首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In previous publications from our laboratory, we reported that a soluble, cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 can be induced by phenobarbital and a variety of other barbiturates. The tested barbiturates showed an excellent correlation between increasing lipophilicity and increasing inducer potency (Kim BH, Fulco AJ; Biochem Biophys Res Commun 116: 843–850, 1983). The only exception proved to be mephobarbital (N-methylphenobarbital) which, although more lipophilic than phenobarbital, is not an inducer of fatty acid monooxygenase activity. We have now found that 1-[2-phenylbutyryl]-3-methylurea (PBMU), an acylurea that can be derived from mephobarbital by hydrolytic cleavage of the barbiturate ring, is an excellent inducer of this activity. Paradoxically, the addition of mephobarbital to the bacterial growth medium containing PBMU significantly enhances the apparent potency of the acylurea to induce fatty acid monooxygenase activity as measured in cell-free extracts. When cell-free extracts of cells grown separately in PBMU or mephobarbital are mixed no enhancement of activity is seen. This finding suggests that the effect of mephobarbital is to somehow increase the efficiency of PBMU as an inducer of the P-450-dependent fatty acid monooxygenase rather than to induce an activator of this enzyme or a rate-limiting component of the monooxygenase system. Finally, both mephobarbital and PBMU induce the synthesis of total cytochrome P-450 in B. megaterium although PBMU is a much more potent P-450 inducer. For cytochrome P-450 induction, however, there is no synergistic or even additive effect when mephobarbital and PBMU are used together in the bacterial growth medium.Abbreviations PBMU 1-[2-phenylbutyryl]-3-methylurea - M.P. melting point  相似文献   

2.
A J Fulco  R T Ruettinger 《Life sciences》1987,40(18):1769-1775
In a recent publication (Narhi, L.O. and Fulco, A.J.[1986] J. Biol. Chem. 261, 7160-7169) we described the characterization of a catalytically self-sufficient 119,000 Dalton cytochrome P-450 fatty acid monooxygenase (P-450BM-3) induced by barbiturates in Bacillus megaterium ATCC 14581. We have now examined cell-free preparations from 12 distinct strains of B. megaterium and from one or two strains each of B. alvei, B. brevis, B. cereus, B. licheniformis, B. macerans, B. pumilis and B. subtilis for the presence of this inducible enzyme. Using Western blot analyses in combination with assays for fatty acid hydroxylase activity and cytochrome P-450, we were able to show that 11 of the 12 B. megaterium strains contained not only a strongly pentobarbital-inducible fatty acid monooxygenase identical to or polymorphic with P-450BM-3 but also significant levels of two smaller P-450 cytochromes that were the same as or similar to cytochromes P-450BM-1 and P-450BM-2 originally found in ATCC 14581. Unlike the 119,000 Dalton P-450, however, the two smaller P-450s were generally easily detectable in cultures grown to stationary phase in the absence of barbiturates and, with some exceptions, were not strongly induced by pentobarbital. None of the non-megaterium species of Bacillus tested exhibited significant levels of either fatty acid monooxygenase activity or cytochrome P-450. The one strain of B. megaterium that lacked inducible P-450BM-3 was also negative for BM-1 and BM-2. However, this strain (ATCC 13368) did contain a small but significant level of another P-450 cytochrome that others have identified as the oxygenase component of a steroid 15-beta-hydroxylase system. Our evidence suggests that the BM series of P-450 cytochromes is encoded by chromosomal (rather than by plasmid) DNA.  相似文献   

3.
The gene encoding barbiturate-inducible cytochrome P-450BM-1 from Bacillus megaterium ATCC 14581 has been cloned and sequenced. An open reading frame in the 1.9 kb of cloned DNA correctly predicted the NH2-terminal sequence of P-450BM-1 previously determined by protein sequencing, and, in toto, predicted a polypeptide of 410 amino acid residues with an Mr of 47,439. The sequence is most, but less than 27%, similar to that of P-450CAM from Pseudomonas putida, so that P-450BM-1 clearly belongs to a new P-450-gene family, distinct especially from that of the P-450 domain of P-450BM-3, a barbiturate-inducible single polypeptide cytochrome P-450:NADPH-P-450 reductase from the same strain of B. megaterium (Ruettinger, R.T., Wen, L.-P. and Fulco, A.J. (1989) J. Biol. Chem. 264, 10987-10995).  相似文献   

