potentiation than muscles with longer twitch contraction times and a predominance of slow-twitch, type I fibers. In humans, the correlation between potentiation and fiber-type distribution has not been found consistently. In the present study, postactivation potentiation (PAP) was induced in the knee extensors of 20 young men by a 10-s maximum voluntary isometric contraction (MVC). Maximal twitch contractions of the knee extensors were evoked before and after the MVC. A negative correlation (r = -0. 73, P < 0.001) was found between PAP and pre-MVC twitch time to peak torque (TPT). The four men with the highest (HPAP, 104 +/- 11%) and lowest (LPAP, 43 +/- 7%) PAP values (P < 0.0001) underwent needle biopsies of vastus lateralis. HPAP had a greater percentage of type II fibers (72 +/- 9 vs. 39 +/- 7%, P < 0.001) and shorter pre-MVC twitch TPT (61 +/- 12 vs. 86 +/- 7 ms, P < 0.05) than LPAP. These data indicate that, similar to the muscles of small mammals, human muscles with shorter twitch contraction times and a higher percentage of type II fibers exhibit greater PAP.  相似文献   

6.
This study aimed to clarify the influence of the intensity of a conditioning contraction on subsequent isometric twitch and maximal voluntary concentric torques. Subjects (n=12men) performed voluntary isometric plantar flexion for six seconds as a conditioning contraction, at intensities of 40%, 60%, 80% and 100% of a maximal voluntary isometric contraction (MVIC). Before and immediately after the conditioning contraction, isometric twitch and maximal voluntary concentric (180°/s) plantar flexion torques were determined. Surface electromyograms were recorded from the triceps surae muscles and M-wave amplitudes and root-mean-square values of the electromyographic signals (RMS(EMG)) were calculated. The isometric twitch torque increased significantly after conditioning contraction at all intensities (P<0.05), whereas maximal voluntary concentric torque increased significantly only at 80% and 100% MVIC conditions (P<0.05). It is concluded that during a six second conditioning contraction, the effect of the intensity of a conditioning contraction on subsequent torque development is different between an isometric twitch and maximal voluntary concentric contractions, with the latter being less affected.  相似文献   

7.
Potential mechanisms of fatigue (metabolic factors) and potentiation (phosphate incorporation by myosin phosphorylatable light chains) were investigated during recovery from a 60-s maximal voluntary isometric contraction (MVC) in the quadriceps muscle of 12 subjects. On separate days before and for 2 h after the 60-s MVC, either a 1-s MVC or electrically stimulated contractions were used as indexes to test muscle performance. Torque at the end of the 60-s MVC was 57% of the initial level, whereas torques from a 1-s MVC and 50-Hz stimulation were most depressed in the immediate recovery period. At this time, muscle biopsy analyses revealed significant decreases in ATP and phosphocreatine and a 19-fold increase in muscle lactate. Conversely, isometric twitch torque and torque from a 10-Hz stimulus were the least depressed of six contractile indexes and demonstrated potentiation of 25 and 34%, respectively, by 4 min of recovery (P less than 0.05). At this time, muscle lactate concentration was still 16 times greater than at rest. An increased phosphate content of the myosin phosphorylatable light chains (P less than 0.05) was also evident both immediately and 4 min after the 60-s MVC. We conclude that the 60-s MVC produced marked force decreases likely due to metabolic displacement, while the limited decline in the twitch and 10-Hz torques and their significant potentiation suggested that myosin phosphorylation may provide a mechanism to enhance contractile force under conditions of submaximal activation during fatigue.  相似文献   

