首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The white-light-(WL) induced enlargement of dicotyledonous leaf cells is known to occur via an acid-growth mechanism; i.e., WL causes leaf cells to excrete protons which lead to an increase in wall extensibility and thus cell enlargement. Gibberellic acid (GA3) and N6-benzyladenine (BA) also induce leaf cell enlargement. To see if they also act via acid-induced cell wall loosening, a comparison has been made of WL-, GA3-and BA-induced growth of strips, taken from primary leaves of bean (Phaseolus vulgaris L.) plants raised in continuous red light for 10 d. White light, GA3 and BA all increased wall extensibility as measured by the Instron technique, and this change preceded the increase in growth rate. However, whereas WL induced significant proton excretion, neither GA3 nor BA caused any acidification of the apoplast. Furthermore, neutral buffers, which effectively inhibited the growth induced by WL, were without effect on growth promoted by either GA3 or BA. These results indicate that while WL, GA3 and BA all initiate growth in bean leaves by altering cell-wall properties, GA3 and BA do so through some wall loosening mechanism other than wall acidification. Neither gibberellin nor cytokinin is likely to play a major role in light-induced cell enlargement of dicotyledonous leaves.Abbreviations BA No-benzyladenine - FC fusicoccin - GA3 gibberellic acid - RL red light - SK medium 10 mM sucrose+10mM KCl - WL white light  相似文献   

2.
Cell expansion in dicotyledonous leaves is strongly stimulated by bright white light (WL), at least in part as a result of light-induced acidification of the cell walls. It has been proposed that photosynthetic reactions are required for light-stimulated transport processes across plasma membranes of leaf cells, including proton excretion. The involvement of photosynthesis in growth and wall acidification of primary leaves of bean has been tested by inhibiting photosynthesis in two ways: by reducing chlorophyll content of intact plants with tentoxin (TX) and by treating leaf discs with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exposure to bright WL stimulated growth of intact leaves of TX-treated plants. Discs excised from green as well as from TX-or DCMU-treated leaves also responded by growing faster in WL, as long as exogenous sucrose was supplied to the photosynthetically inhibited tissues. The WL caused acidification of the epidermal surface of intact TX-leaves, but acidification of the incubation medium by mesophyll cells only occurred when photosynthesis was not inhibited. It is concluded that light-stimulated cell enlargement of bean leaves, and the necessary acidification of epidermal cell walls, are mediated by a pigment other than chlorophyll. Light-induced proton excretion by mesophyll cells, on the other hand, may require both a photosynthetic product (or exogenous sugars) and a non-photosynthetic light effect.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1 -dimethylurea - OC osmotic concentration - RL red light - TX tentoxin - WL white light We thank Dr. G.E. Templeton, University of Arkansas, Fayetteville, USA, for initially supplying us with TX, and also Dr. Stephen O. Duke, Southern Weend Science Laboratory, Stoneville, Miss., USA, for suggesting this compound for our experiments. We are grateful to Professor E. Ballio for his generous gift of fusicoccin.  相似文献   

3.
Light-induced expansion of Phaseolus vulgaris L. leaf cells is accompanied by increased cell-wall plasticity. The possibility that leaf-cell walls are loosened by excreted protons has been investigated. First, light causes acidification, detected at the leaf surface, within 5–15 min. Growth starts 10–20 min after exposure to light. Second, exogenous acid induces loosening of isolated leaf cell walls. Third, infiltration of the tissue with a neutral buffer inhibits light-induced growth. Fourth, fusicoccin stimulates growth of as well as H+ excretion by bean leaf cells, without light. These findings show that the acid-growth theory is applicable to light-induced growth of leaf cells, and indicate that light-induced proton excretion initiates cell enlargement in leaves.Abbreviations FC fusicoccin - RL red light - WEx wall extensibility - WL white light  相似文献   

4.
Development of the primary bean leaf in the dark and under continuous white light was studied during 14 days after sowing. The increase in surface area of the blade is the result of a number of sequential processes. Both in the darkness and under illumination, leaf growth is characterized by an initial cell enlargement followed by intensive cell division. Cell division in etiolated leaves continues for one day longer than in illuminated ones, but it proceeds at a slower rate. Mature leaves grown under white light undergo a phase of cell enlargement after cell division has stopped. This increases their surface area up to 800 times when compared with the blade area of the embryo. This enlargement phase is almost absent in dark-grown seedlings. Consequently the blade area of etiolated leaves is only 50 times that of the embryonic state. Thus light appears to have a dual effect on leaf development: it activates cell division and induces cell expansion.  相似文献   