4.
In a previous publication (Narhi, L. O., and Fulco, A. J. (1986) J. Biol. Chem. 261, 7160-7169) we described the characterization of a 119,000-dalton P-450 cytochrome that is strongly induced by barbiturates in Bacillus megaterium. In the presence of NADPH and O2, this single polypeptide can catalyze the hydroxylation of long-chain fatty acids without the aid of any other protein. The gene encoding this unique monooxygenase (cytochrome P-450BM-3) has now been cloned by an immunochemical screening technique. The Escherichia coli clone harboring the recombinant plasmid produces a 119,000-dalton protein that appears to be electrophoretically and immunochemically identical to the B. megaterium enzyme and contains the same N-terminal amino acid sequence. The recombinant DNA product also exhibits the characteristic cytochrome P-450 spectrum and is fully functional as a fatty acid monooxygenase. In E. coli, the synthesis of P-450BM-3 is directed by its own promoter included in the DNA insert and proceeds constitutively at a very high rate but is not stimulated by pentobarbital. However, when the cloned P-450BM-3 gene, either intact or in a truncated form, is introduced back into B. megaterium via an E. coli/Bacillus subtilis shuttle vector, its expression is constitutively repressed but is induced by pentobarbital. This finding demonstrates that the regulatory region of the P-450BM-3 gene that responds to barbiturates is included in the cloned DNA. The evidence also indicates that pentobarbital cannot directly act on the gene to cause induction but presumably interacts with another component such as a repressor molecule that is present in B. megaterium but is absent in the E. coli clone.  相似文献   

5.
6.
The metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 BM-3 from Bacillus megaterium and a mutant enzyme of it (AL4V; Ala74Gly, Phe87Val, Leu188Gln triple mutant) was examined. Both purified enzymes metabolized 1-monochloro-, 2,3-dichloro-, and 2,3,7-trichloro-dibenzo-p-dioxin, but not 2,3,7,8-tetrachloro-dibenzo-p-dioxin. The mutant AL 4V had 2–12 times higher activity than the wild-type P450 BM-3 towards polychlorinated dibenzo-p-dioxins. The products were hydroxylated at an unsubstituted position and/or showing migration of the chloride and were less toxic derivatives with lower than 10% toxicity of the original compounds.Revisions requested 26 August 2004; Revisions received 15 October 2004  相似文献   

7.
When Bacillus megaterium ATCC 14581 is grown in the presence of barbiturates, a cytochrome P-450-dependent fatty acid monooxygenase (Mr 120 000) is induced (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843–850). Gel filtration chromatography of a crude monooxygenase preparation from pentobarbital-induced B. megaterium indicated that not all of the induced cytochrome P-450 present in the extract was accounted for by this high-molecular-weight component. Further purification revealed the presence of two additional but smaller cytochrome P-450 species. The minor component, designated cytochrome P-450BM-2, had a molecular mass of about 46 kDa, but has not yet been completely purified or further characterized. The major component, designated cytochrome P-450BM-1, was obtained in pure form, exhibited fatty acid monooxygenase activity in the presence of iodosylbenzenediacetate, and has been extensively characterized. Its Mr of 38 000 makes it the smallest cytochrome P-450 yet purified to homogeneity. Although it is a soluble protein, a complete amino acid analysis indicated that it contains 42% hydrophobic residues. By the dansyl chloride procedure the NH2-terminal amino acid is proline; the penultimate NH2-terminal residue is alanine. The absolute absorption spectra of cytochrome P-450BM-1 show maxima in the same general regions as do P-450 cytochromes from mammalian or other bacterial sources, but they differ in detail. The oxidized form of P-450BM-1 has absorption maxima at 414, 533 and 567 nm, while the reduced form has peaks at 410 and 540 nm. The absorption maxima for the CO-reduced form of P-450BM-1 are found at 415, 448 and 550 nm. Antisera from rabbits immunized with pure P-450BM-1 strongly reacted with and precipitated this P-450, but showed no detectable affinity for either the 46 kDa P-450 or the 120 kDa fatty acid monooxygenase.  相似文献   