8.
Our purpose was to characterize the relationship between EMG mean power frequency (MPF) or median frequency (MF) and rate of torque development in voluntary ballistic and electrically elicited isometric contractions. Twenty-three healthy adults participated in two sets of experiments performed on elbow flexor muscles. For Experiment 1, subjects were asked to generate voluntary ballistic contractions by reaching four different target torque levels (20, 40, 60 and 100% of the maximal voluntary contraction (MVC)) as fast as they could. For Experiment 2, electrical (M-waves) and mechanical (twitches) responses to electrical stimulation of the nerves supplying the biceps brachii and brachioradialis muscles were recorded with the subjects at rest and with a background isometric contraction of 15% MVC. MPF, MF and rate of torque development (% MVC/s) were calculated for both voluntary and elicited contractions. Significant positive correlations were observed between MPF and rate of torque development for the voluntary contractions, whereas significant negative correlations were observed between the two variables for elicited contractions. This suggests that factors other than muscle fiber composition influence the frequency content of EMG signals and/or the rate of torque development, and that the effect of these factors will vary between voluntary and elicited contractions.  相似文献   

9.
The effects of aging on motoneuron firing rates and muscle contractile properties were studied in tibialis anterior muscle by comparing results from six young (20.8 +/- 0.8 yr) and six old men (82.0 +/- 1.7 yr). For each subject, data were collected from repeated tests over a 2-wk period. Contractile tests included maximal voluntary contraction (MVC) with twitch interpolation and stimulated twitch contractions. The old men had 26% lower MVC torque (P < 0.01) than did the young men, but percent activation was not different (99.1 and 99.3%, respectively). Twitch contraction durations were 23% longer (P < 0.01) in the old compared with the young men. During a series of repeated brief steady-state contractions at 10, 25, 50, 75, and 100% MVC, motor unit firing rates were recorded. Results from approximately 950 motor unit trains in each subject group indicated that at all relative torque levels mean firing rates were 30-35% lower (P < 0.01) in the old subjects. Comparisons between young and old subjects' mean firing rates at each of 10%, 50%, and MVC torques and their corresponding mean twitch contraction duration yielded a range of moderate-to-high correlations (r = -0.67 to -0.84). That lower firing rates were matched to longer twitch contraction durations in the muscle of old men, and relatively higher firing rates were matched with shorter contraction times from the young men, indirectly supports the neuromuscular age-related remodeling principle.  相似文献   

10.
The objective of this study was to investigate whether a warm-up consisting of a series of maximal contractions would augment the force and activation of subsequent leg extensor contractions. Both voluntary and evoked isometric contractions were tested to determine the mechanisms underlying the response. Nine subjects were tested for twitch, tetanic, submaximal (30%), and maximal voluntary contractile (MVC) properties before and after (1, 5, 10, and 15 minutes) one to three 10-second MVCs. MVC force either did not change following 1-2 MVCs or was depressed at 10 and 15 minutes after 3 MVCs. MVC activation was decreased (4.4-6.9%) throughout recovery, whereas submaximal contractions were minimally affected. Although overall, twitches were potentiated (15.5-19.8%) posttest, 3 MVCs had significantly greater twitch potentiation than 1 or 2 MVCs at 5 and 10 minutes. Results suggest that voluntary and evoked contractions respond differently to prior 10-second MVCs. In the present study, a warm-up routine of 1-3 MVCs of a 10-second duration did not enhance subsequent voluntary performance.  相似文献   

11.
Postactivation potentiation (PAP) is defined as a short-term increase in voluntary muscle activation following a previous conditioning activity (CA). Controversy about PAP is mostly attributed to the characteristics of the CA and the training status of the subjects. While some studies have found that PAP can be induced by series of 5-10 second maximal voluntary isometric contractions or near maximal dynamic contractions (e.g., 3-5 repetition maximum), others have failed to do so. On the other hand, some studies suggest that intermittent contractions can also induce PAP. However, even though PAP was observed, its duration was not taken into account, leaving ground for further investigations. The purpose of this study was threefold: (a) to verify if PAP can progressively enhance performance of voluntary actions throughout a set of intermittent contractions; (b) to verify PAP duration when induced by an intermittent contractions protocol; and (c) to verify if PAP effects were reproducible in different sessions when induced by intermittent contractions. Ten physically active men, not engaged in strength training, underwent 5 randomized experimental sessions, during which they performed a set of 10 unilateral knee extensions (KE) (1 every 30 seconds) at 60 degrees x s(-1) in an isokinetic dynamometer. Peak torque was evaluated over the 10 unilateral KE and at the randomized intervals of 4, 6, 8, 10, and 12 minutes post CA. Peak torque was potentiated 1.3 (+/-0.79) N x m per unilateral KE, and the potentiation effect persisted for 12 minutes after the last contraction. These findings were reproduced in all 5 experimental sessions. Thus, intermittent conditioning activities seem to be an effective way to produce PAP. However, these activities should be tested in a more real world situation to verify the applicability as a warm-up routine.  相似文献   