5.
Elevation of leaf auxin (indole-3-acetic acid; IAA) levels in intact plants has been consistently found to inhibit leaf expansion whereas excised leaf strips grow faster when treated with IAA. Here we test two hypothetical explanations for this difference in growth sensitivity to IAA by expanding leaf tissues in vivo versus in vitro. We asked if, in Arabidopsis, IAA-induced growth of excised leaf strips results from the wounding required to excise tissue and/or results from detachment from the plant and thus loss of some shoot or root derived growth controlling factors. We tested the effect of a range of exogenous IAA concentrations on the growth of intact attached, wounded attached, detached intact, detached wounded as well as excised leaf strips. After 24 h, the growth of intact attached, wounded attached, and detached intact leaves was inhibited by IAA concentrations as little as 1 µM in some experiments. Growth of detached wounded leaves and leaf strips was induced by IAA concentrations as low as 10 µM. Stress, in the form of high light, increased the growth response to IAA by leaf strips and reduced growth inhibition response by intact detached leaves. Endogenous free IAA content of intact attached leaves and excised leaf strips was found not to change over the course of 24 h. Together these results indicate growth induction of Arabidopsis leaf blade tissue by IAA requires both substantial wounding as well as detachment from the plant and suggests in vivo that IAA induces parallel pathways leading to growth inhibition.  相似文献   

6.
Cell enlargement in primary leaves of bean (Phaseolus vulgaris L.) can be induced, free of cell divisions, by exposure of 10-d-old, red-light-grown seedlings to white light. The absolute rate of leaf expansion increases until day 12, then decreases until the leaves reached mature size on day 18. The cause of the reduction in growth rate following day 12 has been investigated. Turgor calculated from measurements of leaf water and osmotic potential fell from 6.5 to 3.5 bar before day 12, but remained constant thereafter. The decline of growth after day 12 is not caused by a decrease in turgor. On the other hand, Instron-measured cell-wall extensibility decreased in parallel with growth rate after day 12. Two parameters influencing extensibility were examined. Light-induced acidification of cell walls, which has been shown to initiate wall extension, remained constant over the growth period (days 10–18). Furthermore, cells of any age could be stimulated to excrete H+ by fusicoccin. However, older tissue was not able to grow in response to fusicoccin or light. Measurements of acid-induced extension on preparations of isolated cell walls showed that as cells matured, the cell walls became less able to extend when acidified. These data indicate that it is a decline in the capacity for acid-induced wall loosening that reduces wall extensibility and thus cell enlargement in maturing leaves.Abbreviations and symbols FC fusicoccin - P turgor pressure - RL red light - WEx wall extensibility - WL white light - P w leaf water potential - P s osmotic potential  相似文献   

7.
The quantity and quality of light required for light-stimulated cell expansion in leaves of Phaseolus vulgaris L. have been determined. Seedlings were grown in dim red light (RL; 4 micromoles photons m-2 s-1) until cell division in the primary leaves was completed, then excised discs were incubated in 10 mM sucrose plus 10 mM KCl in a variety of light treatments. The growth response of discs exposed to continuous white light (WL) for 16 h was saturated at 100 micromoles m-2 s-1, and did not show reciprocity. Extensive, but not continuous, illumination was needed for maximal growth. The wavelength dependence of disc expansion was determined from fluence-response curves obtained from 380 to 730 nm provided by the Okazaki Large Spectrograph. Blue (BL; 460 nm) and red light (RL; 660 nm) were most effective in promoting leaf cell growth, both in photosynthetically active and inhibited leaf discs. Far-red light (FR; 730 nm) reduced the effectiveness of RL, but not BL, indicating that phytochrome and a separate blue-light receptor mediate expansion of leaf cells.  相似文献   

8.
Cell enlargement in primary leaves of bean seedlings grown for10 days in dim red light in response to different light andphytohormone treatments was studied. On day 10, bean leaf discswere floated on 1% sucrose with, or without, phytohormones fordifferent periods (up to 24 h) under dim red light, or discswere floated in sucrose solution and irradiated with white orblue light. Cell enlargement was enhanced by continuous whiteand blue light and by benzyladenine, kinetin and gibberellicacid. When seedlings were grown for 8 days under dim red light afterwhich a 2-day dark period was interposed (for the accumulationof inactive phytochrome), cell enlargement was enhanced by a5-min irradiation with red light. This growth induction wasfar-red reversible. The conditions under which cell enlargement was promoted, alsoinduced the opening of the stomata. Red light induced a far-redreversible transient stomatal opening. Based on the kineticsof stomatal opening and cell enlargement we formulated the hypothesisthat cell enlargement in leaves in response to light and phytohormonesis mediated by the stomatal response to these factors. (Received September 30, 1983; Accepted February 27, 1984)  相似文献   