8.
In a previous publication (Narhi, L. O. and Fulco, A. J. (1986) J. Biol. Chem. 261, 7160-7169) we described the characterization of a soluble 119,000-dalton P-450 cytochrome (P-450BM-3) that was induced by barbiturates in Bacillus megaterium. This single polypeptide contained 1 mol each of FAD and FMN/mol of heme and, in the presence of NADPH and O2, catalyzed the oxygenation of long-chain fatty acids without the aid of any other protein. We have now utilized limited trypsin proteolysis in the presence of substrate to cleave P-450BM-3 into two polypeptides (domains) of about 66,000 and 55,000 daltons. The 66-kDa domain contains both FAD and FMN but no heme, reduces cytochrome c in the presence of NADPH, and is derived from the C-terminal portion of P-450BM-3. The 55-kDa domain is actually a mixture of three discrete peptides (T-I, T-II, and T-III) separable by high performance liquid chromatography. All three contain heme and show a P-450 absorption peak in the presence of CO and dithionite. The major component, T-I (Mr = 55 kDa), binds fatty acid substrate and has an N-terminal amino acid sequence identical to that of intact P-450BM-3, an indication that this domain constitutes the N-terminal portion of the 119-kDa protein. T-II (54 kDa) is the same as T-I except that it is missing the first nine N-terminal amino acids and does not bind substrate. T-III (Mr = 53.5 kDa) has lost the first 15 N-terminal residues and does not bind substrate. Since trypsin digestion of P-450BM-3 carried out in the absence of substrate yields T-II and T-III but no T-I, it appears that 1 or more residues of the first nine N-terminal amino acids of this protein are intimately involved in substrate binding. Although both the heme- and flavin-containing tryptic peptides retain their original half-reactions, fatty acid monooxygenase activity cannot be reconstituted after proteolysis, and the two domains, once separated, show no affinity for each other. In most respects, the reductase domain of P-450BM-3 more closely resembles the mammalian microsomal P-450 reductases than it does any known bacterial protein.  相似文献   

9.
When Bacillus megaterium ATCC 14581 is grown in the presence of barbiturates, a cytochrome P-450-dependent fatty acid monooxygenase (Mr 120000) is induced (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). Gel filtration chromatography of a crude monooxygenase preparation from pentobarbital-induced B. megaterium indicated that not all of the induced cytochrome P-450 present in the extract was accounted for by this high-molecular-weight component. Further purification revealed the presence of two additional but smaller cytochrome P-450 species. The minor component, designated cytochrome P-450BM-2, had a molecular mass of about 46 kDa, but has not yet been completely purified or further characterized. The major component, designated cytochrome P-450BM-1, was obtained in pure form, exhibited fatty acid monooxygenase activity in the presence of iodosylbenzenediacetate, and has been extensively characterized. Its Mr of 38000 makes it the smallest cytochrome P-450 yet purified to homogeneity. Although it is a soluble protein, a complete amino acid analysis indicated that it contains 42% hydrophobic residues. By the dansyl chloride procedure the NH2-terminal amino acid is proline; the penultimate NH2-terminal residue is alanine. The absolute absorption spectra of cytochrome P-450BM-1 show maxima in the same general regions as do P-450 cytochromes from mammalian or other bacterial sources, but they differ in detail. The oxidized form of P-450BM-1 has absorption maxima at 414, 533 and 567 nm, while the reduced form has peaks at 410 and 540 nm. The absorption maxima for the CO-reduced form of P-450BM-1 are found at 415, 448 and 550 nm. Antisera from rabbits immunized with pure P-450BM-1 strongly reacted with and precipitated this P-450, but showed no detectable affinity for either the 46 kDa P-450 or the 120 kDa fatty acid monooxygenase.  相似文献   