12.
The effects of 21 days voluntary leg (plaster) immobilization on the mechanical properties of the triceps surae have been studied in 11 young female subjects, mean age 19.4 years. The results show that during the period of immobilization the mean time to peak tension (TPT) and half relaxation time (1/2RT) and tension (Pt) of the maximal twitch increased significantly (p less than 0.001) but the effects were short lived. Maximal tension and contraction times of the twitch recovered within 2-14 days following the removal of the plaster cast. The electrically evoked tetanic tensions at 10 Hz and 20 Hz did not change significantly (P greater than 0.1) during immobilization, but the 50 Hz tetanic tension (Po50) and maximal voluntary contraction (MVC) were reduced (p less than 0.05). The fall in Po50 and MVC was associated with 10% decrease in the estimated muscle (plus bone) cross-sectional area. The relative (%) change in Po50 and MVC following immobilization was related to the initial physiological status (as indicated by the response of the triceps surae to a standard fatigue test prior to immobilization) of the muscle. The rate of rise and recovery fall of the tetanus were slightly but significantly (p less than 0.01) reduced on day 7 of immobilization, but thereafter remained constant. The isokinetic properties of the triceps surae as reflected in the measured torque/velocity relation of the muscle in 4 subjects did not change significantly if account was taken of the slight degree of atrophy present following immobilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The superimposed twitch technique is frequently used to study the degree of motor unit activation during voluntary effort. This technique is one of the preferred methods to determine the activation deficit (AD) in normal, athletic, and patient populations. One of the limitations of the superimposed twitch technique is its variability under given contractile conditions. The objective of this research was to determine the source(s) of variability in the superimposed twitch force (STF) for repeat measurements. We hypothesized that the variability in the AD measurements may be caused by the timing of the twitch force relative to the onset of muscle activation, by force transients during the twitch application, by small variations in the actual force from the nominal target force, and by variations in the resting twitch force. Twenty-eight healthy subjects participated in this study. Sixteen of these subjects participated in a protocol involving contractions at 50% of their maximal voluntary contraction (MVC) effort, whereas the remaining 12 participated in a protocol involving contractions at 100% of their MVC. Doublet-twitch stimuli were superimposed onto the 50 and 100% effort knee extensor muscle contractions, and the resting twitch forces, voluntary knee extensor forces, and STFs were then measured. The mean resting twitch forces obtained before and after 8 s of 50% of MVC were the same. Similarly, the mean STFs determined at 1, 3, 5, and 7 s into the 50% MVC were the same. The variations in twitch force were significantly smaller after accounting for the actual force at twitch application than those calculated from the prescribed forces during the 50% MVC protocol (P < 0.05). Furthermore, the AD and the actual force showed statistically significant negative correlations for the 50% MVC tests. The interpolated twitch torque determined for the maximal effort contractions ranged from 1 to 70%. In contrast to the protocol at 50% of MVC, negative correlations were only observed in 5 of the 12 subjects during the 100% effort contractions. These results suggest that small variations in the actual force from the target force can account for the majority of the variations in the STFs for submaximal but not maximal effort contractions. For the maximal effort contractions, large variations in the STF exist due to undetermined causes.  相似文献   