9.
Developmental process of sun and shade leaves in Chenopodium album L.   总被引:1,自引:0,他引:1  
The authors’ previous study of Chenopodium album L. revealed that the light signal for anatomical differentiation of sun and shade leaves is sensed by mature leaves, not by developing leaves. They suggested that the two‐cell‐layered palisade tissue of the sun leaves would be formed without a change in the total palisade tissue cell number. To verify that suggestion, a detailed study was made of the developmental processes of the sun and shade leaves of C. album with respect to the division of palisade tissue cells (PCs) and the data was expressed against developmental time (leaf plastochron index, LPI). The total number of PCs per leaf did not differ between the sun and shade leaves throughout leaf development (from LPI ?1 to 10). In both sun and shade leaves, anticlinal cell division of PCs occurred most frequently from LPI ?1 to 2. In sun leaves, periclinal division of PCs occurred synchronously with anticlinal division. The constancy of the total number of PCs indicates that periclinal divisions occur at the expense of anticlinal divisions. These results support the above suggestion that two‐cell‐layered palisade tissue is formed by a change of cell division direction without a change in the total number of PCs. PCs would be able to recognize the polarity or axis that is perpendicular to the leaf plane and thereby change the direction of their cell divisions in response to the light signal from mature leaves.  相似文献   

10.
Summary Some factors affecting the chloroplast replication were studied using the leaf cells of the mossPlagiomnium trichomanes. There was a significant positive correlation between chloroplast number per cell and cell volume in leaves of any developmental stage. However, when the detached leaves were cultured on nutrient agar, it was observed that the chloroplast replication occurred without cell enlargement regardless of the developmental stage of leaves. This implies that cell enlargement is not an essential factor for the chloroplast replication, but one of the environmental factors affecting it. Light is essential for the chloroplast replication which response to the light intensity. In the dark, there was little increase in chloroplast number per cell. With a light intensity of 50 lux, the increase rate of chloroplast number per cell was about half of that with 3,000 lux. Day length also affected significantly the chloroplast replication.  相似文献   

11.
Summary Observations by light, transmission electron and scanning electron microscopy have shown that intercellular spaces (ICS) are formed schizogenously in expanding leaves ofPhaseolus vulgaris. ICS formation occurs in predictable positions at the junctions between three or more cells, and follows three phases of development. The first, initiation, phase occurs soon after cell division, and is marked by the formation of an electron-dense osmiophilic body, probably proteinaceous, at the end of the cell plate/middle lamella of the daughter cell wall and across the adjacent piece of the primary wall of the mother cell. This part of the mother cell wall is digested, involving cellulolysis. The second phase, of cell separation, is marked by the first appearance of the ICS. InPhaseolus primary leaves this phase begins about day 3 after sowing, at which time the leaf area is about 1 cm2. In the final enlargement phase, lysis of cell wall material continues in the region of the middle lamella, and mechanical tensions arising from the rapid expansion of the lamina lead to further separation of the mesophyll cells so that spaces enlarge and merge.  相似文献   

12.
The roles of some chemical factors influencing leaf expansion were investigated using disks cut from the primary leaves of young plants of Phaseolus grown in subdued light. Mineral nutrients, cobalt, sucrose, GA and IAA or NAA at suitable concentrations all caused increases in fresh and dry weights of such disks. When all these substances were applied together the increases in diameter and in fresh and dry weight and cell number were very large and comparable with the rates found in intact leaf tissue. The response of disks to sucrose was found to be light dependent, and a number of other significant interactions were noted. Disks cut from older leaves, in which cell division had ceased, did not show large increases in fresh weight in response to treatment with sucrose, and in this such disks differ from those cut from leaves in which cell divisions are continuing. The possible significance of this is discussed and the roles of light and the other chemical factors investigated are assessed in terms of influence on cell division and expansion in disk tissue.  相似文献   