10.
Rapid mixing of substrate-free ferric cytochrome P450BM3–F87G with m-chloroperoxybenzoic acid (mCPBA) resulted in the sequential formation of two high-valent intermediates. The first was spectrally similar to compound I species reported previously for P450CAM and CYP 119 using mCPBA as an oxidant, and it featured a low intensity Soret absorption band characterized by shoulder at 370 nm. This is the first direct observation of a P450 compound I intermediate in a type II P450 enzyme. The second intermediate, which was much more stable at pH values below 7.0, was characterized by an intense Soret absorption peak at 406 nm, similar to that seen with P450CAM [T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300–20309]. Double mixing experiments in which NADPH was added to the transient 406 nm-absorbing intermediate resulted in rapid regeneration of the resting ferric state, with the flavins of the flavoprotein domain in their reduced state. EPR results were consistent with this stable intermediate species being a cytochrome c peroxidase compound ES-like species containing a protein-based radical, likely localized on a nearby Trp or Tyr residue in the active site. Iodosobenzene, peracetic acid, and sodium m-periodate also generated the intermediate at 406 nm, but not the 370 nm intermediate, indicating a probable kinetic barrier to accumulating compound I in reactions with these oxidants. The P450 ES intermediate has not been previously reported using iodosobenzene or m-periodate as the oxygen donor.  相似文献   

11.
In a recent communication (Narhi, L. and Fulco, A.J. [1982] J. Biol. Chem. 257, 2147-2150) we found that a soluble cytochrome P-450-dependent fatty acid monooxygenase isolated from Bacillus megaterium ATCC 14581 could be induced about 28-fold by phenobarbital. We have now examined 19 barbiturates and found that 13 significantly induce the specific monooxygenase activity. Of these, 11 are more active than phenobarbital and three (secobarbital, thiamylal and methohexital) are more than 30 times as active on a molar basis. The dialkyl barbiturates without exception show an excellent correlation between increasing lipophilicity and increasing potency as inducers as do most of the barbiturates containing an aromatic substituent. Nevertheless, it is apparent that certain structural features involving factors other than lipophilicity are also necessary for induction. Our finding that barbiturates can cause the non-substrate induction of a cytochrome P-450-dependent monooxygenase in a prokaryote represents a unique discovery that may provide a relatively simple model for apparently similar induction systems in higher animals.  相似文献   

12.
Transition of n-hexadecane utilizing cultures of Candida maltosa to oxygen-limited growth caused an up to 6-fold increase of the cellular cytochrome P-450 content. Enhanced cytochrome P-450 formation required protein de novo synthesis and was not due to a change of the apo/holo-enzyme ratio as demonstrated by cycloheximide inhibition and immunological quantitation. The effect of low oxygen concentration (pO2=3–5%) was simulated by selective inhibition of alkane hydroxylation with carbon monoxide (at a pO2 of 70–75%). Enhanced cytochrome P-450 formation occurred even when a constant growth rate was maintained through utilization of a second non-repressive growth substrate. However, the presence of n-alkanes was an essential precondition. It was concluded, that the cytochrome P-450 formation was mainly regulated by the intracellular inducer concentration which depends on the relative rates of alkane transport into the cell and the actual alkane hydroxylating activity of the enzyme system.Abbreviation cyt cytochrome  相似文献   