14.
Standardized measurements of dynamic strength of the kneee extensor muscles were performed in 25 healthy male subjects (17-37 yr) by means of isokinetic contractions, i.e., knee extensions with constant angular velocities. Overall variation between double determinations of maximal torque throughout the 90 degrees arc of motion (0 degrees = fully extended leg) averaged 10% for the different constant velocities chosen. At any given angle of the knee the torque produced was higher for isometric than for dynamic contractions. Dynamic torque decreased gradually with increased speed of shortening. Peak dynamic torque was reached at knee angles in the range: 55-66 degrees, with a displacement toward smaller knee angles with higher angular velocities. Correlations were demonstrated between peak torque produced at the highest speed of muscle shortening and percent as well as relative area of fast twitch fibers in the contracting muscle. In addition muscles with a high percentage of fast twitch fibers had the highest maximal contraction speeds. These observations on intact human skeletal muscle are consistent with earlier findings in animal skeletal muscle preparations.  相似文献   

15.
When old adults participate in a strength-training program with heavy loads, they experience an increase in muscle strength and an improvement in the steadiness of submaximal isometric contractions. The purpose of this study was to determine the effect of light- and heavy-load strength training on the ability of old adults to perform steady submaximal isometric and anisometric contractions. Thirty-two old adults (60-91 yr) participated in a 4-wk training program of a hand muscle. Both the light- and heavy-load groups increased one-repetition maximum and maximal voluntary contraction (MVC) strength and experienced similar improvements in the steadiness of the isometric and shortening and lengthening contractions. The increase in MVC strength was greater for the heavy-load group and could not be explained by changes in muscle activation. Before training, the lengthening contractions were less steady than the shortening contractions with the lightest loads (10% MVC). After training, there was no difference in steadiness between the shortening and lengthening contractions, except with the lightest load. These improvements were associated with a reduced level of muscle activation, especially during the lengthening contractions.  相似文献   

16.
Electrically evoked twitch properties of the human plantarflexor muscles were measured with the muscles at a constant length (static) and during passive shortening and lengthening. A Kin-Com dynamometer system was used to passively move the ankle joint at 0.52 rad s-1 (30 degrees s-1), as well as to record the twitch responses which were elicited by supramaximal electric shocks applied over the tibial nerve in the popliteal fossa. In the lengthening and shortening conditions, twitches were evoked by triggering the shocks so that the twitch response occurred at a similar angular position for all three conditions. The lengthening twitch peak torque was about twice as large as that recorded for the shortening condition. There was, however, no statistical difference in the twitch time course in these three testing conditions. This twofold increase in the peak twitch torque during lengthening, compared to shortening, is much greater than the torque increase reported during eccentric, as compared to concentric maximal voluntary contractions. These findings suggest that a deactivation process of the contractile system occurs during muscle shortening, while in contrast, during passive lengthening a potentiation mechanism is acting, and that both these mechanisms are independent of volitional muscle activation. The present study is the first to demonstrate the possibility of electrically evoked contractions of human muscles during passive lengthening and shortening. We believe that the use of such evoked contractions may be promising for the study of contractile behaviour of human skeletal muscles during eccentric and concentric conditions.  相似文献   

17.
The purposes of this study were to determine 1) the relationships of self-reported function scores in patients with knee osteoarthritis (OA) to both maximal isometric torque and to isotonic power at a variety of loads, and 2) the degree to which muscle volume (MV) or voluntary activation (VA) are associated with torque and power measures in this population. Isometric maximal voluntary contraction (MVC) torque and isotonic power [performed at loads corresponding to 10, 20, 30, 40, and 50% MVC, and a minimal load ("Zero Load")] were measured in 40 participants with knee OA. Functional ability was measured with the Western Ontario and McMaster Osteoarthritis Index (WOMAC) function subscale. MV was determined with magnetic resonance imaging, and VA was measured with the interpolated twitch technique. In general, power measured at lower loads (Zero Load and 10-30% MVC, r(2) = 0.21-0.28, P < 0.05) predicted a greater proportion of the variance in function than MVC torque (r(2) = 0.18, P < 0.05), with power measured at Zero Load showing the strongest association (r(2) = 0. 28, P < 0.05). MV was the strongest predictor of MVC torque and power measures in multiple regression models (r(2) = 0.42-0.72). VA explained only 6% of the variance in MVC torque and was not significantly associated with power at any load (P > 0.05). Quadriceps MVC torque and power are associated with self-reported function in knee OA, but muscle power at lower loads is more predictive of function than MVC torque. The variance in MVC torque and power between participants is due predominantly to differences in MV and has little to do with deficits in VA.  相似文献   