13.
The role of three-turgor-related cellular parameters, the osmotic potential ( s), the wall yield stress (Y) and the apparent hydraulic conductivity (L'p), in the initiation of ligh-induced expansion of bean (Phaseolus vulgaris L.) leaves has been determined. Although light causes an increase in the total solute content of leaf cells, the water uptake accompanying growth results in a slight increase in s. Y is about 4 bar; and is unaffected by light. L'p, as calculated from growth rates and isopiestic measurements of leaf water potential, is only slightly greater in rapidly-growing leaves. The turgor pressure of growing cells is lower than that of the controls by about 35%. We conclude that light does not induce cell enlargement in the leaf by altering any of the above parameters, but does so primarily by increasing wall extensibility.Abbreviations and symbols RL red light - WL white light - L'p apparent hydraulic conductivity - OC osmotic concentration - Y wall yield stress - s osmotic potential  相似文献   

14.
《Journal of bryology》2013,35(3):185-196
Abstract

Leaves at the apex of a mature Aphanoregma patens (Hedw.) Lindb. (Physcomitrella patens (Hedw.) Bruch Schimp. in B.S.G.) gametophore differ markedly in size and form from those at its base. To determine how these differences are produced during development, we first examined qualitative and quantitative differences between successive leaves along the stem and among leaves at different developmental stages. Differences between successive leaves were slight and cumulative. Local changes in cell number and size combined to produce a regularly shaped and approximately bilaterally symmetrical leaf suggesting that cell division and cell expansion are regionally regulated and coordinated at the organ level. The midrib and marginal teeth are discrete characters, which were prefigured by changes in cell shape in leaves that lacked these characters. In leaf primordia, cell proliferation was responsible for most of the changes in leaf form and size early in development and may have continued as cell expansion took over as the primary contributor to leaf growth and morphogenesis. Thus, leaf heteroblasty in Physcomitrella probably results from modulation of a single developmental programme by external and/or internal forces, which alter progressively in intensity as a gametophore grows. We applied exogenous cytokinin and auxin separately to growing cultures to explore their effects on leaf growth. Cytokinin and auxin stimulated leaf cell division and leaf cell elongation, respectively. Also, young upper leaves of gametophores exposed to exogenous auxin closely resembled basal leaves of untreated plants. Therefore, endogenous cytokinins and auxins may be among the modulating internal forces involved in leaf morphogenesis and the establishment of leaf heteroblasty.  相似文献   

15.
Primary leaf development of Sorghum bicolor is a phytochrome-mediated response. Primary leaves are not produced in Sorghum seedlings even after 10 d of germination if grown in darkness. However, 5 min irradiation with white light or red light given to 5 d etiolated seedlings resulted in the formation of etiolated leaves. This effect of red light was reversed by far-red light. When calcium (3-5 mM) was added exogenously, complete leaf formation was obtained in darkness; however, the kinetics of the response was slower than that seen with light irradiation. This effect was also obtained with potassium ions but magnesium ions had no effect. Light- and calcium-mediated leaf development could be arrested at the stage of leaf emergence or leaf expansion by the addition of inhibitors of G-proteins or by calcium channel blockers suggesting a role of G-proteins and calcium in phytochrome signal transduction during primary leaf development.Key words: Leaf formation, G-proteins, calcium, potassium, Sorghum bicolor.   相似文献   

16.
Mary Syrop 《Protoplasma》1975,85(1):39-56
Summary The host/parasite relationship ofTaphrina deformans (Berk.) Tul. on Almond,Prunus dulcis (Miller) D. A. Webb (=Prunus amygdalus Stokes), has been studied with the light microscope by clearing and sectioning infected leaves.A quantitative study of the host reaction shows that the presence of the fungus causes immediate cell division (hyperplasia) followed by cell enlargement (hypertrophy) and cell differentiation. The epidermal and bundle sheath cells in infected regions contain anthocyanin.The vegetative mycelium is located in intercellular spaces in three distinct leaf regions. The sub-epidermal and intercellular hyphae are morphologically similar, consisting of an irregularly branching network of cells separated by unusual septa. Sub-cuticular hyphae have a more regular shape and become short and wide during development of the disease.Infection margins illustrate changes in the healthy leaf caused byT. deformans and observations indicate that the fungus spreads in the upper leaf regions.  相似文献   