13.
The affinity of concanavalin A (Con A) for simple saccharides has been known for over 50 years. However, the specificity of binding of Con A with cell-surface related carbohydrates has only recently been examined in detail. Brewer and coworkers [J Biol Chem (1986) 261:7306–10; J Biol Chem (1987) 262:1288–93; J Biol Chem (1987) 262:1294–99] have recently studied the binding interactions of a series of oligomannose and bisected hybrid type glycopeptides and complex type glycopeptides and oligosaccharides with Con A. The relative affinities of the carbohydrates were determined using hemagglutination inhibition measurements, and their modes of binding to the lectin examined by nuclear magnetic relaxation dispersion (NMRD) spectroscopy and quantitative precipitation analyses. The equivalence zones (regions of maximum precipitation) of the precipitin curves of Con A and the carbohydrates indicate that certain oligomannose and bisected hybrid type glycopeptides are bivalent for lectin binding. From the NMRD and precipitation data, two protein binding sites on each glycopeptide have been identified and characterized. Certain bisected complex type oligosaccharides also bind and precipitate Con A, while the corresponding nonbisected analogs bind but do not precipitate the protein. The precipitation data indicate that the bisected complex type oligosaccharides are also bivalent for lectin binding, while the nonbisected analogs are univalent. The NMRD and precipitation data are consistent with different mechanisms of binding of nonbisected and bisected complex type carbohydrates to Con A, including different conformations of the bound saccharides.Abbreviations Con A Concanavalin A with unspecified metal ion content - CMPL Con A with Mn2+ and Ca2+ at the S1 and S2 sites respectively, in the locked conformation [12]; trisaccharide1, 3,6-di-O-(-d-mannopyranosyl)-d-mannose - -MDM methyl -d-mannopyranoside - NMRD nuclear magnetic relaxation dispersion, the magnetic field dependence of nuclear magnetic relaxation rates, in the present case, the longitudinal relaxation rate, 1/T1, of solvent protons  相似文献   

14.
Summary Metabolism of sulfonylurea herbicides by Streptomyces griseolus ATCC 11796 is carried out via two cytochromes P-450, P-450SU1 and P-450SU2. Mutants of S. griseolus, selected by their reduced ability to metabolize a fluorescent sulfonylurea, do not synthesize cytochrome P-450SU1 when grown in the presence of sulfonylureas. Genetic evidence indicated that this phenotype was the result of a deletion of > 15 kb of DNA, including the structural genes for cytochrome P-450SU1 and an associated ferredoxin Fd-1 (suaC and suaB, respectively). In the absence of this monooxygenase system, the mutants described here respond to the presence of sulfonylureas or phenobarbital in the growth medium with the expression of only the suhC,B gene products (cytochrome P-450SU2 and Fd-2), previously observed only as minor components in wild-type cells treated with sulfonylurea. These strains have enabled an analysis of sulfonylurea metabolism mediated by cytochrome P-450SU2 in the absence of P-450SU1, yielding an in vivo delineation of the roles of the two different cytochrome P-450 systems in herbicide metabolism by S. griseolus.  相似文献   

15.
    
A 4.3 kb EcoRI fragment carrying the gene for cytochrome P450meg, the steroid-15-monooxygenase from Bacillus megaterium ATCC 13368, was cloned and completely sequenced. The gene codes for a protein of 410 amino acids and was expressed in Escherichia coli and B. subtilis. Protein extracts from the recombinant E. coli strains were able to hydroxylate corticosteroids in the 15 position when supplemented with an extract from a P450- mutant of B. megaterium ATCC 13368 as a source of megaredoxin and megaredoxin reductase. In contrast, 15-hydroxylation was obtained in vitro and in vivo without the addition of external electron transfer proteins, when cytochrome P450meg was produced in B. subtilis 168. Protein extracts from nonrecombinant B. subtilis 168 could also support the in vitro hydroxylation by cytochrome P450meg produced in E. coli.  相似文献   

16.
Cytochrome P-450BM-3 is a catalytically self-sufficient fatty acid omega-hydroxylase with two domains. Functional and primary structure analyses of the hemo- and flavoprotein domains of cytochrome P-450BM-3 and the corresponding microsomal cytochrome P-450 system have shown that these proteins are highly homologous. Prior attempts to reconstitute the fatty acid hydroxylation function of cytochrome P-450BM-3, utilizing the two domains, obtained either by trypsinolysis or by recombinant methods, were unsuccessful. In this paper, we describe the reconstitution of the fatty acid hydroxylation activity of cytochrome P-450BM-3 utilizing the recombinantly produced flavoprotein domain (Oster, T., Boddupalli, S. S., and Peterson, J. A. (1991) J. Biol. Chem. 266, 22718-22725) and its hemoprotein counterpart. The rate of fatty acid-dependent oxygen consumption was shown to be linear when increasing concentrations of the hemoprotein domain are added to a fixed concentration of the flavoprotein domain and vice versa. The combination of the hemo- and flavoprotein domains in a ratio of 20:1 respectively, in the reaction mixture, results in the transfer of 80% of the reducing equivalents from NADPH for the hydroxylation of palmitate at 25 degrees C. The ratio of the regioisomeric products obtained for lauric, myristic, and palmitic acids was similar to that obtained with the holoenzyme form of cytochrome P-450BM-3. The reconstitution of the fatty acid omega-hydroxylase activity, using the soluble domains of cytochrome P-450BM-3, without added factors such as lipids, may be useful for structure/function comparisons to their eukaryotic counterparts.  相似文献   