18.
The capacity for twitch potentiation in the gastrocnemius muscle was determined following maximal voluntary contractions (MVC) in 11 elderly (means +/- SD; 66.9 +/- 5.3 years) and 12 young (25.7 +/- 3.8 years) men. Potentiation was observed by applying selective stimulation to the muscle belly, 2 s after a 5 s MVC. With this procedure, both groups showed significant (P less than 0.05) increases in twitch tension in the gastrocnemius (ratios of potentiated twitch to baseline were means = 1.68 +/- 0.40 for young vs means = 1.40 +/- 0.20 for the elderly, P less than 0.001). Time to peak tension of the twitch decreased from means = 101.5 +/- 17.9 ms to means = 88.0 +/- 15.8 ms in the young men following potentiation; the respective values for the older men were 136.7 +/- 17.9 ms and 133.1 +/- 28.6 ms. These changes resulted in a greater rate of tension development in the potentiated state. The elderly gastrocnemius thus showed qualitatively similar changes in the isometric twitch following potentiation, but reduced and prolonged responses in comparison to young adults. Slowed muscle contraction and reduced capacity for potentiation may be physiological correlates of the reported morphological changes in aged skeletal muscle.  相似文献   

19.
Indices of electrically stimulated and maximal voluntary isometric muscle torgue and the phosphate content of myosin phosphorylatable light chains (P light chains) were studied during recovery following a 60-s maximal voluntary isometric contraction (MVC) in 21 human subjects. Analysis of muscle biopsy samples revealed that immediately after the 60-s MVC there were significant decreases in ATP (-15%) and phosphocreatine (-82%), and lactate concentration increased by 17-fold. All indices of muscle torque production were reduced by the 60-s MVC, but the twitch torque and torque at 10 Hz were relatively less reduced compared with the torque at 20 and 50 Hz or a 1-s MVC. Between 3 and 6 min of recovery, twitch torque and torque at 10 Hz stimulation were significantly potentiated, reaching peak values of 125 and 134%, respectively, compared with rest. Phosphate content of the fast and two slow P light chains was significantly increased over rest levels immediately after and 4 min after the 60-s MVC. These results suggest that myosin P light-chain phosphorylation could provide a mechanism to increase human muscle torque under conditions of submaximal contractile element activation following fatigue.  相似文献   

20.
The force-length relationship is a basic property of skeletal muscle. Knowledge of this relationship is necessary for most analyses of human movement, and in simulation models predicting movement control strategies. Studies on animal muscles have shown that force-length relationships for sub-maximal contractions are not related through a simple scaling procedure to the relationship for maximal contractions. Furthermore, potentiation might produce a shift of sub-maximal relative to maximal force-length relationships. In this study, we tested the hypothesis that human force-elbow angle relationships for sub-maximal unpotentiated contractions are shifted to larger elbow angles (i.e. larger muscle lengths) compared to the relationship for maximal voluntary contractions (MVC), and that this shift is reduced, or even abolished, for sub-maximal potentiated contractions. Force-elbow angle relationships (48-160 degrees) were obtained from healthy subjects (n=13). At each of nine tested elbow angles, the test set consisted of a single twitch (ST(pre)) and a doublet twitch (DT(pre)) stimulation of m. biceps brachii, followed by an MVC, followed by another single twitch (ST(post)) and a doublet twitch (DT(post)) stimulation. The single and doublet twitches induced sub-maximal contractions. The force-elbow angle relationships for the pre-MVC (unpotentiated) twitch contractions were shifted to larger angles compared to those obtained for MVC. The force-elbow angle relationships for the post-MVC (potentiated) twitch contractions were shifted to smaller angles compared to those obtained for the unpotentiated twitch contractions. These results support the idea that the shift to larger muscle lengths for the sub-maximal, unpotentiated force-length relationships relative to the relationship for maximal contractions may be caused by a length-dependent Ca(2+) sensitivity that may be offset, at least in part, by potentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号