17.
Exposure to red and blue lights caused an increase in electrical currents (0.14 μA cm-2 for red and 0.05 μA cm-2 for blue, respectively) flowing on the lower surface of leaves fromCommelina communis. However, no changes were measured in currents from isolated epidermal cells. To determine the influence of the mesophyll on such electrical changes, those cells were infiltrated with photosynthesis inhibitors. Both DCCD treated and control leaf discs showed the same level of response to red light. Epidermal strips were also removed to measure the currents above partially exposed mesophyll cells in order to elucidate the relationship between intact leaves and those mesophyll cells. Changes in current were smaller in the latter type. The partially exposed mesophyll cells of a leaf also showed electrical current changes, but smaller than those of the intact leaf. In DCMU-infiltrated leaf discs, the electrical currents of intact leaves were increased to 0.05 μA cm-2 in response to red light. For sodium azide-infiltrated leaf discs, however, intact leaves showed no response. Likewise, a measure of photosynthetic efficiency, the Fv/Fm ratio, was reduced to that measured in the control, thereby indicating that photosynthetic activity significantly altered the electrical current for intact leaves. Therefore, these results demonstrate that the current observed from the lower side of intact leaves is related to photosynthetic activity in the mesophyll cells.  相似文献   

18.
Morphological responses of American cranberry (Vacciniummacrocarpon Ait, Ericaceae) to different light conditions (red,far-red, white light and sunlight) were examined. Root growth and development,stem elongation, leaf enlargement, de-etiolation of stem and leaf, flower budformation, and flowering of American cranberry were measured under each lightcondition and in the dark. It was found that red light promotes development ofroots and leaves, flowering, and de-etiolation of stem and leaf of Americancranberry. Stem elongation and etiolation of stem and leaf were shown infar-redlight and dark. Anthocyanin biosynthesis as phytochemical response in cranberryplants was most sensitive to red light. Estimation of anthocyanin levels indifferent parts of cranberry plant suggested that anthocyanins were presentonlyin red fruit skins, and not in peeled fruits, green fruits, green leaves, greenstems, roots and seeds.  相似文献   

19.
The frequency with which intact leaves and epidermal leaf strips of wheat seedlings were penetrated by Puccinia graminis tritici, strain 21 Anz 2, was observed following exposure of inoculated material to various regimes of illumination/darkness and temperature. Epidermal strips, at 24°C, were penetrated most frequently when continuous light (540 ft-c) was commenced at either 4 or 8,20 or 24, or 36 or 40 h after inoculation or when a 4 h period of light was applied at these times. With both treatments, the curve obtained when the length of the dark period preceding illumination was plotted against the frequency of penetration showed a series of alternate peaks and troughs and the periodicity of the curves was significant at the 1 % probability level. In the former curve the best form of regression was linear modified by a cosine function, while in the latter the linear term proved to be non-significant. When dark periods of different lengths were applied, penetration was more variable on intact leaves than on epidermal strips. Penetration of intact leaves was influenced by the light intensity to which the seedlings were exposed after the dark treatment. The time of day when intact leaves were inoculated influenced penetration when they were grown under controlled conditions. Greatest penetration of the variety Little Club occurred when leaves were inoculated at 1.30 a.m. The time of day when epidermal strips were inoculated did not influence penetration. The inhibitory effect of continuous light on penetration of epidermal strips was overcome by changing the temperature from 18·5 to 24°C. Greatest penetration was obtained when the change was made 24 or 28 h after inoculation.  相似文献   

20.
Kuwabara A  Nagata T 《Planta》2006,224(4):761-770
When heterophyllous plants of Ludwigia arcuata Walt. (Onagraceae) were transferred from aerial condition to submergence, young developing leaves were matured into leaves with intermediate shape between aerial-type and submerged-type, showing spatulate shape (spoon-shaped). This change was also induced by the exposure of plants to ethylene. On the other hand, when the plants were transferred from submergence to aerial conditions, young developing leaves were matured into intermediate-type leaves with elliptic shape (spearhead shape). Anatomical analysis revealed that the formation of spatulate leaf was caused by the reduction of the number of epidermal cells aligned in the leaf transverse direction in the basal region of the leaf while the tip regions remained as before and did not respond to this treatment. During development, the ethylene-induced spatulate leaves showed that three types of alterations in epidermal cell division were involved in this process. Changes in the distribution of cell divisions in leaf lamina were detected by the first day of ethylene exposure, and changes in the orientation of cell division planes were detected by the second day. However, changes in the number of cells aligned in the leaf transverse direction were not detected by this time. Three days after ethylene exposure, frequency of cell divisions changed, and by the time changes of cell numbers aligned in the leaf transverse direction were observed. Thus, the formation of intermediate-type leaves in L. arcuata was ascribed to the alterations of cell division patterns which was induced by ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号