17.
18.
The nature of the carbon monoxide- and oxygen-reacting haemoproteins in the respiratory chain of the filamentous antibiotic-producing bacterium Streptomyces clavuligerus has been investigated. CO-difference (i.e. CO+ reduced minus reduced) spectra of intact cells showed the presence of cytochrome aa 3, a CO binding b-type cytochrome, and a pigment resembling cytochrome d. In addition, cells that were approaching the end of the growth phase showed the presence of cytochrome P450: this pigment was undetectable in cells harvested early in the growth cycle. High speed centrifugation of cell-free extracts prepared from cells broken by sonication showed that cytochrome aa 3 was tightly membrane-bound and that cytochrome P450 was soluble. Inhibition of oxygen uptake rates of cells by cyanide indicated that one component, which showed 50% inhibition at 2–4 mM CN, was acting as major terminal oxidase: this was observed in cells harvested from all stages of growth. Photodissociation (i. e. photolysed, CO reduced minus CO reduced) spectra at-118°C, in the absence of oxygen, showed cytochrome aa 3 to be the sole photolysable CO-reacting haemoprotein. At higher temperature (-87°C), in the presence of oxygen, cytochrome aa 3 formed a complex with oxygen that could not be photolysed by similar intensities of light. By raising the temperature to-43°C, the oxidation of c-type cytochromes was observed. It is concluded that cytochrome aa 3 is the predominant terminal oxidase in S. clavuligerus and that the other CO reacting haemoproteins, of unknown function, are unlikely to be oxidases.  相似文献   

19.
Four forms of bovine adrenodoxin with modified amino-termini obtained by direct expression of cDNAs in Escherichia coli are Ad(Met1), Ad(Met−1), Ad(Met−12), and Ad(Met6). The shoulder numbers represent this site of translation initiator Met at the amino-termini. The adrenodoxins, except for Ad(Met−1), were purified from the cell lysate and the ratios of A414-to-A276 of the purified proteins were over 0.92. NADPH-cytochrome c reductase activities of the three forms of adrenodoxin in the presence of adrenodoxin reductase were the same as that of purified bovine adrenocortical adrenodoxin. However, as cytochrome P-450SCC reduction catalyzed by Ad(Met0) was about 60% or that by Ad(Met1), the contribution of the amino-terminal region for the electron transfer or binding to cytochrome P-450SCC would need to be considered.  相似文献   

20.
A unique cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 is strongly induced by phenobarbital (Narhi, L. O., and Fulco, A. J. (1982) J. Biol. Chem. 257, 2147-2150) and many other barbiturates (Kim, B.-H., and Fulco, A. J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). This monooxygenase has now been purified to homogeneity from pentobarbital-induced bacteria as a single polypeptide with a molecular weight of 119,000 +/- 5,000 daltons. In the presence of NADPH and O2, it can catalyze the oxygenation of long chain fatty acids without the aid of any other protein. The enzyme has a catalytic center activity of 4,600 nmol of fatty acid oxygenated per nmol of P-450 (the highest activity yet reported for a P-450-dependent monooxygenase) and also functions as a highly active cytochrome c reductase in the presence of NADPH. The purified holoenzyme is a soluble protein containing 40 mol % hydrophobic amino acid residues and 1 mol each of FAD and FMN/mol of heme. It is isolated and purified in the low spin form but is converted to the high spin form in the presence of long chain fatty acids. The enzyme, which catalyzes the omega-2 hydroxylation of saturated fatty acids and the hydroxylation and epoxidation of unsaturated fatty acids has its highest affinity (Km = 2 +/- 1 microM) for the C15 and C16 chain lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号